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SUMMARY 
A new approach for deriving the state space equations from the causal bond graph with derivative causality, on the basis 

of equivalent signal flow graph, is given. By following ´the paths of traveling´ of two general bond graph variables (effort e 
and flow f) through the causal bond graph, the equivalent signal flow graph is obtained. On the basis of that signal flow 
graph, the system of equations with the first derivatives of state variables which are implicitly expressed, are formed. After 
their minor arranging the state space model is obtained. 
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1. INTRODUCTION 

The state space model deriving from the bond 
graph model is very important in the practical 
engineering. Thus, the strong connection between 
bond graph models of systems and all the analysis 
and design methods based on the state space model 
is realized. That is why it is easy to understand the 
importance of systematic procedures for obtaining 
the state space model from the bond graph. 

In bond graphs theory, a significant attention is 
paid to causality. Causality was introduced to find 
out whether it is possible to calculate all model 
variables after presenting a system model as a bond 
graph. By an undivided definition of causes and 
consequences one can clearly see how to calculate 
any model variable. It is obvious that a consequence 
cannot be determined, unless all its causes including 
the main sources of model energy causes are known. 
It is also necessary to be aware of their mutual 
influence. So causality clearly shows the directions 
of the source energy propagation to the latest in 
bond graph. Once causality is determined (procedure 
described in [1-5]), the equations for determination 
of effort and flow of each bond in a bond graph can 
be derived from a bond graph. It is of interest to 
derive equations which describe system state space 
model. In 1988, Breedveld proposed the procedure 
for obtaining the relations between effort and flow 
for every bond graph element considering causality 
stroke position (The elements are: Resistive element 
(R element), Flow storage element (C element), 
Effort storage element (I element), Transformer (TF 
element), Gyrator (GY element), Effort source (Se 
element), Flow source (Sf element), Series junction 
(1 junction) and Parallel junction (0 junction)). A 
desired equation system can be determined by 
ordering initial equation system [1]. In 1989, Cornet 
and Lorenz proposed the procedure based on two 
additional equation systems [6]. The first one, the 
"head queue", is organized as FIFO (first input first 
output), and the second one, the "tail stack", is 
organized as LIFO (last input first output). The 
desired (ordered) equation system is determined by 

calculating "forward" variables of the first list and 
"reverse" of the second one, while following 
causality propagation in bond graph [6]. However, a 
special approach to this problem, based on using 
signal graph theory as an indirect tool, is put forward 
in [7, 8]. The systematic procedure for obtaining the 
state space model based on the bond graph model 
and the corresponding signal graph, presented in [7] 
is limited to the specific case where the bond graph 
contains only integral causality. The state space 
model may be obtained directly from the signal 
graph without any transformation of the equations. 
However, the presence of derivative causality on any 
C or I element points out the existence of dynamical 
dependence among the state space variables so that 
it requires the additional transformations of the 
equations obtained from the signal graph which is 
equivalent to initial bond graph [8]. The other 
methods for obtaining the state space model from 
the bond graph model are reduced to the writing of 
the equations for each element and connection in the 
bond graph, and their additional arranging [1, 6]. 
The number of necessary transformations of initial 
equations is increased with the bond graph 
complexity increasing. Then, the application of these 
methods become rather complicated. 

In this paper, the procedure from [7, 8] is 
generalized by enhancing its application on, as well, 
the causal bond graph models in which there is 
derivative causality beside the integral one. First, an 
actual example will be elaborated, and then, on its 
basis, the generalization in the form of systematic 
procedure of obtaining the state space model based 
on the bond graph model and the equivalent signal 
flow graph will be presented. The described 
procedure is then applied to the bond graph models 
containing both integral and derivative causality. 
 
2. SYSTEMATIC PROCEDURE FOR 

OBTAINING EQUIVALENT SIGNAL 
FLOW GRAPH BASED ON BOND GRAPH 

 
Let us consider a bond with causality as shown 

in Figure 1, where energy flow direction, that is half 
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arrow, is omitted. Considering well known 
convention, causality stroke is oriented in the 
direction of the effort propagation, while flow 
variable travels in the opposite direction [6,9]. Effort 
propagation is denoted by a dashed line (-----), and 
flow propagation is denoted by a dotted line (.....), as 
shown in Figure 1. A bond graph clearly indicates 
that their paths are mutually dependent and make 
intersections in specific places (GY elements). Effort 
path begins where the flow path ends, and vice 
versa, in ending R, C and I elements, which can be 
described by appropriate mathematical equations of 
junction. 

 

 
 

        a)                b)    c) 
 

Figure 1.  Signal flow through 
bond element 

 
A following transformation is 

introduced in order to define a 
desired connection between the 
bond graph and the corresponding 
signal, graph which represents the 
way effort, and flow travel. Every 
bond can be described as two 
nodes (in corresponding signal 
graph), the first one describes the 
effort on the bond (e - node) and 
the second one describes the flow 
on the bond (f - node), as shown 
in Figure 1b and 1c. Two signal 
graph branches (one for the flow 
and the other one for the effort), 
which connect corresponding 
nodes, are parallel to the bond but 
arrow directions are opposite and 
are always such that the effort 
branch is directed towards the 
causality stroke, and the flow 
branch is directed backwards. 

