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SUMMARY 
In this article is presented a simple method for transient stability assessment of a single machine-infinite bus power 

system using catastrophe theory. Catastrophe theory is a mathematical technique for the qualitative analysis of system 
equations, defining the jump phenomena and sudden changes caused by smooth alterations in the situation.  

The computation of critical fault clearing time and critical fault clearing angle has been demonstrated and compared 
with results obtained by the numerical step-by-step method. The technique is performed in such a way that individual 
machine energies are balanced. It is valid for any fault type or location and is effective for on-line stability assessment. 
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1. INDRODUCTION 
 
Transient stability in a power system can be 

defined as the ability to retain synchronism with the 
system, following a large disturbance such as a 
sudden, large change in load, or a generation and 
transmission system fault which has occurred and 
then been removed. An understanding of system 
stability requires a knowledge both of the 
mathematical modelling of the problems and of 
numerical techniques. However, the computing of 
power system stability is extremely intricate and 
highly nonlinear problem. 

 
2. TECHNIQUES FOR TRANSIENT 

STABILITY ASSESSMENT 

Transient stability has always been studied in 
practice via numerical integration of differential 
equations for a given fault and examining the 
simulated system response. The research is 
concerned to the real-time or faster than real-time 
power system transient stability simulations. 

The numerical methods allow accurate and 
detailed representation of power system, but they are 
not suitable for on-line application due to large 
computation time. An alternative approach by the 
application of Lyapunov theory was proposed in 
1966 by Gless, EL-Abiad and Nagapan [1]. Much 
work has been done to find ways and means to 
reduce the computation time for transient stability 
studies, particularly by the Lyapunov's method and 
pattern recognition method (both come under direct 
methods). In Lyapunov`s method, research has 
concetrated on finding the best Lyapunov function. 
The results obtained are still very conservative 
because Lyapunov`s method defines stability regions 
by means of state variables and the state variables 
must be updated for changes in operating conditions 
and fault locations. Pattern recognition has also been 

proposed to solve the transient stability directly and 
can be used for on-line applications. The main 
drawback to the method is in the excessive off-line 
computation that has to be done first. [2]. 

Many studies have been done using the concept 
of potential and kinetic energies to analyse the 
power system transient stability. This concept is 
based on the deduction of an energy function 
dependent on all system state variables. It has been 
applied to define the critical group of machine 
separated from the rest of the system to determine 
the overall system stability, but it needs further 
investigation. 

Another applications still used to determine the 
critical transient energy and to identify the 
controlling unstable equilibrium point for a specific 
disturbance. These applications still use 
computational techniques that make it difficult for 
them to be used for on-line stability assessment. [2]. 

On the other hand, the catastrophe theory as a 
qualitative, effective technique has been applied to 
evaluate the power system transient stability. 
 
3. CATASTROPHE THEORY 
 

The catastrophe theory (CT) is the invention of 
Rene Thom, a French mathematician. CT provides 
certain mathematical models to demonstrate the 
number of qualitatively different configurations of 
discontinuities that can occur, which depend upon 
the control variables which are normally a few, and 
not upon the number of state variables which may be 
many. For system with not more than five control 
variables and two state variables, there are seven 
distinct forms of elementary catastrophes. 

Assuming a family of function: 

RCFV :  (1) 
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where: F  - is a manifold, nR , called state space, 
C  - another manifold, rR , called control 

space. 
 
A manifold is an indicative of a higher-order 

surface, e.g. one-dimensional manifold is a curve, a 
second-order manifold is a two-dimensional surface 
a third-order manifold is a three-dimensional 
surface. The catastrophe manifold N , is the subset 

rn RR defined by: 
 

0. xVcx  (2) 
 

where: cxVxV c ,  - is the set of all critical 
points of all potentials cV in the 
family V , 

x  - is the partial derivative with respect 
to x . 

 
Next, we find the singularity set S , which is the 

subset of the manifold N , that consist of all singular 
points of V . These are the points at which: 

 
0. xVcx  and 02 xVcx  (3) 

 
The singularity set S  is then projected down 

onto the control space rR  to obtain bifurcation set 
B . The bifurcation set is the image of catastrophe 
manifold N  in the control space C . The bifurcation 
set B  provide the projection of the stability region 
of all possible stable points of V  in terms of the 
control variables, which usually represents the 
system parameters. 

The seven elementary catastrophes for the 
control space dimension 4r  have been well 
defined and explained [3]. From this seven 
elementary catastrophes is swallowtail catastrophe 
used in this paper. 

 
4. APPLICATION OF CATASTROPHE 

THEORY TO TRANSIENT STABILITY 
PROBLEM 

 
Wvong a Mihirig, 1985 first applied CT for 

transient stability analysis of one machine infinite 
bus power system using the swallowtail catastrophe 
model. Later on 1989, they used the cusp 
catastrophe model to evaluate the transient stability 
of multimachine power systems and compared 
results of critical fault clearing time with those 
obtained by the standard step-by-step method. 
Subsequently, Sallam, 1989 used energy balance 
approach for multimachine power system and used 
the swallowtail catastrophe for computation of the 
critical time and critical fault clearing angle [4]. 

The present research work applied differs 
significantly from the techniques described by 

Wvong and Mihirig, 1985, 1989, and Sallam, 1989. 
In this article, the computation of control parameters 
for one machine infinite bus power system is based 
on the exact initial machine angle of the power 
system which gives a more accurate estimate than 
the above mentioned computation techniques. 

