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SUMMARY 
The paper deals with simulation of electromagnetic and thermal phenomena in a nonferromagnetic cylindrical conductor 

of circular cross-section fed from a source of general time-dependent voltage. The task is formulated as a hard-coupled 
electromagnetic-thermal problem that is solved in common with the computation of the corresponding time evolution of the 
current. Its mathematical model consists of two partial differential equations describing both the fields and an ordinary 
differential equation for the time dependence of the current. These equations supplemented with correct initial and boundary 
conditions are solved by the FDM using an appropriate explicit-implicit approximation. The methodology is illustrated on a 
task whose results are discussed. 
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1. INTRODUCTION 

Analysis of the voltage and current surge 
phenomena in electrical systems as well as in 
windings of the rotating machines and transformers 
usually does not take into account variances of the 
resistance and internal inductance due to the skin 
effect. The reason consists in a wide-spread opinion 
that increase of the resistance brings about damping 
of the surge effects and its neglecting leads to higher 
values of the investigated quantities. And when the 
devices are designed correspondingly, their safety is 
higher. 

In case of pulses with steep front, however, the 
effective resistance may be even by an order higher 
than the DC resistance. Neglecting the skin effect 
can lead, therefore, to unacceptably distorted ideas 
about the voltage and current phenomena in the 
device. The situation (particularly in accidental 
states) is also affected by temperature rise of the 
current-carrying parts, which brings about a 
supplementary increase of their resistances. 

Thus, complete analysis of the task represents a 
coupled electromagnetic-thermal problem and the 
paper offers a methodology how to cope with it. We 
consider a surge skin effect in a conductor of 
circular cross section placed in medium from which 
the produced heat is transferred by convection 
(which is usual, for example, at various kinds of 
grounders, or overhead and cable lines in power 
distribution systems). 

2. FORMULATION OF THE PROBLEM  

A cylindrical conductor of circular cross-section 
(radius r0, length l0, see Fig. 1) is supplied from a 
source of pulse voltage u(t). Its material is 
nonferromagnetic (  = 0) and temperature 
dependencies of its parameters (electrical 
conductivity (T), thermal conductivity (T), 

specific mass (T) and specific heat c(T)) are 
supposed to be known. 
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Fig. 1  The investigated disposition 
 
 

The aim is to find the time evolution of the 
effective resistance effR t  and internal inductance 

effL t  that are influenced by 
the shape of the current pulse, 
corresponding time-dependent distribution of 
the current density along the radius, 
consequent temperature rise due to the Joule 
losses in the conductor. 

 
As the solution must respect mutual influence of 

all above quantities, the task will be handled as a 
hard-coupled problem. This means that all required 
quantities will be calculated simultaneously. 
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3. MATHEMATICAL MODEL OF THE 
PROBLEM 
 
The basic mathematical model of the problem 

consists of two partial differential equations 
describing the 

nonstationary electromagnetic field expressed 
by distribution of the vector potential A(r,t),  
nonstationary T(r,t) temperature field produced 
by the Joule losses wJ, 

and one ordinary differential equation for current i(t) 
in the massive conductor. These equations are 
supplemented with relevant initial and boundary 
conditions. 
 

The nonstationary electromagnetic field within 
the conductor is described by equation (see, for 
example, [1]) 

                 0
0

1 rot rot ,
t
AA J                 (1) 

where J0 denotes the vector of the uniform current 
density in the conductor corresponding to external 
current i(t) from the source. In this case J0 has only 
one nonzero component J0z(t) and A also one 
nonzero component Az(r,t). Now the equation (1) 
within the conductor 00 ,0r r t may be 
transcripted as 
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Unambiguousness of its solution is assured by the 
following boundary and initial conditions: 

           z 0 for 0 and 0A r t
r

                (3) 

            (rotation symmetry),     

    0 z
00
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         (4) 

(an indirect condition expressing the fact that 
in case of a voltage source the eddy currents 
close within the massive conductor within 
any external effects), 
   z 0, 0 for 0 , 0A r t r r t             (5) 
(at the beginning no magnetic field is 
supposed to affect the arrangement). 

