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SUMMARY 
 The paper deals with the parallel computer architecture of the MIMD paradigm being developed on the Department of 
Computers and Informatics [12], [13], [14], [15], [16], [17], [19], [21]. The main objective of the proposed architecture is, 
on the data flow (DF) principles to design a model of the parallel computer system for the high-performance of real-time 
problems programming [8], [9], [18], [22].  Parallel processing in that architecture model is  executed by the dynamic 
multifunctional pipeline structure (19) of coordinating processors, which represents main components of the proposed data 
flow system. 
 The concepts of both the architecture layout and the dynamic pipeline implementation are presented in the paper. The 
contribution deals with the multifunctional pipeline components design of the DF architecture model.  The high degree of the 
instruction-level parallelism [4], [5] is obtained in the proposed architecture. It is supposed that the hardware 
implementation of the architecture can be used as a specialised accelerator in problem-oriented computer systems with high 
requirements on the operation speed [9], [10], [11], [18], [19], [20], [23].  This research is supported by VEGA grand  
project No. 1/9027/2002. 
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1. INTRODUCTION 

Data flow (DF) computer architectures are based 
on a DF computing model by which any program 
instruction is ready for execution whenever 
competent operands become available [1], [2], [11].  
The DF model represents a radical alternative to the 
von Neumann computing model since the execution 
is driven only by the availability of operands. DF 
computers have the potential for exploiting all the 
parallelism available in a program, which is 
obviously represented by the data flow graph 
(DFG). DFG can be used as a machine language in 
data flow system. 
 Each node in the DFG is an instruction 
(operator) and the arcs indicate the flow of result 
data, i.e. data tokens (DT), from producer to 
consumer instructions. All instructions are active, 
waiting for the input data (operands). When all input 
data of an instruction are available that can be 
executed, removing the tokens from its input arcs 
and placing tokens on its output arcs. That approach 
of the execution instructions represents the basic 
principle of the conventional DF architecture. 
Advanced architectures support augmenting the DF 
computation model with traditional mechanisms, 
such as multithreading, large-grain computation, 
data flow with complex machine operations, RISC 
approach, hybrid approach, etc. See [3], [4], [5]. 
 The model of the data flow architecture under 
development at the Department of Computers and 
Informatics stems from the applications 
multithreading, hybrid principles and functional 
programming on the DFG level.   

2. DATAFLOW PROGRAM EXECUTION  
 
 The high level functional language has been 
proposed for the representation data flow program 
12 , [15]. Formal description of the functional 

program in the general form can be found with its 
detailed description in  13   namely its properties 
and translation. The architecture of data flow system 
for the parallel execution of the functional program 
on that DFG level stems from the definition of the 
supercombinator-based target block code of the set 
of functions [12]. 
 The functions definition and the main expression 
(program) for the shortness holds the form as 
follows: 
 

1 1 1 1 1

2 2 2 2 2

1 1 2 1

2 1 2 2

1 2

1 2

k k k k k

i i i

n

n

k nk

ni

d f p p p e

d f p p p e

d f p p p e

E f c c c

 (1) 

 
where 
 di is i - th function body, 
 fi   - a function name (identifier of the i - th 

function), 
 

niiii ppp
21

- pattern of parameters consisting 

of constructors and variables, 
 ie  - expression constituting the body of the 

function, 
 E   - main expression of the program, 
 f     - main function of the program, 
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- constant pattern submitted to the 

main function f. 
 
 The DFG of computed function is illustrated in 
Fig. 1. The block code (supercombinator) of the 
translated function f is fired by the synchronising 
token which is indicated like a trigger (t). By the  
ACCEPT operator the variable value (data token) xi
(i = 1, 2, ..., n) inputs into block code of the function 
f (x1, x2, ..., xn). The function is described by 
expression E built up from DFG operators. The 
ACCEPT operator also distributes the value of data 
token to the inputs of corresponding DFG operators. 
The RETURN operator backspaces the function 
value computed to the previous block code in which 
the matching vector of the function have been 
created by the APPLY operator (in the Fig. 1 is not 
shown). In such a way backtracking of calculated 
values of particular expression E of the program P, 
is executed. The APPLY operator allocates the 
matching vector (MV) in the frame store (FS), resp. 
structure store (SS) as given of the right part in the 
Fig. 1. Because supercombinators of the target DFG 
can be applied concurrently and the execution of the 
separated supercombinators can by executed also 
concurrently, the proposed approach of the program 
processing effectively supports the parallel 
execution of the DFG on the level of both functions 
and operators. 
 

