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SUMMARY 

The purpose of the paper is to present an algorithm to solve the optimization tasks concerning with the robust 
discrete-time Kalman predictor design as well as the problem formulation for neural network implementation of robust 
Kalman predictor, where dual heuristic programming is used for realization. This application can be considered as a  task 
concerned the class of problems referred to as reinforcement learning algorithms and is based on the existence of 
a complete model of the environment and the predicted error. 
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1. INDRODUCTION 

 

Searching for a control law for given model it is 

necessary to keep in mind that this model is far 

from perfect. This leads to the so-called robustness 

analysis of the plant and controllers. Robustness of 

the systems says nothing more than that the 

stability (or another global goal) of the system will 

stand against perturbation. The classic approach to 

this problem was LQG theory. In that approach the 

uncertainty is modeled as a white-noise Gaussian 

added as an extra input (vector) to the system. 

Because size of the error may be relative to the size 

of the inputs the parameter uncertainty can be 

better modeled as a disturbance in system, taking 

values in some range. The goal is to know the 

effect of the “worst” disturbance in the prescribed 

parameter range and if this disturbance cannot 

destabilize the system then we are certain that 

system is stabilized. 

The discrete-time Kalman predictor design can 

be cast as an optimization problem that involve 

matrix equation, where this equation have the form 

of discrete or algebraic Riccati equation. In general, 

optimization problem solving need methods that can 

capture high order complexity and uncertainty of the 

system. One class of this method is Adaptive Critic 

Design (ACD). ACD approximate dynamic pro-

gramming for optimal decision making in noisy, 

non-stationary or non-linear environments (heuristic 

dynamic programming). Using neural network 

a typical ACD include action, critic and model 

modules. Each module can be a neural network or, 

alternatively, any differentiable system. Heuristic 

dynamic programming is so a neural network ap-

proach to solve Bellman equation, where in Kalman 

prediction at least two neural nets are needed – one 

for functioning as the predictor gain (action), one 

used to train the predictor gain (critic) and a third 

could be trained to copy the error model. Good 

knowledge of the derivatives of an optimization 

criterion is a prerequisite to find a solution. Dual 

heuristic dynamic programming have an important 

advantage since its critic module produces 

a representation for parameter derivatives being 

explicitly trained on them. 

The paper present new algorithms to solve the 

optimization tasks concerning with the robust 

discrete-time Kalman predictor design, where dual 

heuristic programming is used for realization The 

most applicable publications which have dealt with 

the above mentioned problem are presented in this 

paper References. 

 

 

DISCRETE-TIME ROBUST KALMAN 

PREDICTOR 

 

In general, a discrete-time stochastic uncertain 

multivariable system can be considered as 

( 1) ( ( )) ( ) ( ) ( )i i i i i    x F F x Gu v  (1) 

( ) ( ( )) ( ) ( )i i i i  y C C x o  (2) 

vectors ( ) ,
n

i x R ( ) ,
r

i u R ( ) ,
m

i y R system matrices  

,
n n

F R ,
n r

G R ,
m n

C R  are finite valued ones, 

and ( )
n n

i


 F R , ( )
n r

t


 H R are unknown matrices 

which represents time-varying parametric uncerta-

inties. It is assumed that considered uncertainty 

matrices to be of the form 
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( ) ( ) ,T i i H H I  (4) 

where 1
h nN R , 2

h rN R , n hM R are known co-

nstant matrices which specify which elements of the 

nominal matrices F and C are affected by uncertain 

parameter matrix H(i). The process and output noise 

random sequences are Gaussian with covariance  

0
n n

Q R , 0
m m

R R , 0
n m

S R . 



