
Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 5

MULTIFUNCTIONAL PIPELINE UNITS OF THE DATAFLOW ARCHITECTURE

Milan JELâINA
Technical University of Koãice, Faculty of Elektrotechnical Engineering and Informatics,

Department of Computers and Informatics, Letni 9, 042 00 Koãice, Slovakia,
Phone: (+421 55) 602 25 76, E-mail: Milan.Jelsina@tuke.sk

SUMMARY
 The paper deals with the parallel computer architecture of the MIMD paradigm being developed on the Department of
Computers and Informatics [12], [13], [14], [15], [16], [17], [19], [21]. The main objective of the proposed architecture is,
on the data flow (DF) principles to design a model of the parallel computer system for the high-performance of real-time
problems programming [8], [9], [18], [22]. Parallel processing in that architecture model is executed by the dynamic
multifunctional pipeline structure (19) of coordinating processors, which represents main components of the proposed data
flow system.
 The concepts of both the architecture layout and the dynamic pipeline implementation are presented in the paper. The
contribution deals with the multifunctional pipeline components design of the DF architecture model. The high degree of the
instruction-level parallelism [4], [5] is obtained in the proposed architecture. It is supposed that the hardware
implementation of the architecture can be used as a specialised accelerator in problem-oriented computer systems with high
requirements on the operation speed [9], [10], [11], [18], [19], [20], [23]. This research is supported by VEGA grand
project No. 1/9027/2002.

Keywords: parallel computer architecture, dataflow architecture, pipelining, multifunctional pipeline unit

1. INTRODUCTION

Data flow (DF) computer architectures are based
on a DF computing model by which any program
instruction is ready for execution whenever
competent operands become available [1], [2], [11].
The DF model represents a radical alternative to the
von Neumann computing model since the execution
is driven only by the availability of operands. DF
computers have the potential for exploiting all the
parallelism available in a program, which is
obviously represented by the data flow graph
(DFG). DFG can be used as a machine language in
data flow system.
 Each node in the DFG is an instruction
(operator) and the arcs indicate the flow of result
data, i.e. data tokens (DT), from producer to
consumer instructions. All instructions are active,
waiting for the input data (operands). When all input
data of an instruction are available that can be
executed, removing the tokens from its input arcs
and placing tokens on its output arcs. That approach
of the execution instructions represents the basic
principle of the conventional DF architecture.
Advanced architectures support augmenting the DF
computation model with traditional mechanisms,
such as multithreading, large-grain computation,
data flow with complex machine operations, RISC
approach, hybrid approach, etc. See [3], [4], [5].
 The model of the data flow architecture under
development at the Department of Computers and
Informatics stems from the applications
multithreading, hybrid principles and functional
programming on the DFG level.

2. DATAFLOW PROGRAM EXECUTION

 The high level functional language has been
proposed for the representation data flow program
12 , [15]. Formal description of the functional

program in the general form can be found with its
detailed description in 13 namely its properties
and translation. The architecture of data flow system
for the parallel execution of the functional program
on that DFG level stems from the definition of the
supercombinator-based target block code of the set
of functions [12].
 The functions definition and the main expression
(program) for the shortness holds the form as
follows:

1 1 1 1 1

2 2 2 2 2

1 1 2 1

2 1 2 2

1 2

1 2

k k k k k

i i i

n

n

k nk

ni

d f p p p e

d f p p p e

d f p p p e

E f c c c

 (1)

where
 di is i - th function body,
 fi - a function name (identifier of the i - th

function),

niiii ppp
21

- pattern of parameters consisting

of constructors and variables,
 ie - expression constituting the body of the

function,
 E - main expression of the program,
 f - main function of the program,

6 Multifunctional Pipeline Units of the Dataflow Architecture

niiii ccc

21
- constant pattern submitted to the

main function f.

 The DFG of computed function is illustrated in
Fig. 1. The block code (supercombinator) of the
translated function f is fired by the synchronising
token which is indicated like a trigger (t). By the
ACCEPT operator the variable value (data token) xi
(i = 1, 2, ..., n) inputs into block code of the function
f (x1, x2, ..., xn). The function is described by
expression E built up from DFG operators. The
ACCEPT operator also distributes the value of data
token to the inputs of corresponding DFG operators.
The RETURN operator backspaces the function
value computed to the previous block code in which
the matching vector of the function have been
created by the APPLY operator (in the Fig. 1 is not
shown). In such a way backtracking of calculated
values of particular expression E of the program P,
is executed. The APPLY operator allocates the
matching vector (MV) in the frame store (FS), resp.
structure store (SS) as given of the right part in the
Fig. 1. Because supercombinators of the target DFG
can be applied concurrently and the execution of the
separated supercombinators can by executed also
concurrently, the proposed approach of the program
processing effectively supports the parallel
execution of the DFG on the level of both functions
and operators.

