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SUMMARY 

     The Zimm model of the dynamics of polymers in solution is developed. The Zimm equation for the radius vectors of 

polymer segments is generalized taking into account the effect of hydrodynamic viscous memory. On the basis of the 

nonstationary Navier-Stokes equation the Oseen tensor is built. After the preliminary averaging of the tensor a non-

Markovian equation for the time correlation function of the Fourier components of the segment position is derived. The 

hydrodynamic memory essentially affects the time behavior of the correlation function of the Fourier amplitudes of the chain 

fragment coordinates. It is demonstrated by its long-time asymptote that now has a fractional power character  t-5/2 instead 

of the traditional exponent. The relaxation time and the diffusion coefficient of the macromolecule as a whole are shown to 

be the same as in the Zimm model. 
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Most of the theoretical investigations on the 

dynamic properties of flexible macromolecules 

performed so far are based on the Rouse-Zimm 

model. The simplest theory of the dynamics of 

polymers due to Rouse is formulated for the 

standard Gaussian, ideal and phantom chain in an 

immovable solvent [1-3]. The results of the Rouse 

model disagree with experimental observations; one 

of the reasons is that the model does not take into 

account that in real situation the solvent is involved 

in the motion of the polymer chain, the velocity field 

of the solvent is disturbed that, in its turn, affects the 

friction forces acting on the polymer segments. Such 

an indirect interaction between the segments 

(through the solvent) is called the hydrodynamic 

interaction. It was included into the consideration by 

B.H. Zimm in 1956 [4]. The aim of the present 

investigation was to develop this classical work by 

taking into account the viscous aftereffect or, in 

other words, the hydrodynamic “memory” of the 

polymer. 

Building the theory of kinetic phenomena in 

dilute solutions of polymers, the macromolecule is 

often represented by a set of beads jointed into the 

chain. The dynamics of such a polymer molecule is 

modeled by the Brownian motion of the beads. The 

analysis of the dynamic properties of polymer 

solutions within the Zimm model [4] is based on the 

account for the Stokes force that acts on the beads, 

and on the perturbation of the velocity field of the 

solvent due to the motion of neighboring beads, so 

that the hydrodynamic interaction is described by the 

Oseen tensor. The evaluation of this tensor is carried 

out with the use of linearized Navier-Stokes 

equations for the stationary motion of the solvent. In 

the approximation employing the procedure of 

preliminary averaging of the Oseen tensor in the 

Zimm equation this leads to the exponential time 

relaxation [1,2] of the correlation functions of the 

normal modes of the polymer chain. This 

corresponds to the Markovian process of Brownian 

walking [3]. In the general case, however, on every 

particle of the model chain a force acts that depends 

on the relative velocity of the particle and the 

solvent in all the foregoing moments of time (the 

Boussinesq friction force), and the Oseen tensor 

should take into account the viscous aftereffect. For 

noninteracting Brownian particles this leads to an 

essentially different, algebraic, not the exponential 

asymptote of the time correlation function of 

dynamic variables [5-7], that reflects collective 

properties of the correlation functions of the 

molecules of the liquid [8].  

We have generalized the Zimm equation for the 

vector of the position of arbitrary polymer segment 

taking into account the effects of viscous memory. 

First of all this concerns the evaluation of the Oseen 

tensor on the basis of the nonstationary Navier-

Stokes equation. After the preliminary averaging of 

the tensor, a non-Markovian equation is obtained for 

the time correlation function of the Fourier 

components of the chain segment position. The 

viscous memory significantly affects the long-time 

asymptote of the Fourier components of the 

fragments of polymer chain – it has a fractional 

power character instead of the traditional 

exponential one. The maximum relaxation time and 

the diffusion coefficient of the macromolecule as a 

whole are the same as in the Zimm model. 

 

The equation of the Brownian motion of the nth 

segment of the polymer chain has a form 
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Here 
nx


 is the position vector of the chain segment 

(the bead) of the mass M and nf


 is the Gaussian 

random force with the zero mean value. The first 

term on the right-hand side is the Stokes friction 

force on the bead. It takes into account that the bead 

is carried by the velocity field of the solvent in the 

point of the bead, due to the motion of neighboring 

segments of the polymer chain (the hydrodynamic 

interaction). The interaction between the segments is 

described by the effective potential [2] 
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(a is the mean-square distance between the 

neighboring beads along the chain). In the simplest 

case the Brownian motion can be considered as a 

Markovian random process,   b ( is the 

viscosity of the solvent and b is the radius of the 

spherical bead), and the flow excited by the beads is 

stationary. The account for the viscous aftereffect in 

an incompressible solvent leads to the integro- 

differential Volterra equation and in the Fourier 

representation instead of  the following expression 

has to be used [5]: 
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Here Re > 0 and  = / is the kinematic viscosity 

of the solvent. Since the solvent is an incompressible 

viscous fluid and the flow excited by the polymer 

chain is slow, the Navier-Stokes equations can be 

written in the linearized form, 
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where p is the pressure and 


 is the external force 

per unit volume, acting on the solvent near 
nx


. The 

external force is expressed as follows [2,9]: 
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After the Fourier transformation in the time the 

solution of Eqs. (4) are easily found in the form of 

projections on the Cartesian axes, 
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Here the Fourier representation of the nonstationary 