For such an system (1), (2), which must be 

stabilizable and detectable, given an initial estimate 

of the state (0) 0e x x  the robust Kalman predictor is 

defined as 

( 1) ( ) ( ) ( )( ( ) ( ))e e ei i i i i i    x Fx Gu K y y  (5) 

( ) ( )e ei iy Cx  (6) 

 

The actual error can be written as 

( 1) ( 1) ( 1) ( ) ( ) ( )

( ( ) ) ( ) ( ( ) ( ) ( )) ( )

ei i i i i i

i i i i i i

       

     

e x x v K o

F K C e F K C x
 (7) 

 

The error expectation is zero and covariance of 

actual error is given by the equation  

0

0 0 0

( 1) ( ( ) ) ( )( ( ) )

( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( )( ( ) ( ) ( ))

T

T T T
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where ( )
n n

i



2

W R is covariance of ( )
n

i x R . 

 

It is straightforward to verify that yields 

( )( ) ,

( )( ) .

T T T

T T T T

     

     
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Denoting the uncertainty elements of (8) as L, 

(9) implies that 
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Since immediately follows from (3) and (10) 
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using condition (4) and the identity 

T T T T  AB BA AA BB  (12) 

(11) may be rewritten as 
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or equivalently 
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The upper  bound of actual error covariance (8) is 

( 1) ( ( ) ) ( )( ( ) )

( ) ( ) ( ) ( ) ( )

T

T T T

i i i i

i i i i i

    

   
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 (16) 

where 

* *
0

* *
0 0

( ) ( ) ( ),

, .

i i i  

   

Q Q Q W M W
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 (17) 

Value of (16) can be minimized if 

1( ) ( ( ) )( ( ) )T Ti i i   K FP C S R CP C  (18) 

and the error covariance matrix is a solution of the 

Riccati equation 

( 1) ( ) ( )( ( ) )T T Ti i i i    P Q FP F K CP F S  (19) 

 

The design progresses forward in time from time 

point i=0 and is looking for the steady-state solution. 

 

 

KALMAN PREDICTOR ERROR MODEL 

 

It is presumed, that predictor error is a solution 

of the equation (7) and the follow error model 

{ ( 1) ( )}

{ ( )( ( ) ) ( ) ( ( ) ( ) ( )) ( )

( )( ( ) ( ) ( )) ( )}

( )( ( ) ) ( ) { ( ) ( 1)}

T

T T T

T T

T T T

E i i

E i i i i i i i

i i i i i

i i i E i i

 

   

    

  

e e

e F K C e v K o e

x F K C e

e F K C e e e

(20) 

can be obtained. Note that the deterministic part of  

this model imply the error state-space equations 

( 1) ( ) ( )T Ti i i  e F e C q  (21) 

( ) ( ) ( )i i i q K e  (22) 

which can be considered as a linear quadratic opti-

mal controlled dual system with performance index 

0

1
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T T

i

T T

i

J i i i i i

i i i i r i i









  

   

e Q e e Sq

q S e q Rq e q

 (23) 

 



DUAL HEURISTIC PROGRAMMING 

 

The system studied is on the form of discrete-

time state-space description, the performance index 

is (23), e(i+1) = f(e(i),q(i)) is the state equation (21),  

q(i) = g(e(i)) (22) is controlled inputs and V(e(i)) is 

the Lyapunov function, i.e. 

 

( ( ), ( )) ( ) ( ) ( 1)T Tf i i i i i   e q F e C q e  (24) 

( ( ), ( )) ( ) ( ) ( )
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( ( )) ( ) ( ) ( )g i i i i  e K e q  (26) 

( ( )) ( ) ( ) ( )TV i i i ie e P e  (27) 

 

One way to search for the optimal parameters is 

to employ a gradient algorithm. 

The Pontryagin minimum principle implies, if 

there is no bounds on q(i), the minimizing q(i) must 

be such, that 

( ( ))

( ( ))

( ( ), ( )) ( ( 1)) ( ( ), ( ))
0

( ( )) ( 1) ( ( ))

V i

g i

r i i V i f i i
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


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e e e

 (28) 

 

In this sense the target for an action network 

minimization can be defined as zero and the network 

output error is 

 
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Using the criterion 

21 1
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  e e  (30) 

for the action neural network training, a steepest-

descent discrete gradient method, based on error 

back-propagation algorithm, can be applied to solve 

this minimization problem, i.e. 
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where 
( 1)

( )

e i
j

u i
k

 


, 

( 1)

( 1)

W i

e i
j

 

 
 and 

( )

( )

r i

u i
k




are calculated 

from analytical equation of the error model, 

approximated by the critic network, and calculated 

as a derivative of performance index, respectively. 

