
32 Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003

TOWARDS ADAPTIVE TEXT PROCESSING

Jin KOLLÈR
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Koãice, Letni 9, 042 00 Koãice, Slovakia, tel. 055/602 4179, E-mail: Jan.Kollar@tuke.sk

SUMMARY
A method of adaptive text processing presented in this paper exploits typesetting system LaTeX. Essentially, the goal is to

prepare correct LaTeX source files without any knowledge of LaTeX command, using the production tool, being currently
developed - an adaptive text editor (ATE). Typographical correctness of target pdf, dvi, or ps documents is left to LaTeX and
its style files. However, to prevent repetitive LaTeX translation, the target ATE files are syntactically correct .TEX files. At
the same time, ATE is extensible to any new LaTeX command and/or environment. Finally, ATE is able to hide LaTeX
commands and environments to a user, depending on the level of his knowledge; in extreme case, no knowledge is required.
In this way, typesetting system LaTeX may be used not just by experts, but also by people unfamiliar with it at all. Hence,
adaptive text processing may extend to many application areas, supporting them by correct typesetting. ATE is an open
language system. Its text source files consists of hidden, visible and modifiable text areas that are terminal symbols of a
language, which is a subset of LaTeX. LL(1) grammar of this language is defined using .TeX samples incrementally, in an
interactive manner. The defined grammar is a part of ATE scheme. In this paper we concentrate to ATE schemes and the
essential approach to their construction.

Keywords: Text processing, typesetting, LaTeX, open systems, syntax driven editing, text generalization, context-free
languages, LL(1) parsing

1. INTRODUCTION

There is no proof but high deal of evidence that

the text editors based on graphic design called
WYSIWYGs (What You See Is What You Get) are
not sufficiently open with respect to the user
requirements in the future. It is simple consideration
that careful specification of an editor constructed as
a program cannot guarantee the requirements to text
processing that are yet unknown. Since a language is
a finite representation of infinite number of
programs [2,4], the typesetting system LaTeX
[5,6,8], being an open language system, rather than a
program system, is extensible to satisfy any user
requirements in the next.

For example, to get an expression E enclosed in
correct semantic brackets, as below

it is possible to define new commands, named for
example ?lp and ?rp, in the form

?newcommand{?lp}
{?mbo[{�[�?hspace{-1.52pt}�[�}}

?newcommand{?rp}
{?mbo[{�]�?hspace{-1.52pt}�]�}}

Then �?lp E ?rp� produces the required target
text form. Using WYSIWYG, if it does not provide
semantic brackets in the set of characters, a user may
just think about what is better ± to type [E], or [[E]],
but both forms are formally incorrect.

Using LaTeX, formatting is applied safely to the
whole document and a uniform form is guarranteed.
The document preparation using LaTeX is flexible,
since no manual reformatting is needed if some
other form of a document is required. Since
formatting commands are defined in source
document and style files exclusively, LaTeX
documents are stable. Composing separated
documents into singleton one never yields a
catastrophic scenario, well known when a
WYSIWYG is used. Formatting is processed by
LaTeX, not by a user.

Finally, typesetting is the two-dimensional
architecture, i.e. it is a kind of art. Typographically
correct fonts, correct spacing, correct mutual
relations between font sizes in different parts of
document, correct indentation and many other
typesetting rules must be considered when a
document form is designed by a qualified typograph.
It is over the scope of this paper to explain, that
formatting rules for a WYSIWYG user are not
sufficient to substitute the typesetting rules in
typography that have their historical background.

Using LaTeX, a user types his text as an
argument of formatting commands and/or
environments in a source file .TEX, which is
unformatted text file. There are two complications
coming out from this approach. First, a user must be
familiar with LaTeX commands and environments.
Second, the target form (pdf, dvi, or postscript) of a
document is invisible until the source file is
translated. On the other hand, there is no formatting
work left to a user, since LaTeX during compilation
is supplied by the typesetting rules given by
document style files and possible new definitions in
a document. Changing the formatting definitions, the
target document is changed uniformly.

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 33

For example, if there is a need to produce pdf
document with hyperlinks, instead of the command

?usepackaJe[pdfte[]{color,Jraphic[}

the next two commands are used

?usepackaJe{Jraphic[}

?usepackaJe[plainpaJes=true,
citecolor=blue,pdfstartview=FitH,

colorlinks]{hyperref}

The target document will be the same, except that all
links are alive; clicking on them in Acrobat Reader
the corresponding target is approached.