Fig. 1 Organization of function computing via data
flow graph operators

 More detail the functional program execution by
its translation to the data flow program graph at a
machine language level is introduced in 13 , [15].
 Definition of the data token in proposed
architecture stems from the next description. The
incoming input operand of the function operator
(instructions) can initiate its execution when firing
rule is fulfilled. The corresponding data token (DT)
has the following format:

DT ::= P D MVB DST IX (2)

where
 P is an operand priority,
 D - input data (data, pointer, trigger) of the

operator, D ::= T, V , where T is a data
type, V - data value (V = Val (D)),

 MVB - matching vector (MV) base (address), MV
being placed in the structure store (SS) is
intended for input operands matching of
function operators,

 DST - data token destination, DST ::= MF
IP ADR , where MF is a matching

function (MF {B,M}, B - bypass, M -
matching), IP is the operator input port of
the DT (L - left, R - right) and ADR is an
instruction address of the SS,

 IX - position index of the second operand data
in the matching vector located.

 The format of a data flow instruction (DFI) being
placed in the instruction store (IS) by the address
(ADR) to perform binary operation is as follows:

DFI ::= OC LI DST, IX n (3)

where OC is operator code, LI - literal, which
defines the number of following operators, DST ±
destination of the next operator for which the output
operation result is input operand (destination
operand).
 Multithreading execution of the DFG represents
the parallel computing process in the superscalar
computer environment. Fig. 2 shows n computing
stream (thread) PS, which can be performed in
parallel. That approach creates the supposition for
the instruction parallelism (IPL ± Instruction Level
Parallelism). Computing streams PS1, PS2, ..., PSn
are to be executed, when input operands (tokens DT)
of adequate DFG operators (instruction) are
available. It means, that for the some input token
DTmi the corresponding input token DTpi (the
partner of the operand) must be available. That
process is holding name as matching operands. Having illustrated how elementary styles of the
proposed data flow can by supported, the following
explanation concerns to the implementation of the
architectural DF model.

O2i

O2j+1

PS2

Input PS2

Output PS2

DT2l DT2p

DT2p

Onk

PSn

Input PSn

Output PSn

DTnl DTnp

DTnp

O1i

O1i+1

PS1

Input PS1

Output PS1

DT1l DTp

DT1p

. . .

DT , DT - left and right data token of an operator O in the k-th computing
 stream (thread) of the corresponding DFG (m ^1 « 2 « n « `)

l p m
 i j k

Fig. 2 Multithreading execution of the DFG

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 7

3. IMPLEMENTATION OF THE DATAFLOW
ARCHITECTURE MODEL

The proposed data flow architecture uses
advanced pipelining design by which the parallel
processing of DFG is executed.
 The main component of the proposed dataflow
architectural model is shown in on the Fig. 3.
Structural organisation of the DF computer
architecture model consists of the five base
components [14], [16], [19]:

 CP - Coordinating Processors are designated for
control, co-ordination and processing instruction
of a DF program, when any operand is being
come on the CP�s input port CP.DI from own
output port CP.DO, from the output port CP.DO
of other CP by means of the interconnection
network, from the data queue unit or from frame
store. Structural organisation of CP is designed
as a dynamic multifunction system, which
consists of five pipeline segments: LOAD,
FETCH, OPERATE, MATCHING and COPY.
State of the operations flow in the CP is
indicated by of value setting of the signal
CP_free = 0.
DQU - Data Queue Unit, is designated for the

storage of the DT, representation operands,
which are waiting for matching during of the DF
program execution.
IS - Instruction Store, is the memory of the

program DF instruction (DFI) in form of the
relevant DFG.

 FS - Frame Store, is the memory of matching
vectors (MV). By its items content CP determine
the operands presence for corresponding
operations flow. Operator (node) in DFG defines
this flow. The format of the MV item in FS holds
the form as follows: FS ::= AF V , where AF
(affiliation flag) is an attribute of the operand
presence and V is a value of the given DT.
IN - Interconnection Network, is designed for

switching of individual CP¶s together for their
data transmission.