The knowledge of distribution of the vector 
potential Az(r,t) then provides: 

distribution of the eddy current density Jeddy(r,t) 
within the conductor 

z
eddy ,

A
J

t
                         (6) 

specific Joule losses wJ(r,t) within the conductor 
2

J 0 eddy
1 ,w J J                     (7) 

total Joule losses WJ(t) in the conductor of 
length l0 

0
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2 d ,

r
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effective resistance Reff(t) of the conductor of 
length l0 
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In a similar manner we can determine the 
effective inductance Leff(t) of the conductor.  

The magnetic flux density within the conductor 
has only the tangential component B (r,t) that 
may be expressed as 
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A

B
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The corresponding volume energy wm(r,t) of the 
magnetic field is  

2
m

0
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and the total energy Wm(t) in the conductor of 
length l0 

0

m 0 m0
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r
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Hence, the effective inductance Leff(t) is 
m

eff 2
0

2
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The nonstationary temperature field is described 
by equation (see, for example [2]) 

Jdiv grad ,TT c w
t

            (14) 

where temperature T=T(r,t) and specific Joule losses 
wJ are given by (7).  In our case this equation within 
the conductor may also be transcripted as 

2
J

2

1 .
wT T c T

r r tr
             (15) 

Unambiguousness of its solution is assured by the 
following boundary and initial conditions: 

              0 for 0, 0,T r t
r

                (16) 

 (rotation symmetry), 

  c 0 0for , 0T T T r r t
r

     (17) 

(convective transfer of heat from the 
conductor surface into ambient air of 
temperature T0, c being the corresponding 
coefficient), 

       s 0, for 0 , 0T r t T r r t           (18) 
(at the beginning of the process the conductor 
has initial temperature Ts). 
 

The circuit equation may be written in the form 
eff 0

eff 0 0 eff

d d
.

d d
L t i t

R t i t i t L t u t
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(19) 

with the following initial conditions: 
                     0 0 for 0,i t                       (20) 
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0 0
eff 00 , see, for example,[3].
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All the presented equations represent an 
interconnected system describing a coupled 
electromagnetic-thermal problem in combined field-
circuit interpretation. 
 
 
4. ALGORITHM OF THE NUMERICAL 

SOLUTION 
 

The definition area 00 , 0r r t  is first 
discretised in the following manner: 

in direction r by a set of N points ri, i = 1, �, N 
(r1 = 0, rN = r0) with step r, 
in direction t by a system of time levels t1, t2, 
�, tl, tl+1, � with step t. 

The algorithm itself then consists of these steps: 
a) Computation of values Azi,l+1 from values Azi,l, 

where i = 2, �, N-1, by means of the explicit 
difference approximation of (2) (see, for 
instance, [4]), with respecting the 
dependence , ,i l i lT , see eq. (23). 

b) Computation of values Az1,l+1 and AzN,l+1 by 
means of implicit approximations of eq. (3) or 
(4). 

c) Determination of values Ti,l+1 from values Ti,l, 
where i = 2, �, N-1, by means of explicit 
difference approximation of (15) with 
respecting dependencies  

, , , ,,i l i l i l i lT c c T  (see Fig. 3) and 
using relation (7) for calculation of wJi,l. 

d) Calculation of T1,l+1 and TN,l+1 by means of 
implicit approximations of eq. (16) and (17). 

e) Computation of Reff l+1 by means of numerical 
approximation of relations (6) � (9) and 
knowledge of values Azi,l and Azi,l+1, i = 1, �, N.  

f) Computation of Leff l+1 by means of numerical 
approximation of relations (10) � (13) and 
knowledge of values Azi,l and Azi,l+1, i = 1, �, N.  

g) Computation of i0,l+1 from the explicit difference 
approximation of (19). 

The computation is repeated until a prescribed 
time Tstop is reached. 
 