 
Consider an one machine infinite bus system as 

shown in Fig.1. Assume the three-phase fault on 
infinite bus. 

 

 
Fig. 1  One machine infinite bus power system 

Data for system on Fig. 1 show Tab. 1. 

Generator Transformer Load 
PnG = 220 MW SnT = 250 MVA Pvs = 0,8 PnG
SnG = 259 MVA UnT = 15,75/420 kV  
Un = 15,75 kV uk = 13,3 %  
cos = 0,85   

'
dx = 26,7 %   

Ta = 2.H = 9,89 s   

Tab. 1  Data for system on Fig. 1. undertake from 
Slovak nuclear power plant -aslovskp Bohunice. 
 
The swing equation of the system is given by: 
 

sinmax2

2
PP

dt
dM i  (4) 

 
where: M  - inertia constant, 

 iP  - input power, 
sinmaxP  - output power. 

 
For a three-phase fault at location K , Fig.1. the 

system is stable only if the kinetic energy generated 
during the fault kE  is less than or equal to the 
potential energy during the post fault period pE . 
Consider the critical clearing case where: 

 
0pk EE  (5) 

 
Equation (5) can be implemented in terms of CT 

as the equilibrium surface or the manifold N  of a 
smooth function V , i.e. we consider: 

 
0)(. pkCx EExVN  (6) 

 
We also define the singularity set S , as the set 

of steady-state stability limits where: 
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0)(.2 xVCx   (7) 
 
Eqn. (5) can be derived by integrating the swing 

equation to obtain: 
 

0coscos
2
1 .

2
mmAmmCiCmAc PPPPM  (8) 

 
where: mAP  - is the maximum power after fault 

clearing, 
C  - is the critical clearing angle, 

C
.

 - is speed at critical clearing, 
m  - is the unstable equilibrium angle 

(maximum angle). 
 
Eqn. (5) represents the equilibrium surface of the 

system for all possible fault locations. 
When we consider: 

CCc t.
.

(9) 
 
Then: 

2
0 .

2
1

CC t (10) 

 
where:  - is the acceleration in the instant of 

fault occurrence, 
Ct  - critical clearing time. 

 

Let: 2.
2
1

Ctx  and mmAmi PPK cos  (11) 

 
Next we must replacing goniometric functions by 

Taylor¶s series expansion. But we must know, how 
many coefficients in this series we can removed. 
This problem is called Taylor determinacy. 
Coefficients from cosine series expansion we can 
use just to the fourth order [3]: 

 
xxPxM mA sinsincoscos 00  

00 KxPi  (12) 
 
By truncating the series expansion and taking the 

terms up to the fourth order, Eqn. (12) we can 
written: 

 
001

2
2

3
3

4
4 BxBxBxBxB  (13) 
 

where:  
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Next we eliminate the 3x  term by taking: 

yx  and 
4

3
4B
B  (15) 

Eqn. (13) we can written in the form of 
swallowtail catastrophe manifold: 

 
0, 24 wvyuyycyVy   (16) 

 
where: u , v  and w  - are the control variables: 
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The singularity set S  can be obtained by 

differentiating the Eqn. (16): 
 

024, 32 vuyycyVy  (18) 
 
Eqn (16) and (18) can be used to find the 

bifurcation set B  (Fig. 2). For the transient stability, 
it is necessary that all the points must lie in the 
bifurcation set as well as it must be greater than .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Bifurcation set B which represents stability 
region 

 
 

Physically the smallest positive root, which 
satisfies the inequality condition y  represents 
the critical clearing time. Eqn. (16) has real roots in 
the bifurcation set region: two positive and two 
negative. The function V  and 'V can then sketched 
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as shown in Fig. 3. The first root of yV  represents 
the critical clearing time. 

 

Fig. 2  V  and 'V  for 2672,0v  and 2380,29w
 
 
The critical clearing time can be computed from 

the know value of c , or y , or x : 
 

ytC
2  (19) 

 
Practical results from this theory are shown in 

Tab.2. For the one machine infinite bus system on 
Fig. 1. we obtain critical clearing time and critical 
clearing angle values. These results are compared 
wits results obtained by the classical step-by-step 
numerical method as well as by Wvong and Mihirg 
approach. 

 
 

Variants 
Critical clearing time 

Ct  [s] 

 0,8.Sn Sn 1,2.Sn 
Step-by-step 0,3332 0,3242 0,3151 

Variant A 0,3390 0,3290 0,3190 
Variant B 0,3374 0,3274 0,3175 

 
 

Variants 
Critical clearing angle 

c  [�] 

 0,8.Sn Sn 1,2.Sn 
Step-by-step 102,3948 99,1871 96,0861 

Variant A 105,3847 101,5609 97,9916 
Variant B 104,5137 100,7654 97,2616 

 
Tab. 2  Comparison of critical clearing angle and 

critical clearing time computing by various 
techniques for generator on Fig. 1: 

Variant A ± Wvong and Mihirig approach 
Variant B ± proposed method 

5. CONCLUSION 
 

Catastrophe theory has been applied to the 
transient stability assessment of one machine infinite 
bus system. The advantages of the proposed method 
are: 
a) Transient stability region is obtained in terms of 

a small number of so-called control variables 
instead of a usually large number of state 
variables. The control variables are functions of 
the system parameters and state variables. 

b) The stability region is valid for any loading 
condition or fault location. Degree of stability is 
indicated by the distance of operating point from 
boundaries of the stability region. 

c) The proposed method is easy and provides good 
agreement with standard numerical step-by-step 
methods. 
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