The base component of the DF architecture is

represented by the coordinating processor (CP). It is
responsible mainly for the organisation and
coordination of program instruction processing,
which is enforced by the firing rule: an instruction is
executable, if one operand of any instruction is
incoming from the DQU or CP output port and the
second one is available in the frame store (FS). In
the opposite case, i. e. second operand is not found
in the FS, the incoming operand is put to the SS
(operand matching process).

The CP architecture is presented by the pipeline
system built up like the multifunctional pipeline
unit. Because the CP can traverse across its states in
the various ordering, the dynamic pipeline is used. A
dynamic pipeline can be reconfigured to perform
variable functions at a different time. Those allow
feedforward and feedback connection of processing

stages of the pipeline unit that corresponds to the CP
state diagram in Fig. 4.

Interconnection network

.

Data
queue unit

CP CP CP

Frame
store

Instruction
store

CP - coordinating
 processor

F
SET ST

FETCH_free

L
SET ST

LOAD_free

O
SET ST

OPERATE_free

DI DO

CU

CSL CSF CSO

M
SET ST

MATCHING_free

CSM
C

SET ST

COPY_free

CSC

CSL CSF CSM CSO CSC

CP ports

CLK

Coordinating processor

Fig. 3 Component of the dataflow architecture
model

F O

M

Get DQ Init DQ

..

.OC1
OCk

Put DQ
CP_free

L - LOAD state
F - FETCH state
O - OPERATE state
M - MATCHING state
C - COPY state
OCi -
CP_free, Put DQ, Get DQ,
 Init DQ - control signals

i-th operator code

L

C

Put DQ

Fig. 4 State diagram of coordinating processor
pipeline stages

 CP communicates with another DF architecture
components by their input/output ports.

The structure of CP input and output ports and
their connection to other components of the
proposed architecture model (IS, FS, DQU, IN),
which take part in tokens processing at the execution
of the DFG�s operators, are introduced in the Fig. 5.
 All main communications between the CP and its
external components, at the multipipeline execution
of the DF program (DFG), by this components are
realised.

8 Multifunctional Pipeline Units of the Dataflow Architecture

CP.DI
P
D

MVB
MF
IP

ADR
IX

CP.DO
P
D

MVB
DST

IX

CP.LD
CP.RD

IS.ADR

FS.MVB FS.IX

PE

FS.V

CP.ST
L

Frame Store (FS)

Coordination Processor
 (CP)

Instruction
 Store (IS)

 Data Communication of the Operator DFG Execution

MS[MVB].AF

PutDI
PutIN

PutDQ
IN

DQU

GetDO

DQU
IN

DO

F Control

Fig. 5 The structure of CP input and output ports

4. COORDINATING PROCESSOR

ARCHITECTURE

 At the DFG operators (instructions) execution
the CP can traverse across L (LOAD), F (FETCH),
O (OPERATE), M (MATCHING), or C (COPY)
stages (states). See Fig. 4. The CP is introduced to
the LOAD state, if it is waiting or getting an operand
from the DQU, from the data output port CP.DO.D
or from the IN, by the Get DQ control signal. The
signal Init DQ control provides initialisation of the
DF system at its start). In the FETCH state the CP
activates IS, carries out the fetch of the instruction
operator code OC and handles the next step of the
instruction execution. In the OPERATE state the CP
organises the instruction processing in von Neumann
manner. The result of the instruction execution
representing the input operand of the next instruction
is examined at the MATCHING state. If the
incoming result operand D does not find the partner
operand on the input port of the next OCi operator,
no operand matching will be organised. That fact is
indicated by the affiliation flag (AF) in the
corresponding position of the matching vector (MV).
The opposite case, when the partner operand is
available (it is stored in the corresponding item of
the SS�s matching vector) the requested operation is
executed by the processor element unit (PEU). The
operation result is available for the next operator
execution, if CP is free (CP.ST = CP_free). If CP is
busy then the operator execution is provided by
another free CP, which is accessible through the
interconnection network (IN) and its control (INC).
In the case, where no CP is free (CP. ST =
CP_free) the output operand (result) is put to the
data queue unit (DQU) by the Put DQ control signal.
When the matching is not successful the result of the
operation is put on the selected items of the
corresponding matching vector by the matching
function control signal MF = M. By the COPY state