Using the same principle, we 
can define transformations for 
each element, source and junction 
of bond graph. For instance, R 
element has its equivalent element 
in the corresponding signal graph, 
as shown in Figure 2. Obviously, 
when R element causality is 
assigned in such a manner, the 
rest of the bond graph will act as 
an effort source, and flow can be 
determined using the element 

itself as 1f e
R

. Equivalent R 

element in the corresponding 
signal graph (Figure 2) describes 

the connection between effort and flow as a branch 

with a gain 
R
1  

 

 
 

Figure 2.  R bond graph element and its equivalent 
signal graph 

 
If R element causality is represented as shown in 
Figure 3, then equivalent R element of a 
corresponding signal graph can be represented as 
shown in the same figure. For such R element 
causality, the rest of the bond graph acts as a flow 
source, and effort can be determined using the 
element itself as Rfe . 

Table 1.  Bond graphs and their corresponding signal graphs 
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Figure 3.  R bond graph element and its equivalent 
signal graph 

 
 

Basic elements, sources and junctions of a bond 
graph and their equivalent elements, sources and 
junctions of a corresponding signal graph, which 
enable direct signal graph obtaining based on bond 
graph are shown in Table 1. 

Finally, if direction of effort ("1" junction) or 
flow ("0" junction) is equivalent to a half-arrow 
direction on the bond then the branch gain is +1, and 
if not then the branch gain is -1. For branches 
without gain associated to it, it is considered to be 
+1.  

For a specific bond graph, variables of interest 
are: C elements effort and I elements flow. These are 
at the same time state variables of a corresponding 
state space model. The nodes of equivalent signal 
graph variables are of special interest for the 
proposed procedure. 

Taking the bond graph model as a starting point, 
the corresponding signal flow graph can be obtained 
by applying the following systematic procedure [7]: 
 
1. Marking the causal orientation of bonds in bond 

graph model (adding causality strokes to bond 
graph model), as described in [1], [6] and [10]. 

2. The equivalent signal flow graph obtaining, 
each R bond graph element is replaced by the 
equivalent R element from Table 1, 

each C bond graph element is replaced by the 
equivalent C element from Table 1, 
each I bond graph I element is replaced by 
the equivalent I element from Table 1, 
each TF and GY are replaced by the 
equivalent TF and GY from Table 1, 
every "1" and "0" junctions of the bond graph 
model are replaced by the equivalent "1" and 
"0" junctions from Table 1, 
Se and Sf sources are replaced by the 
equivalent elements (u and i - nodes) from 
Table 1, 
The signal flow graph is made where nodes 
are sources, effort and flow of a bond graph. 

 
All this should be linked to produce wholeness, i. 

e. the signal flow graph whose nodes, sources, 
efforts and flows are in the bond graph. 

 

 
 

Figure 4.  Electrical system  
 

This procedure is illustrated by the example of 
the electric system in Figure 4, whose bond graph is 
shown in Figure 5, and the equivalent signal flow 
graph in Figure 6. 

In this bond graph number 5 is intentionally 
omitted while numerating in order to obtain the 
same mark for the state variables as in the following 
example. 
 

Figure 5.  Bond graph model of electrical system from Fig. 4 

 
Figure 6.  Signal flow graph representation of bond graph from Fig. 5 

 
 
3. OBTAINING STATE SPACE MODEL FOR 

CONSIDERED ELECTRICAL SYSTEM 
 

Consider signal flow graph shown in Figure 6 
obtained from the bond graph model of the electrical 
system in Figure 4. Obviously, there is only an 

integral causality. Let us choose significant effort 
variables on C elements and flow variables through I 
elements. These will also be the state variables in 
derived state space model. The nodes corresponding 
to these variables and sources in the bond graph are 
the source nodes ( 4e , 7f , 12e , 15f , u ) and the nodes 
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corresponding to their first derivatives (multiplied 
by the corresponding factor, respectively), i. e. by 
the flow through C elements and the efforts on I 
elements are purely sink nodes ( 4f , 7e , 12f , 15e ). Due 
to this, the state space model of the considered 
system is obtained by finding all the paths and gains 
between source and sink nodes, directly from 
Figure 6. 
 
x Ax Bu  (1) 
 
where: 
 

1 12 12

2
2

1 11

3 3

3

23 23

1 1 0 0

1 1 0
;

1 10 0

10 0

R C C
R

L L nL n

nC C
R

L L

A

  
 

4 7 12 15
1 12

1 0 0 0 ; ;e f e f u
R C

B x [ ] u [ ]  

 
This state space model can be determined because 
there is no derivative causality in the bond graph 
model. 
 

Now the electrical circuit in Figure 4 is modified 
by establishing the parallel junction of two 
capacitors 1C  and 2C  instead of capacitors 12C  (so, 

12C = 1C + 2C ) and the serial junction of two 
inductors 2L and 3L  instead of inductor 23L  (so, 

23L = 2L + 3L ) as shown in Figure 7. 
 

