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SUMMARY 

The contribution deals with the analysis of properties of digital sinusoidal signal in both time and frequency domain. 

Spectral properties of the amplitude quantized or phase-function quantized sinusoidal signal are analyzed in detail. Specific 

manifestations of the phase-function quantization, that give rise to a restriction in the set of spectral components depending 

on the number of quantized levels, are highlighted.  

The analysis is based on the employment of the index transformation for cyclic permutation and its expression in DFT. 

This affords the analysis to be confined to just one period of the sinusoidal signal and to get, by using this transformation, the 

distribution of spectral components for multiple frequencies. Expressions for complex amplitudes of the individual spectral 

components are derived for amplitude and phase quantization. 
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1. INDRODUCTION 

 

The contribution presents an analysis of the 

spectral properties of a quantized sinusoidal signal. 

This issue arised in connection with the necessity to 

evaluate quality of sinusoidal signal synthesized in 

discrete form by the methods of digital synthesis 

(DFS-DDFS).  

There is now a fair amount of literature devoted 

to this subject (see V.F. Kroupa [1], [2], H.T. 

Nicholas and H. Samueli [3] and other 

contributions). 

This paper deals only with one particular face of 

the synthesis, namely the spectral purity of the 

generated signal.  This problem, which is connected 

with the issues of the frequency stability and phase 

noise, is a fundamental one. 

used to define the optimum architecture based on 

this DSP core. In this paper we will first present 

basic blocks of such gateway. Then we will evaluate 

ST100 capabilities to support expected functions and 

the corresponding benefits of such integration. 

 

2. FORMULATION OF THE PROBLEM 

 

Ignoring for the moment the questions of 

technical realization proper of the digital sinusoidal 

signal generation, two steps can be discerned in the 

process. First is the creation of a discrete saw 

function with the repetition frequency given by the 

steering frequency. Second step consists in the 

acquisition of the sine function values e.g. by search 

in the table, with saw function values serving as 

addresses of the corresponding sine values. 

Constraints of operation speed and technical 

realizability impose limits on precision of the phase 

function and sine values – they must be quantized.  

This activity can be conceived as a search for the 

sine function values in tables that possess a certain 

finite step in the independent variable values and in 

which the sine values are entered with a limited 

number of decimal places. As a consequence, both 

the phase function and the amplitude of the 

generated sinusoidal signal are quantized.  We will 

devote only a minor attention to the amplitude 

values quantization and its influence on the signal’s 

spectral composition – these issues are sufficiently 

described in the literature.  In contrast, the influence 

of phase function will be studied in detail: it is 

dominant and exhibits certain specific properties. 

The entire treatment is based on the employment 

of the index transformation for the cyclic 

permutation which permits the analysis to be limited 

to one period of the sinusoid with the possibility to 

extend the results for the multiple frequencies. 

 

2.1. Properties of the cyclically permuted signal 

 

Values of the discrete signal 

   0sinx n nT
   

0

0,1,2,..., 1

2 /

n N

NT 

 


 (2-1) 

can, in case we consider only each its q
th

 sample, i.e. 

the signal 

   0sin 0,1,2,..., 1y n nqT n N    (2-2) 

be considered as N samples of a signal with 

frequency 0q . 

Due to periodicity of the sine function we can 

locate these samples into the interval (0,N) using the 

notation 

    sin 2 /y n nq vN N   (2-3) 

Generally, such signal can be written in the form 

   mod 0,1,2,... 1y n x qn N n N   , (2-4)
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from which it follows that in the interval (0,N) it has, 

again, N samples arranged, however, in a different 

order than that for x(n). If one requires that the 

sequence y(n) should contain the same samples as 

x(n), the numbers q and N must be mutually prime, 

i.e. (q,N)=1. Such transformation of indices is 

termed the cyclic permutation with the step q [5] and 

is written as 

modm qn N  (2-5) 

Under the condition specified above, to each 

cyclic permutation there exists an inverse 

permutation with step r 

modn rm N  (2-6) 

where the step r fulfills the condition (see Appendix) 
1 modr q N . (2-7) 

 

2.2. DFT and cyclic permutation 

 

If we denote DFT of the original sequence x(n),  

n = 0,1,2,…,N-1 

   
1

2 /

0

N
jnk N

n

X k x n e 






  (2-8) 

where 0,1,2,..., 1k N   then, for DFT of the 

cyclically permuted sequence 

   mody n x qn N  

we get 

   modY k X rk N . (2-9) 

This means that to the DFT of the cyclically 

permuted sequence x(n) with step q, i.e. y(n), 

corresponds a cyclic permutation of the original 

sequence X(k) with, however, the step r = q
-1

 mod N. 

To the time-domain cyclic permutation corresponds 

in the frequency domain again a cyclic permutation 

with an inverse step given by (2-7). 