the OPERATE state can be decomposed to multiple
steps when the operator processing consists of too
much inner loops for its execution (the case of some
duplication operators).
 The pipeline conception of the coordinating
processor architecture supports the multifunctional
execution of the DF program. Any computing
stream (thread) PSi of a DF program is executed by
multifunctional organisation of the structure of
pipeline stages SG (SG ± StaGe), e.i., SG {L, M,
F, O, C}, those interpret identically named states ST
(ST ± STate), e.i., ST {L, M, F, O, C} of the
coordinating processor, at the logical level (Fig. 3).
 CP consists of the both pipeline stages and
control units. The control unit (CU) generates
control signals (microcomand), which initialise the
execution of microoperations in the coordinating
processor adequate stages L, F, M, O, C.

PREVSG_free
SG_free

SG_free
NEXTSG_free

START

D.INP D.OUT

Pipeline stage SG

SGO
SG.DI/DO

SGO - pipeline stage operation
tSGC - pipeline stage control
tSG.DI/DO - data input and output stage
tSTART - beginning initialization of stage

SGC

SET ST

ci ck sk(ST)

cin cout

Fig. 6 General conception of coordinating processor

pipeline stages

 On the Fig. 6 is presented the general conception
of coordinating processor pipeline stages. Every SG
consists of both the operation (SGO) and control
(SGC) part. SGC generates control/state signals
denoted as LOAD_free, FETCH_free,
OPERATE_free, MATCHING_free and COPY_free
to indicating accessibility (busy condition) the
specific stages. Values of the control/state signals
are set at the SGO�s input ports SET and ST.
Specialised state signals indicate the testing result of
the branch microoperations on the SGO�s output
port ST. Apart from those signals, which specify the
SG function, CU generates also synchronising
signals intended for the clocking of the execution
microoperations of coordinating processor stages.
Control/state, state and synchronisation signals are
distributed in particular SGC.
 SGO processes its input data token DT = D.IN
and executes the microoperations in the adequate
pipeline stage. Result of that is the setting of its
output data token DT = D.OUT, e.i.:

D. OUT : = fSG(D. IN)
where
 fSG is function pipeline stage SG, which

interpret state ST {L, F, M, O, C}of

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 9

the CP, when operator of the DFG is
executed,

 D.IN ± input token of the stage SG (operand of
corresponding operator of the
instruction stream PSi),

 D.OUT± output token of the stage SG (operation
result, which have executed by the
operator of the instruction stream PSi).

Tokens processing in the SG is performed on the
base of the microprogram control by microcomands
(microinstructions), those generates its control part
SGC.
 Each CP�s pipeline stage is controlled by the
microprogram. Microprogram control is specified by
one of next forms of microcomands:

ci : M / sj (4)

ck : P / sn , P / sm (5)

 Microinstruction in the form (4) means, that
control signal ci activates the microoperation M (for
example, assignment of value on one of the variable
FETCH_free : = 1), after the execution of that, state
signal sj will be set on the value of sj = 1, on the
base of what the j-th microcomand cj will be started
in the next step of control microprogram.
 Microinstruction in the form (5) means, that
control signal ck activates the branch
microoperation, by which is tested the truth of the
predicate P (for example, evaluation of the
component state FETCH, e.i. evaluation of the
condition (predicate) FETCH_free = 1 or
FETCH_free = 0). If P is truth (P = 1),
corresponding state signal sk(ST) will be set as
sk(ST) = sn = 1, in consequence of that, the n-th
microcomand cn, which initialises of the
microoperation Mn execution in the next step of
control microprogram. In the opposite case, if P is
false (P = 0), the corresponding state signal sk(ST)
will be set as sk(ST) = sm = 1, in consequence of
that, the m-th microcomand cm , which initialises of
the microoperation Mm execution in the next step of
control microprogram.