 
Figure 7.  Modified electrical system in Fig. 4 

 
Then the following is to be done, 
 

1) Drawing the bond graph model of this system 
and determining the position of the causal strokes 
(Figure 8). 

2) Drawing its equivalent signal flow graph on 
the basis of the procedure presented in Part 2 (Figure 
9). It may be seen that in elements 2C  and 3I  there 
is derivative causality, which makes nodes 16e  and 

5f  be the source ones, and 16f  and 5e  be sink ones 
(contrary to the case when in these elements there is 
integral causality). Now (as it can be seen in 
Figure 8) nodes u, 4e , 7f , 12e , 15f , 5f  and 16e  are 
purely source ones, and nodes 4f , 7e , 12f , 15e , 5e
and 16f  are purely sink. 

3) From the signal flow graph in Figure 9, 
choose ³significant´ nodes ( 4e , 7f , 12e , 15f ) 
regardless the source nodes corresponding 2C  and 

3I  elements ( 5f  and 16e ). Therefore, the state vector 
is 4 7 12 15e f e fx [ ] , the control vector is uu [ ] , and 
variables 5f  and 16e  will not be state variables but 
dynamically dependent variables with state variables 

4e and 15f  respectively. The state variables 
derivatives and variables 5e  and 16f  derivatives are 
expressed in the function of the variables 
corresponding to the source nodes. 

 
 

Figure 8.  Bond graph model of system in Fig. 7 
 

 
 

Figure 9.  Equivalent signal flow graph obtained on the basis of bond graph in Fig. 8
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4) By applying (3), f5  and e16  are expressed as 

the following, 
 

5 4
5 2 2

16 15
16 3 3

de de
f C C

dt dt
df df

e L L
dt dt

 (3a) 

 
5) By replacing 5f  and 16e  from (3a) to equation 

system (2) and by explicitly expressing the 
derivative of variables 4e , 7f , 12e  and 15f  as a 
function of these variables and input variable u, the 
state space model is obtained in the form: 
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Obviously, the result is the same because it is the 

matter of the same electrical circuit with the same 
state variables. The only change is derivative 
causality in the bond graph model. 
 
4. SYSTEMATIC PROCEDURE 
 

The generalized systematic procedure for 
obtaining the state space model based on the bond 
graph model and the corresponding signal flow 
graph is easily determined by following procedure 
used for electrical circuit in Figure 7. 

 
1. Drawing the bond graph model of the considered 

system and determining the positions of causal 
strokes 

2. Drawing equivalent signal flow graph on the 
basis of the procedure obtained in part 2. 

3. Choosing ³significant´ nodes, i. e. The state 
vector whose components are in fact the 

components of 
iCe  and 

iLf . Each sink node is 
expressed as a function of each source nodes 
(u,

iCe ,
iLf ,

dCf ,
dLe ), by using the determined 

graph as follows, 
 

i i i i d d

i i i i d d

1 1
C i C i 1 C L C L

1 1
L i L i 2 C L C L

e C f C f e ,f , f ,e ,u

f L e L f e ,f ,f ,e ,u
 (5a) 

 
d d
dt dt

d d
dt dt

d

d i i

d

d i i

C
C d d 3 C L

L
L d d 4 C L

e
f C C f e ,f

e
e L L f e ,f

 (5b) 

 
where: 
 
u - the input vector 

iCe - the effort vector on C elements with integral 
causality 

iLf - the flow vector through I elements with integral 
causality 

dCf - the flow vector through C elements with 
derivative causality 

dLe - the effort vector on I elements with derivative 
causality 

iC -the diagonal matrix of C elements parameters 
with integral causality 

dC - the diagonal matrix of C elements parameters 
with derivative causality  

iL - the diagonal matrix of I elements parameters 
with integral causality  

dL - the diagonal matrix of I elements parameters 
with derivative causality  
 
4. Replacing the expressions for 

dCf  and 
dLe  from 

(5a) in (5b). 
5. From the considered system expressing 

explicitly, 

, ,

, ,
i i i

i i i

C C L

L C L

e f e f u

f g e f u
 

 
which features the state space model of the 
considered system. 
 

It may be seen that this procedure, in the case of 
the bond graphs with derivative causality, still 
requires slight arranging of the obtained equations, 
while in the presence of only integral causality, it is 
not necessary. 

 
5. CONCLUSION 

In this paper, a new, systematic procedure for the 
state space system model obtaining based on the 
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signal flow graph representation of the bond graph 
model is proposed. The signal flow graph clearly 
indicates the paths effort and flow variable travel 
through the bond graph, which allows to simply 
derive functional dependence between any two 
variables in the bond graph model. By selecting state 
variable as the efforts on C elements an the flows 
through I elements with integral causality and by 
finding the gains for paths between all "significant" 
nodes in the signal flow graph, the state space 
system may be obtained. The proposed procedure 
may be used for an arbitrary complex bond graph 
model by using, for instance, Mason rules for gains 
calculation. The simplicity of this procedure and the 
universality of application of the bond graphs on 
different physical systems, on which it is based, 
provide its usage in a wide area of application. 
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