Oseen mobility tensor is introduced:  
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The prime denotes the differentiation with respect to 

y. In the particular case  = 0 
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and it coincides with the result by Zimm. Now the 

solution of the problem of perturbation of the 

velocity field due to the motion of the polymer chain 

can be written in the form 
 

    



n

t

n ttxxHdttxv ',',


  

 

     
 

 


















 '

'
tf

x

tu
n

n





 .      (8) 

 
In the continuum limit with respect to the discrete 

variable, the new equation of motion for the nth 

segment has the same form as in the Zimm model 

but in the Fourier representation: 
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Due to the dependence of the Oseen tensor on the 

difference 
mn xx


 , Eq. (9) is nonlinear and is hardly 

solvable analytically. We shall use the approxima-

tion of preliminary averaging replacing the expre-

ssions (10) by their averages over the equilibrium 

distribution function. Restricting ourselves to the 

states close to equilibrium, the pair distribution 

function is [8] 
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so that for  
0

nm xxH



  we have 
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Taking into account Eq. (11), we search for the 

solution of Eq. (9) in the form of a superposition of 

the modes of displacements (as the Fourier series in 

the variable n), 
 







1

0 cos2
p

pn
N

pn
yyx

 
,      

 

 
n

N

p x
N

pn
dn

N
y



0

cos
1

,       p = 0, 1, 2, ...     (12) 

                               
From Eqs. (9) and (11) we then have 
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and 

qf


 is determined by the same transformation as 

in the second of Equations (12). The Oseen tensor 

after the averaging depends only on the difference 

m-n and is diagonal with respect to the Cartesian 

indices, that is ~. At large values of q the matrix 

hpq is practically diagonal with respect to the 

indices of Fourier transformation, i.e., it is ~pq. The 

prove of this statement does not differ from the case 

 = 0 [2]. When p and q are of the order of unity, the 

nondiagonal elements are also small compared with 

the diagonal ones. That is why the major terms of 

the matrix (14) are diagonal, so that after the 

integration we obtain 
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When we neglect here the mass of the moving bead, 

setting M = 0, and the viscous aftereffect, the Zimm 

result is obtained. At q = 0 we find directly from the 

definition (14) 
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Thus, the modes of the expansion of the position of 

the polymer chain segment are orthogonal and 

connected with the acting force by the relation 
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Let us introduce the time correlation functions of 

the normal modes, 
 

   0)(  qqq ytyt  ,            (17)         

 
where the angular brackets denote the statistical 

average over the realization of the random forces.  

For the spectral density of this correlation function, 
 q

, with the use of the fluctuation-dissipation 

theorem [6], we find 
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Taking into account the dependence of q  from Eq. 

(15) on the frequency,  q
can be expressed in the 

form of a proper fraction that in the numerator has a 

polynomial of the fourth degree and in the 

denominator a polynomial of the sixth degree in 

i . Let -l be the simple roots of the 

polynomial in the denominator. In this case we shall 

have after the expansion into the simplest fractions 
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Here Al are the expansion coefficients that can be 

easily determined explicitly. Using the result (18) 

one can prove that  
l lA 0 . Returning into the t-

representation we find 
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where w(z) is the function on the complex plane 

studied in detail in the work [10]. From this 

expression one finds   qBq Tkt   0 , q>0. The 

asymptotic behavior of the function w(z) at large 

absolute values of its argument allows us to find the 

main contribution to the long-time correlation 

function of the normal modes, 
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Here  is the gamma function. As above, using the 

explicit expression for the spectral density (18), we 

find l llA
2 = 0, so that the first nonvanishing 

contribution has the fractional power character as 

distinct from the traditional exponential law 

following also from the Zimm model:  
 

  




















6

1

25

4

1

2

5
Re

l l

l

q
t

A
t


 .        (22) 



The sum over the roots l can be again calculated 

from the explicit form of the spectrum:  
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The obtained results significantly differ from the 

classical results of the Zimm theory. They 

demonstrate that the hydrodynamic memory 

essentially influences the time dependence of the 

correlation functions of the Fourier amplitudes of the 

polymer chain fragments.  

Since the radius vector of the center of inertia of 

the chain is 
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the diffusion coefficient of the polymer as a whole 

can be determined by the relation 
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where in the second equality the Fourier 

transformation of Eq. (17) has been used. The inte-

gration with the function (15a) after the limit 

transition leads to the result 
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that fully coincides with the expression for the 

diffusion coefficient of the polymer coil within the 

Zimm model. Finally, if the relaxation law of the 

correlation function (17) would be exponential as in 

the Zimm model, the relaxation time of the qth mode 

could be in our approach determined by the integral  
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that also agrees with the result based on the Zimm 

theory [1,2].  

 We believe that the presented theory will 

stimulate new investigations of the dynamics of 

polymers, both theoretical and experimental, by 

means of the dynamic light or neutron scattering 

techniques. To test our results, methods of computer 

experiments seem to be especially appropriate. 
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