L.IN.ST

L_free : = 0
CP_free : = 0
CP.DI : = DQ.START

CP.DI : = IN.DO
CP_free : = 0

CP.DI : = DQ.DO
CP_free : = 0
GetDQ : = 1

Init DQIN

L.DQ.ST

L,Init,ST

l6cin l5l3(l) l5(l) l4 L1 L7 L2L9

F_free M_free

L10

CP.DI : = CP.DO

CP.DO : = CP.DI
L_free : = 1
CP_free : = 1
CP.LI : = 1
M_free : = 0

f1
m1

L1(l) L7(l) L9(l) L8(l) L10(l)L11

Load pipelined stage control unit

Load pipelined stage
operation unit

SG_free = L_free
NEXTSG_free = NEXTL_freeSG_free = L_free

L13

CP.DID.INP

l2

CP.DO
D.OUT

START

CP_free : = 1
L_free : = 1
F_free : = 0

Fig. 7 Internal control, state, and synchronise
signals for the LOAD stage

 Particular pipeline stages of the CP being
decomposed to the SGO and SGC parts, including
their internal control, state, and synchronise signals
are introduced on the Fig. 7 for the LOAD stage.
The control design of other pipeline stages is
created analogue.

5. MICROPROGRAM CONTROL OF

COORDINATING PROCESSOR PIPELINE
SEGMENTS

Microprogram control of CP at the DFG

operators execution is performed by the
microoperations, which are specified through the
reference (4) and (5) for individual stages of the
multifunctional organisation of the CP. In general,
the initialisation of individual stages
microoperations are executed by the control signals
st {l

i
, f

j
, m

k
, o

s
, c

r
} in the next form:

 ST st

0
: SG_free : = 1 / st

1

 ST st
1w

: (PREVSG_free = 1) / st
1w

,
(PREVSG_free = 0) / st

2

 ST st
2
 : SG_free : = 0 / st

3

 ST st
3w

 : (NEXTSG_free = 1 / st
beg

 ,
(NEXTSG_free = 0 / st

3w

 ST st
beg

:
 SG_MICROOPERATION
 ST st

end
:

 .
 ST st

n
: NEXTSG_free : = 1 / st

next

where
 st

p
 is a control signal, which initialises the

continuous and next microoperation in
stage SG at the execution of DFG�s
operator,

 p ± control signal index, which presents the
order of microoperatios to be executed
(subscript w of the index p describes to the
initialisation of the waiting operation, the
subscripts beg, end of the index p ± to the
initialisation of both the start and the end of
microoperations set {SG_OPERATION},
which represent to the function of the stage
SG_ST and next subscript ± to the
initialisation of the execution of the
microoperation set of the next stage of the
CP),

 SG_free ± the indication of the SG stage activity
(SG_free = 0 the stage SG is busy,
SG_free = 1 the stage SG is idle),

 NEXTSG_free ± the indication of the next stage
activity (NEXTSG_free = 0 the next
stage is busy, NEXTSG_free = 1 the next
stage is idle),

 PREVSG_free ± the indication of the previous
stage activity (PREVSG_free = 0 the
next stage is busy, PREVSG_free = 1 the
next stage is idle).

10 Multifunctional Pipeline Units of the Dataflow Architecture

 Microprogram control of the multifunction
structure of CP�s stages (SG) presents next
microprogram, the LOAD part of which is
introduced in more detail:

CP state microinstruction

INIT cin : (Init = 1) /l0, (Init = 0) /sin

LOAD l0 : (LOAD_free : = 0 || CP_free : = 0 ||
CP.DI : = DQU.START) /l7

LOAD l1 : (GetDO = 1) /l2, (GetDO = 0) /l1
LOAD l2 : (CP.DI : = CP.DO) /l7

LOAD l3 : (IN Empty) /l4, (IN = Empty) /l5
LOAD l4 : (CP.DI : = IN.DO || CP_free : = 0) /l7

LOAD l5 : (DQU Empty) /l6, (DQU = Empty) /l3
LOAD l6 : (CP.DI : = DQU.DO || CP_free: =0 ||

GetDO : = 1) /l7
LOAD l7: (CP.DI.MF = M) /l10, (CP.DI.MF = B)

/l8
LOAD l8 : (FETCH_free = 1) /l9, (FETCH_free =

0) /l8
LOAD l9 : (CP_free : = 1 || LOAD_free : = 1 ||

FETCH_free : = 0) /f1
LOAD l10: (MATCHING_free = 1) /l11,

(MATCHING_free = 0) /l10
LOAD l11 : (CP.DO : = CP.DI || LOAD_free : = 1||

|| CP_free : = 1 || CP.LI : = 1 ||
 || MATCHING_free : = 0) /m1

FETCH part (input signals: f1, f2, f3, f4, f5,

output signals: fi, o3,)

OPERATE part (input signals: o1, ... o22,
 output signals: oi, l1, m1, c1,)

MATCHING part (input signals: m1, ... m17,

output signals: mi, f1, l1, c1,)

COPY part (input signals: c1, c2, c3, c4, c5,

output signals: ci, o9,)

Microoperations to be performed in individual
CP�s pipelined stages are introduced in [21] more
detail.
 Algorithms of control signals generation, which
initialise the performance microoperations in the
individual CP�s pipelined stages are presented by
block diagram, as follows. For example, the block
diagram of control signals generation in pipeline
stages LOAD is introduced in the Fig. 8.