 

Fig. 1  Organization of function computing via data 
flow graph operators 

 
 
 More detail the functional program execution by 
its translation to the data flow program graph at a 
machine language level is introduced in 13 , [15]. 
 Definition of the data token in proposed 
architecture stems from the next description. The 
incoming input operand of the function operator 
(instructions) can initiate its execution when firing 
rule is fulfilled. The corresponding data token (DT) 
has the following format: 
 
DT  ::=  P  D  MVB  DST IX  (2) 

 

where 
 P  is  an operand priority,  
 D - input data (data, pointer, trigger) of the 

operator, D  ::= T, V  , where T is a data 
type, V -  data value (V = Val (D)), 

 MVB - matching vector (MV) base (address), MV 
being placed in the structure store (SS) is 
intended for input operands matching of  
function operators, 

 DST  - data token destination, DST  ::= MF   
IP   ADR , where MF is a matching 

function (MF  {B,M}, B - bypass, M - 
matching), IP is the operator input port of 
the DT  (L - left, R - right) and ADR is an 
instruction address of the SS, 

 IX  - position index of the second operand data 
in the matching vector located. 

 
 The format of a data flow instruction (DFI) being 
placed in the instruction store (IS) by the address 
(ADR) to perform binary operation is as follows: 
 
DFI  ::= OC  LI  DST, IX  n  (3) 

 
where OC is operator code, LI - literal, which 
defines the number of following operators, DST ± 
destination of the next operator for which the output 
operation result is input operand (destination 
operand). 
 Multithreading execution of the DFG represents 
the parallel computing process in the superscalar 
computer environment. Fig. 2 shows n computing 
stream (thread) PS, which can be performed in 
parallel. That approach creates the supposition for 
the instruction parallelism (IPL ± Instruction Level 
Parallelism). Computing streams PS1, PS2, ..., PSn 
are to be executed, when input operands (tokens DT) 
of adequate DFG operators (instruction)  are 
available. It means, that for the some input token 
DTmi  the corresponding input token DTpi (the 
partner of the operand) must be available. That 
process is holding name as matching operands.       Having illustrated how elementary styles of the 
proposed data flow can by supported, the following 
explanation concerns to the implementation of the 
architectural DF model. 
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Fig. 2  Multithreading execution of the DFG 
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3. IMPLEMENTATION OF THE DATAFLOW 
ARCHITECTURE MODEL 

The proposed data flow architecture uses 
advanced pipelining design by which the parallel 
processing of DFG is executed.  
 The main component of the proposed dataflow 
architectural model is shown in on the Fig. 3. 
Structural organisation of the DF computer 
architecture model consists of the five base 
components [14], [16], [19]: 

 CP - Coordinating Processors are designated for 
control, co-ordination and processing instruction 
of a DF program, when any operand is being 
come on the CP�s input port CP.DI from own 
output port CP.DO, from the output port CP.DO 
of other CP by means of the interconnection 
network, from the data queue unit or from frame 
store. Structural organisation of CP is designed 
as a dynamic multifunction system, which 
consists of five pipeline segments: LOAD, 
FETCH, OPERATE, MATCHING and COPY. 
State of the operations flow in the CP is 
indicated by of value setting of the signal 
CP_free = 0. 
DQU - Data Queue Unit, is designated for the 

storage of the DT, representation operands, 
which are waiting for matching during of the DF 
program execution.  
IS - Instruction Store, is the memory of the 

program DF instruction (DFI) in form of the 
relevant DFG. 

 FS - Frame Store, is the memory of matching 
vectors (MV). By its items content CP determine 
the operands presence for corresponding 
operations flow. Operator (node) in DFG defines 
this flow. The format of the MV item in FS holds 
the form as follows: FS  ::= AF  V , where AF 
(affiliation flag) is an attribute of the operand 
presence and V is a value of the given DT. 
IN - Interconnection Network, is designed for 

switching of individual CP¶s together for their 
data transmission. 

 
The base component of the DF architecture is 

represented by the coordinating processor (CP). It is 
responsible mainly for the organisation and 
coordination of program instruction processing, 
which is enforced by the firing rule: an instruction is 
executable, if one operand of any instruction is 
incoming from the DQU or CP output port and the 
second one is available in the frame store (FS). In 
the opposite case, i. e. second operand is not found 
in the FS, the incoming operand is put to the SS 
(operand matching process). 