Variable M and N designate the number of state and 

input variables. 

 

 

CRITIC NEURAL NETWORK TRAINING 

 

Heuristic dynamic programming has a critic 

network that estimates values of the function V(e(i)). 

The critic neural network is trained using the 

assumption of the optimal response 

 

( ( )) ( ( 1)) ( ( ), ( ))V i V i r i i e e e q  (32) 

 

 

The critic is trained forward in time, which is of 

the great importance for real-time operation. 

 

 

When heuristic programming is used, the critic 

network tries to minimize the following error measu-

re over time 

 

0 2

0 0

( ) ( ( ) ( ))c c
i j

W W i c i c i
 

 

     (33) 

 

where desired output of the critic neural network in 

the time point i is the value of the function (31), i.e. 

 
0 ( ) ( ( 1)) ( ( ), ( ))c i V i r i i  e e q  (34) 

 

 

There is used value of V(e(i+1)) at the time-point i+1 

and as the output of critic neural network is taken 

into account the value V(e(i)) from the last-but-one 

step of iteration, i.e. 

 

( ) ( ( ))c i V i e  (35) 

 

and the optimization procedure is given by 

 

( ( ))
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( )
rs c c

rs

V i
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
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

e
 (36) 

 

where μ is a positive learning rate. 

 

 

Dual heuristic dynamic programming and its 

action dependent form have a critic network that 

estimates the derivatives of cost function with 

respect to the prediction error vector e(i), which 

gives for the j-th desired output of the critic neural 

network 

.

  
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where 
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 are 

calculated from analytical equation of the error 

model, approximated by the critic network, and cal-

culated as a derivative of performance index, respec-

tively. The value 
( )

( )

u i
k

e i
j




 is given as the product of 

synaptic weights on the path from the j-th input to k-

th output of the action neural network. 

 

 

The training criterion for critic neural network 

can be defined as 

 

0 21
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and the neural network optimization procedure is 

given by 

 

( )
( )

( )

c
rs c

rs

W i
w i

w i



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
 (39) 

 

 

It is evident that the basic strategy to update the  

networks can be given by the straight application of 

(30), (38). The better critic neural network approxi-

mate criterion the better the action neural network 

will approximate an optimal control. 

 

In dual heuristic programming a target (desired 

output) is needed for training the critic network and 

this is typically calculated by running the critic 

network one more computational cycle to provide its 

next-in-time output, and then use this value to com-

pute the target for the present-time cycle. The error 

term is calculated and the critic network update is 

performed in the usual way. Since the critic network 

that calculates the target is changing with each 

update, it provides a moving target for critic neural 

network training. 

CONCLUDING REMARKS 

 

The paper present some background material on 

the robust discrete time Kalman predictor, an over-

view of the dual heuristic programming problem and 

a survey of techniques considered from the point of 

feed-forward multilayer perceptron  and neural net-

work training. 

Applications can be considered as a task concer-

ned the class of problems referred to as reinforce-

ment learning algorithms. Reinforcement learning is 

a general way to formulate complex learning pro-

blems. The goal of the system is to maximize a long 

terms sum of an instantaneous reward (provided by 

the teacher). It is a decision process based on system 

environment simulation and in its extremum form it 

only requires that the teacher can provide a measure 

of success. 

Presented new application of dual heuristic pro-

gramming principle for discrete-time Kalman state 

estimation, based on the existence of a complete 

model of the environment and the dual-system mo-

del of prediction error, involved back-propagation 

utilities with system response parameterization. This 

approximation of the gradient algorithms for 

parameter updating in the sense of the mean value 

for given training set is a basic one for implemen-

tation of presented tasks using adaptive critic design 

for neuro-control, which is suitable for learning in 

noisy and  non-stationary environments. 
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