6. CONCLUSION

The contribution deals with the multifunctional
pipeline components design of the data flow
architecture model. The concepts of both the
architecture layout and the multithread pipeline are
presented in the proposed data flow system.

I1

IN=E

I0 I3 I5

I2 I4 I6

I10

MF=M

GetDQ DQ=E

DQUINDOOST MST Init

I8

I9

MATCHING m1FETCH f1

OST - OPERATE stage

MST - MATCHING stage

DO - CP data output

DQU - Data queue unit

IN - Interconnection unit

E - Empty

F - FETCH state

M - MATCHING state

0 1 1

0

1

F_free=10

1
M_free=1

0

1

Fig. 8 The block diagram of control signals

generation in pipeline stages LOAD

 In proposed data flow architecture a basic outline
of its structure organisation and microprogram
control are emphasised. Principles of parallel
processing by multifunctional pipeline structure of
the coordinating processors as main components of
the data flow architecture is introduced, too. The
pipeline approach unifies execution of both single
operators and sequence operators of a function to be
processed by the CP. The pipeline execution of
function operators and concurrency executions by
the coordinating processors of the proposed data
flow system enable the high-performance parallel
processing. The used approach reflects the properties
of data flow machine-oriented programming
language, which is not, however, the topic of this
contribution.
 The proposed data flow system stems from the
following features:

programming environment on the base
functional language on the DFG level,
fine-grain parallelism of the data flow
program graph,
data flow architecture on the base of the
dynamic pipeline coordinating processors by
which the parallel processing of the
functional program can be executed,
applications multithreading,
hybrid principles of the model architecture,
direct operand matching of data flow graph
operators.

 It is supposed that hardware implementation of
this architecture model, after its completion, can be
used as a specialised accelerator in high-
performance problem-oriented computer systems.

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 11

REFERENCES

[1] Denis, J. B., Misunas, D. P.: A Preliminary
Architecture fo a Basic Data Flow Processor. In:
Proceedings of the 2nd Annual Symposium on
Computer Architecture, Houston 1975, TX 126-
132.

[2] Srini, V. P.: An Architectural Comparison of
Dataflow System, Computer Vol. 19, 1986, 68-69.

[3] Arvind, Nikhil, R. S.: Executing a Program on the
MIT Tagged-Token Dataflow Architecture,
Lecture Notes in Computer Science 259, Springer
Verlag Berlin, 1987, 1-29.

[4] Wall, D. W.: Limits of Instruction-Level Paralelism.
Proc. Fourt. Int. Conf. Achitecture Support for
Programming Lanquages and OS, 1991, 176-188.

[5] Butler, M. at all.: Single-Instruction-Stream
Parallelism in Greater Then Two. Proc. 18. Annual
Int.Symp. Computer Architectures, 1991, 276-289.

[6] Sakai, S. et all: Prototype Implementation of
Highly Parallel Dataflow Machine EM-4. Proc.
Int. Parallel Processing Symposium, 1991.

[7] Hwang, K.: Advanced Computer architecture. Mc-
Graw Hill, Inc., New York 1993, 770 p.

[8] Abram, G., Treinish, L.: An Extended Data-flow
Architecture for data Analysis and Visualisation.
Proc. of Conf. on Visualisation �95 (Cat. No.
95CB35835), Atlanta, Ga, USA 1995, 263 ± 270.

[9] Jamil, T., Deshmukh, R. G.: Design of a Tokenless
Architecture for Parallel Computations Using
Associative Dataflow Processor, Proc. of Conf. on
IEEE SOUTHEASTCON �96, Briging Together
Education, Science and Technology (Cat. No.
96CH35880), Tampa, FL, USA 1996, 649 - 656.