The CP architecture is presented by the pipeline 
system built up like the multifunctional pipeline 
unit. Because the CP can traverse across its states in 
the various ordering, the dynamic pipeline is used. A 
dynamic pipeline can be reconfigured to perform 
variable functions at a different time. Those allow 
feedforward and feedback connection of processing 

stages of the pipeline unit that corresponds to the CP 
state diagram in Fig. 4. 
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Fig. 3  Component of the dataflow architecture 
model 
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Fig. 4  State diagram of coordinating processor 
pipeline stages 

 
 CP communicates with another DF architecture 
components by their input/output ports. 

The structure of CP input and output ports and 
their connection to other components of the 
proposed architecture model (IS, FS, DQU, IN), 
which take part in tokens processing at the execution 
of the DFG�s operators, are introduced in the Fig. 5.  
 All main communications between the CP and its 
external components, at the multipipeline execution 
of the DF program (DFG), by this components are 
realised. 
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Fig. 5  The structure of  CP input and output ports 
 
 
4. COORDINATING PROCESSOR 

ARCHITECTURE  
 
 At the DFG operators (instructions) execution 
the CP can traverse across L (LOAD), F (FETCH), 
O (OPERATE), M (MATCHING), or C (COPY) 
stages (states). See Fig. 4. The CP is introduced to 
the LOAD state, if it is waiting or getting an operand 
from the DQU, from the data output port CP.DO.D 
or from the IN, by the Get DQ control signal. The 
signal Init DQ control provides initialisation of the 
DF system at its start). In the FETCH state the CP 
activates IS, carries out the fetch of the instruction 
operator code OC and handles the next step of the 
instruction execution. In the OPERATE state the CP 
organises the instruction processing in von Neumann 
manner. The result of the instruction execution 
representing the input operand of the next instruction 
is examined at the MATCHING state. If the 
incoming result operand D does not find the partner 
operand on the input port of the next OCi operator, 
no operand matching will be organised. That fact is 
indicated by the affiliation flag (AF) in the 
corresponding position of the matching vector (MV). 
The opposite case, when the partner operand is 
available (it is stored in the corresponding item of 
the SS�s matching vector) the requested operation is 
executed by the processor element unit (PEU). The 
operation result is available for the next operator 
execution, if CP is free (CP.ST  = CP_free). If CP is 
busy then the operator execution is provided by  
another free CP, which is accessible through the 
interconnection network (IN) and its control (INC). 
In the case, where no CP is free (CP. ST =  
CP_free) the output operand (result) is put to the 
data queue unit (DQU) by the Put DQ control signal. 
When the matching is not successful the result of the 
operation is put on the selected items of the 
corresponding matching vector by the matching 
function control signal MF = M. By the COPY state 

the OPERATE state can be decomposed to multiple 
steps when the operator processing consists of too 
much inner loops for its execution (the case of some 
duplication operators). 
 The pipeline conception of the coordinating 
processor architecture supports the multifunctional 
execution of the DF program. Any computing 
stream (thread) PSi of a DF program is executed by 
multifunctional organisation of the structure of 
pipeline stages SG (SG ± StaGe), e.i., SG  {L, M, 
F, O, C}, those  interpret identically named states ST 
(ST ± STate), e.i., ST  {L, M, F, O, C} of the 
coordinating processor, at the logical level (Fig. 3).  
 CP consists of the both pipeline stages and 
control units. The control unit (CU) generates 
control signals (microcomand), which initialise the 
execution of microoperations in the coordinating 
processor adequate stages L, F, M, O, C. 
 

PREVSG_free
SG_free

SG_free 
NEXTSG_free

START

D.INP D.OUT 

Pipeline stage SG 

SGO
SG.DI/DO

SGO   - pipeline stage operation 
tSGC   - pipeline stage control 
tSG.DI/DO - data input and output stage 
tSTART      - beginning initialization of stage 