 
5. ILLUSTRATIVE EXAMPLE 
 

The task is to determine the time evolution of the 
effective resistance Reff(t) and inductance Leff(t) of a 
direct massive copper conductor of length l0 = 100 m 
and radius r0 = 0.004 m that is supplied by a voltage 
pulse depicted in Fig. 2. Calculations should respect 
the influence of temperature rise of the conductor. 
Further necessary data follow: 

starting temperature of the conductor Ts = 30°C, 
temperature of ambient air T0 = 20°C, 
ambient air does not move, so that the 
corresponding value of the heat transfer 
coefficient (see, for example [6]) c = 20 
W/m2K. 
dependence T  for copper is given [7] as 

20

1 ,
1 20T

              (23) 

 where 8
20 1.673 10 m,

  -10.0043 K ,
the direct-current resistance R0 of the conductor 
(21) is 23.362 10 , 
the direct-current inductance L0 of the conductor 
(22) is 65 10 H,
dependencies T  and c T  for copper [5] 
are depicted in Fig. 3. 
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Fig. 2  The shape of the voltage pulse u(t) 
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Fig. 3  Temperature dependencies of (T) and  

c(T) for copper 
 

All computations have been carried out by a 
single-purpose user program RL_EF developed and 
written by the authors. Several results are presented 
in the following figures. 

Fig. 4 contains the time evolution of the total 
current i0(t) in the conductor produced by the 
voltage pulse in Fig. 2. The current obviously lags 
behind the voltage u(t). This is caused by relation of 
quantities u(t), i0(t) and Reff(t) (see Figs. 3, 4 and 7) 
occurring in (19) that admit: 

0
eff 0

d
0

d
i

u t R i t
t

 

even when u(t) decreases (the influence of term 
d / deffL t  is practically negligible, as can be seen 
from Fig. 8). 

Fig. 5 contains the time evolution of the total 
Joule losses WJ(t) produced by the distribution of the 
total current density. These losses are considerably 
high and, obviously, influence of the consequent 
temperature rise has to be taken into account. On the 
other hand, the losses are produced only for a very 
short time, so that the total heat is relatively small 
and the temperature rise can be expected not to 
exceed the admissible value. 

c 



8 Modelling of Resistance and Inductance of Nonferromagnetic Conductor with Respecting Its Direct Heating 
 

Fig. 6 containing the distribution T(r,t) within the 
conductor fully confirms the conclusions following 
from the discussion to Fig. 5. Well visible is the 
influence of cooling by ambient air; temperatures 
along the surface of the conductor (r = 0.004 m) 
reach in time t = 400 s practically two times 
smaller values than along its axis (r = 0 m) 
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Fig. 4  Time evolution of total current i0(t) 
 

0

1

2

3

0 100 200 300 400
t  (10-6 s)

Fig. 5  Time evolution of the total Joule losses WJ(t) 
 

 

 
Fig. 6  Distribution of the temperature T(r,t) within 

the conductor 
 

Fig. 7  Time evolution of Reff(t) 

The final results are presented in Figs. 7 and 8 
containing the time evolution of the effective 
resistance Reff(t) and effective inductance Leff(t). It is 
obvious that: 

the effective resistance Reff(t) is higher than the 
direct-current resistance R0 (see eq. (21)), 
the effective inductance Leff(t) is lower than the 
direct-current inductance L0 (see eq. (22)). 

Both functions Reff(t) and Leff(t), however, 
asymptotically approach the values R0 and L0, 
respectively, which is in accordance with theory. 

 

Fig. 8  Time evolution of Leff(t) 
 
6. CONCLUSION 

 
The presented methodology allows solving this 

hard-coupled electromagnetic-thermal problem with 
good accuracy and reasonable time of computation. 
Next work in the field will be aimed at extending the 
algorithm by conductors of more general cross-
sections, mutual influence of several near conductors 
(proximity effect), influence of ferromagnetic 
material etc.  
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