[10] Depta, J.: Data Flow Architecture for Advanced
Process Control. Proc. of Conf. on Computer
Software Structures Integrating AI/ KBS Systems
in Process Control, A Postprint Volume from the
IFAC Workshop, Lund (Sweden) 1996, 21 - 26.

[11] âilc, J., Robi , B., Ungerer, T.: Asynchrony in
Parallel Computing: From Dataflow to
Multithreading, Parallel and Distributed
Computing Practices, Vol. 1, 1998, 57-83.

[12] Jelãina, M., Kollir, J.: The Dataflow
Implementation Environment for Functional
Languages. Proc. Of Japan ± Central Joint
Workshop on Advanced Computing in
Engineering, Pultusk (Poland), September 1994,
pp.26 ± 29.

[13] Kollir, J.: Implementation of Functional language
at the Dataflow Computer System, Internal DCI
report: DCI 13 ± 95, Technical University Koãice,
1995.

[14] Jelãina, M.: The Data flow Computer Architecture
with Direct Operand Matching. Journal of
Electrical Engineering, 46, 1995, 8, 279-285.

[15] Jelãina, M., Krahultk, P, Legnavskê, M.: Dataflow
architecture for the Parallel Implementation of the
Functional Language, Proc. of International Conf.
on Information, Communications and Signal
Processing, IEEE Singapore Section, Singapore
1997, Vol. 3 of 3, 1452-1456.

[16] Jelãina, M., Legnavskê, M.: Parallel Execution of
the Program via Multifunctional Pipeline Units of
the Data Flow System, Proc. of EC	I¶98
Conference, FEI TU, Koãice-Her any 1998,93±99.

[17] Vokorokos, L.: Princtpy architekt~r po tta ov
riadenêch tokom ~dajov. Copycenter, Koãice,
2002, p. 147. ISBN 80-7099-824-5.

[18] Straka, M.: A Contribution to Solving VR tasks in
Powerful Parallel Environment. Written essay to
doctoral/disertation exams in the field 25-21-9
Computer Tools and Systems. KPI FEI TU,
Koãice 2002, 66. (in Slovak)

[19] Jelãina, M.: Computer System Architecture. ELFA
s.r.o., Koãice 2002, 467.

[20] Sobota, B., Spiãik, J., Straka, M., Grof tk, M.:
Model of Production Process and Virtual Reality
Technologies. Automatizace, 43, 2002, 3, 186-
189, ISSN 0005-125X. (in Slovak)

[21] Jelãina, M., Vokorokos, L., Sobota, B.: Parallel
Computer Architecture of the MIMD Paradigm.
Proc. of the III. Internal Scientific Conference of
the Faculty of Electrical Engineering and
Informatics (III. ISC�2003), FEI TU, May 2003,
35-36.

[22] Hudik, â., Kore ko, â.: Some Problems of the
mFDT Environment Development. Proc. Of
International Conference EMES�03, Oradea
(Romania), May 2003 (in press).

[23] Jelãina, M. (editor): Parallel Computer System
Architecture. Technical report, ELFA s.r.o.,
Koãice 2003 (in preparation).

BIOGRAPHY

MiODQ -HOãiQD (Prof., Ing., CSc.), received the Ing
(MSc) degree in 1959 in Automation and
Telemechanics from LIIZT of Sankt Petersburg. Till
1964 he was employed as engineer at the Projekt
Division of the Automation of Railway Trasport
Company in Koãice. Since 1964 he has been with
the Technical University of Koãice. He received the
CSc (PhD) degree from the Institute of Information
and Automation Theory at the Czechoslovak
Academy of Science, Prague, in 1969, and was
appointed Associative Professor and Full Professor
for Technical Cybernetics and Electronic computers
in 1972 and 1982, respectively. His research activity
was concentrated on hybrid computer systems,
computer means of robotic control systems, and
microprogramming. Currently he has oriented
towards parallel computer architectures and
supercomputers, data flow systems and their
application at the virtual reality problem solving and
at creating of the environment for another advanced
information technologies. At the Technical
University of Koãice he lectures under graduate and
graduate courses oriented towards on Computers,
Computer Architecture Systems, Parallel Computer
Architectures and Supercomputers, and Data Flow
Systems. He is preparing courses to be oriented for
the Embedded Computer Systems, and Design of
Computer Microarchitecture. The results of his
pedagogical and scientific activity presents more
than 400 science, developed, investigative, project
works, monographs, textbooks, articles, and another
activities in the area of informatics? and information
technology.