 

3. DFT SPECTRUM OF THE AMPLITUDE-

QUANTIZED SINUSOID 

 

One period of discrete sinusoid quantized in 

amplitude into H levels can be constructed [6] by the 

superposition of H partial rectangular signals hx(n),  

h = 0,1,2,…,H-1 
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 (3-1) 

From the definition relation for DFT we than get 

for =1/H and the h
th

 level 

The value ˆ
hp is defined as the integer part 

     ˆ int , / 2 arcsinh h hp p p N h    (3-3) 

For the DFT of the quantized sinusoid then follows 

   
1

1

0,1,2,... 1
H

h

h

X k X k k N




    (3-4) 

For DFT signal y(n) created by selecting samples 

with step q, i.e. the signal x(qn mod N), we then get 

    1mod , modY k X rk N r q N   (3-5) 

Fig.1 shows the course of y(n) for q=3; Fig.2 

presents the module Y(k) and Fig.3 the module X(k). 
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Fig.1  Sinusoidal signal quantized  

in the amplitude (q=3) 

0 10 20 30 40 50 60
-60

-50

-40

-30

-20

-10

0

2
0

 lo
g

 |Y
(k

) 
/ Y

(3
)| 

   
  [

d
B

]  

k

q=3    N=128    H=4

 
Fig.2  DFT of the sinusoidal signal quantized 

in the amplitude (q=3) 
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Fig.3  DFT of the sinusoidal signal quantized 

 in the amplitude (q=1) 
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where 0,1,2,..., / 2 1v N   
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4. DFT SPECTRUM OF SINUSOID 

QUANTIZED IN THE PHASE 

 

In this case it is the phase function that is 

quantized; instead of the linear form. 

 
2

0,1,2,..., 1n n n N
N


     (4-1) 

it has the shape of a function with L steps 

 
1

int 2 0,1,2,..., 1
L

n n n N
L N

 
 

   
 

. (4-2) 

In case that N=LM with L and M being even 

numbers, the N samples will be distributed into L 

intervals each containing M samples of the 

function  n . Following expressions hold for the 

phase function  n and the signal s(n) in the 

particular segments 

  2 / ,n M N  
 

 1 1
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 (4-3) 

   sins n n . (4-4) 

DFT of the signal s(n) can then be written as 
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Following evaluation of the double sum and 

some further manipulations we get 
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For amplitudes of the components then follows 
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sin /

2 sin /
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The relative amplitude, normalized with respect 

to the maximum amplitude (k=1) is then 

 

 

sin /
, 1, 1

1 sin /

S k N
k vL k vL

S k N


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Fig.4 shows the course of s(n) and Fig.5 the 

corresponding values of DFT S(k). 

Given the fact that the component amplitude S(k) 

decreases for k < N/2 with increasing k, one can infer 

that the closest spectral component to the one with 

k=1 is the component k=L-1 with the amplitude 

 
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sin /
1
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The normalized amplitude value for this case is 

 

   

1 sin /
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Fig. 4  Sinusoidal signal quantized 

 in the phase (q=1) 
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Fig.5  DFT of the sinusoidal signal quantized 

 in the phase  (q=1) 

 

Following 2.1, the DFT values of the discrete 

sinusoid with frequency 0q , phase-quantized with 

N samples, can be expressed with the help of the 

index transform 

Following 2.1, the DFT values of the discrete 

sinusoid with frequency 0q , phase-quantized with 

N samples, can be expressed with the help of the 

index transform for cyclic permutation. Denoting 

values of the sinusoid with frequency 0q as 

   modv n s qn N , (4-11) 

we get for its DFT 

    1mod , mod .V k S rk N r q N   (4-12) 

Fig.6 demonstrates the effect of index transform 

s(n) into v(n) and Fig.7 that of the inverse transform 

S(k) into V(k). 
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Fig.6  Sinusoidal signal quantized 

 in the phase (q=3) 
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Fig.7  DFT of the sinusoidal signal quantized  

in the phase  (q=3) 

 

 

5. CONCLUSIONS 

 

Amplitude quantization of the sinusoid was 

performed in a manner preserving symmetrical 

properties of the original sinusoid. As a 

consequence, the sinusoid quantized in this way 

exhibits, for any number of levels, only the odd 

spectral components (see(3-2)). The sinusoidal 

signal with quantized phase function does not 

possess any symmetrical features, hence its spectrum 

has a structure that can very widely with the number 

of quantization levels. It still contains only odd 

components, but many of them vanish so that the 

spectrum has a lacunary appearance described by (4-

6). It follows from Fig.4 and Fig.6 that quantization 

of the phase function gives rise to spurious 

amplitude quantization. 

 

Appendix  

To simplify notation, we will employ instead of 

n=qm mod N the form 

N
n qm . (D-1) 

Substituting into this m rn  instead of m, we 

get  

N N
n q rn ,  (D-2) 

from which it follows 
11 i.e.

N N
rq r q   (D-3) 

The number r is inverse modulo N to the number 

q. Solution of the congruence equation (D-2) can be 

effected in various ways (see, e.g., [7],[4]). We 

present here the method expressing the inverse value 

r with the help of the Euler function  (N) 

  1N

N

r q
 

  (D-5) 

The Euler function of a integer N (which is the 

number of integers smaller than N, and having no 

common divisors with N) can be obtained from the 

canonic expansion ( reduction into a product of 

prime numbers) of N 

 
1 1

1
, 1 .m

k k

m

m m m

N a N N
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 
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 
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 
   (D-6) 
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