SGC

SET ST

ci ck sk(ST) 

cin cout 

 
Fig. 6  General conception of coordinating processor 

pipeline stages 

 On the Fig. 6 is presented the general conception 
of coordinating processor pipeline stages. Every  SG 
consists of both the operation (SGO) and control 
(SGC) part. SGC generates control/state signals 
denoted as LOAD_free, FETCH_free,  
OPERATE_free, MATCHING_free and COPY_free 
to indicating accessibility (busy condition) the 
specific stages. Values of the control/state signals 
are set at the SGO�s input ports SET and ST. 
Specialised state signals indicate the testing result of 
the branch microoperations on the SGO�s output 
port ST. Apart from those signals, which specify the 
SG function, CU generates also synchronising 
signals intended for the clocking of the execution 
microoperations of coordinating processor stages. 
Control/state, state and synchronisation signals are 
distributed in particular SGC. 
 SGO processes its input data token DT = D.IN 
and executes the microoperations in the adequate 
pipeline stage. Result of that is the setting of its 
output data token DT = D.OUT, e.i.:    
 
D. OUT : = fSG(D. IN) 
where 
 fSG  is function pipeline stage SG, which 

interpret state ST  {L, F, M, O, C}of 
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the CP, when operator of the DFG is 
executed, 

 D.IN ± input token of the stage SG (operand of  
corresponding operator of the 
instruction stream PSi ), 

 D.OUT± output token of the stage SG (operation 
result, which have executed by the 
operator of the instruction stream PSi). 

 
Tokens processing in the SG is performed on the 
base of the microprogram control by microcomands 
(microinstructions), those generates its control part 
SGC.  
 Each CP�s pipeline stage is controlled by the 
microprogram. Microprogram control is specified by 
one of next forms of microcomands: 
 
ci : M / sj (4)  

ck : P / sn , P / sm     (5) 
 
 Microinstruction in the form (4) means, that 
control signal ci activates the microoperation M (for 
example, assignment of value on one of the variable 
FETCH_free : = 1), after the execution of that, state 
signal sj will be set on the value  of sj = 1, on the 
base of what the j-th microcomand cj will be started  
in the next step of control microprogram. 
 Microinstruction in the form (5) means, that 
control signal ck activates the branch 
microoperation, by which is tested the truth of the 
predicate P (for example, evaluation of the 
component state FETCH, e.i. evaluation of the 
condition (predicate) FETCH_free = 1 or 
FETCH_free = 0). If P is truth (P = 1), 
corresponding state signal sk(ST) will be set as 
sk(ST) = sn = 1, in consequence of that, the n-th 
microcomand cn, which initialises of the 
microoperation Mn execution in the next step of 
control microprogram. In the opposite case, if P is 
false (P = 0), the corresponding state signal sk(ST) 
will be set as sk(ST) = sm = 1, in consequence of 
that, the m-th microcomand cm , which initialises of 
the microoperation Mm execution in the next step of 
control microprogram.  
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Fig. 7  Internal control, state, and synchronise 
signals for the LOAD stage 

 Particular pipeline stages of the CP being 
decomposed to the SGO and SGC parts, including 
their internal control, state, and synchronise signals 
are introduced on the Fig. 7 for the LOAD stage. 
The control design of other pipeline stages is  
created analogue. 
 
5. MICROPROGRAM CONTROL OF 

COORDINATING PROCESSOR PIPELINE 
SEGMENTS 

 
Microprogram control of CP at the DFG 

operators execution is performed by the 
microoperations, which are specified through the 
reference (4) and (5) for individual stages of the 
multifunctional organisation of the CP.  In general, 
the initialisation of individual stages    
microoperations are executed by the control signals 
st  {l

i 
, f

j 
, m

k 
, o

s 
, c

r
} in the next form:  

 
 ST st

0 
: SG_free : = 1 / st

1
 

 ST st
1w 

: (PREVSG_free = 1) / st
1w

, 
(PREVSG_free = 0) / st

2
  

 ST  st
2
  : SG_free : = 0 / st

3
  

 ST st
3w

 : (NEXTSG_free = 1 / st
beg

 , 
(NEXTSG_free = 0 / st

3w
  

 ST  st
beg 

:  
     SG_MICROOPERATION 
 ST  st

end 
:  

 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 
 ST  st

n 
: NEXTSG_free : = 1 / st

next
 
where 
 st

p
 is  a control signal, which initialises the 

continuous and next microoperation in 
stage SG at the execution of DFG�s 
operator, 

 p  ± control signal index, which presents the 
order of microoperatios to be executed 
(subscript w of the index p describes to the 
initialisation of the waiting operation, the 
subscripts beg, end of the index p ± to the 
initialisation of both the start and the end of 
microoperations set {SG_OPERATION}, 
which represent to the function of the stage 
SG_ST and next subscript ± to the 
initialisation of the execution  of the 
microoperation set of the next stage of the 
CP), 

 SG_free ± the indication of the SG stage activity  
(SG_free = 0  the stage SG is busy, 
SG_free = 1  the stage SG is idle), 

 NEXTSG_free ± the indication of the next stage 
activity (NEXTSG_free = 0  the next 
stage is busy, NEXTSG_free = 1  the next 
stage is idle), 

 PREVSG_free ± the indication of the previous 
stage activity (PREVSG_free = 0  the 
next stage is busy, PREVSG_free = 1  the 
next stage is idle).  
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 Microprogram control of the multifunction 
structure of CP�s stages (SG) presents next 
microprogram, the LOAD part of which is 
introduced in more detail: 
 
CP state  microinstruction    
 
INIT cin : (Init = 1) /l0, (Init = 0) /sin

LOAD l0 :  (LOAD_free : = 0 || CP_free : = 0 || 
CP.DI : = DQU.START) /l7  

LOAD l1 :  (GetDO = 1) /l2, (GetDO = 0) /l1 
LOAD l2 : (CP.DI : = CP.DO) /l7 

LOAD l3 :  (IN  Empty) /l4, (IN = Empty) /l5 
LOAD l4 : (CP.DI : = IN.DO || CP_free : = 0) /l7

LOAD l5 :  (DQU  Empty) /l6, (DQU = Empty) /l3 
LOAD l6 :  (CP.DI : = DQU.DO || CP_free: =0 || 

GetDO : = 1) /l7 
LOAD l7: (CP.DI.MF = M) /l10, (CP.DI.MF = B) 

/l8
LOAD l8 : (FETCH_free = 1) /l9, (FETCH_free = 

0) /l8
LOAD l9 : (CP_free : = 1 || LOAD_free : = 1 || 

FETCH_free : = 0) /f1 
LOAD l10: (MATCHING_free = 1) /l11, 

(MATCHING_free = 0) /l10 
LOAD l11 : (CP.DO : = CP.DI || LOAD_free : = 1|| 

|| CP_free : = 1 || CP.LI : = 1 || 
  || MATCHING_free : = 0) /m1 
 
FETCH part (input signals: f1, f2, f3, f4, f5,   

output signals: fi, o3, ) 
 
OPERATE part  (input signals: o1, ... o22,  
    output signals: oi, l1, m1, c1, ) 
 
MATCHING  part (input signals: m1, ... m17, 

output signals: mi, f1, l1, c1,) 
 
COPY  part  (input signals: c1, c2, c3,  c4, c5,  

output signals: ci, o9, ) 
 
 

Microoperations to be performed in individual 
CP�s pipelined stages are introduced in [21] more 
detail.  
 Algorithms of control signals generation, which 
initialise the performance microoperations in the 
individual CP�s pipelined stages are presented by 
block diagram, as follows. For example, the block 
diagram of control signals generation in pipeline 
stages LOAD is introduced in the Fig. 8. 
 
 
6. CONCLUSION 
 

The contribution deals with the multifunctional 
pipeline components design of the data flow   
architecture model. The concepts of both the 
architecture layout and the multithread pipeline are 
presented in the proposed data flow system.   
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1

 
Fig. 8  The block diagram of control signals 

generation in pipeline stages LOAD 
 
 In proposed data flow architecture a basic outline 
of its structure organisation and microprogram 
control are emphasised. Principles of parallel 
processing by multifunctional pipeline structure of 
the coordinating processors as main components of 
the data flow architecture is introduced, too. The 
pipeline approach unifies execution of both single 
operators and sequence operators of a function to be 
processed by the CP. The pipeline execution of 
function operators and concurrency executions by 
the coordinating processors of the proposed data 
flow system enable the high-performance parallel 
processing. The used approach reflects the properties 
of data flow machine-oriented programming 
language, which is not, however, the topic of this 
contribution.  
 The proposed data flow system stems from the 
following features: 

programming environment on the base 
functional language on the DFG level, 
fine-grain parallelism of the data flow 
program graph, 
data flow architecture on the base of the 
dynamic pipeline coordinating processors by 
which the parallel processing of the 
functional program can be executed, 
applications multithreading,  
hybrid principles of the model architecture, 
direct operand matching of data flow graph 
operators. 

 
 It is supposed that hardware implementation of 
this architecture model, after its completion, can be 
used as a specialised accelerator in high- 
performance problem-oriented computer systems. 
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