On the other hand, sometimes a user cannot
spent his time neither by learning commands nor by
new commands and environments definitions. Then
it is better to differ the levels of user LaTeX
knowledge in which .TEX document is prepared, or
exclude such knowledge at all. This is the basic idea
leading us to the development of ATE ± adaptive
text editor. We attend that ATE is not for those
familiar with LaTeX or even TeX [3], such as
mathematicians, computer scientists, etc. It is
addressed rather to administrative areas, providing
opportunity to produce documents taken from many
sources, preceding both the necessity for LaTeX
knowledge and the necessity for manual formatting
the documents.

In the past, we have performed experiments just
with user communication facilities addressed to
display defininition.. In this paper we present the
structured nature of ATE, as an open language
system, adaptable to any user application area. First
we illustrate the unsafe mode, in which LaTeX
commands may be used. Then we discuss the form
of the ATE scheme and the principles of its
construction more precisely. ATE is kind of a syntax
driven editor, parametrized by LL(1) language,
derived from the LaTeX samples. As a result,
LaTeX text is typed correctly, since it is a terminal
string belonging to derived language ± a subset of
LaTeX .

2. UNSAFE MODE

A simple example, introduced in this section,
illustrates the unsafe mode of editing, exploited also
by currently used shells, such as WINSHELL
coming with TeXLive 5.0d distribution [6]. Using
ATE, this mode is appropriate for an experienced
user able not just to type the text using LaTeX
commands, but also to define a scheme for a less
experienced user.

Suppose we want to produce a document in final
pdf form SAMPLE.PDF as shown in the Fig. 1. This
form may be produced from SAMPLE.TEX source
LaTeX file introduced in the Example 2.1. Let us
briefly comment this text file. The basic font size is
11 points and the basic style is given by article

style file, as it is defined in ?documentclass
command. We define Eastern (or Middle) European
coding of the text (IL2), the usage of pdfLaTeX
including colors and graphics, to be able produce
target SAMPLE.PDF directly, including graphicx
package commands and jpg pictures. We also
suppress page numbering. Formatting commands
under the comment line serve just to adopt the final
document to the required paper and text area. The
body of SAMPLE.TEX is introduced in document
environment separated by ?beJin{document}
and ?end{document}. It comprises the
formatting commands, such as ?section, ?item
and environments, such as selected by
?beJin{itemi]e} and ?end{itemi]e}.

Example 2.1 SAMPLE.TEX ± the source form of
the document

?documentclass[11pt]{article}

?def?encodinJdefault{,L2}
?usepackaJe[pdfte[]{color,Jraphic[}
?paJestyle{empty}
��FRPPHQW�OLQH�
?addtolenJth?topmarJin{-40mm}
?setlenJth?paperwidth{80mm}
?setlenJth?te[twidth{76mm}
?oddsidemarJin=-22mm

?beJin{document}

?section{Animals}

{?em Enumerate} environment is
used for cat (?ref{cat}), doJ
(?ref{doJ}) and horse
(?ref{horse}).
{?em ,temi]e} environment comprises
two colors of a cat.

?beJin{enumerate}
?item cat of ?label{cat}
?beJin{itemi]e}
?item black color
?item white color
?end{itemi]e}
?item doJ ?label{doJ}
?item horse ?label{horse}
?end{enumerate}

?end{document}

The result of the translation by pdfTeX (a kind
of LaTeX, which produces pdf target files directly)
is the file SAMPLE.PDF, which is displayed and/or
printed using Acrobat Reader. Typographically
correct shapes of letters and correct spacing may be
noticed, but also some blur introduced by
transformation of displayed document via clipboard
into the jpg form included in this Word document.

34 Towards Adaptive Text Processing

Fig. 1 SAMPLE.PDF - the target form of the
document

A user may type his text in unsafe mode using
full set of LaTeX commands. Then, the user
communication interface looks like in the Fig. 2.

Fig. 2 SAMPLE.TEX - unsafe mode

The aim of safe mode is to produce an
unformatted source text file, which is correct when
compiled by LaTeX into the target file. Hence we
must build a communication interface preserving
this safeness.

3. COMMUNICATION INTERFACE

Suppose a text is typed in the unsafe mode,

according the Fig. 3.
This text comprises just the definition part, not

however a body, which is supposed to be typed by
less experienced user.

Fig. 3 SAMPLE.TEX - sample for a scheme

Having been the sampled text typed, it may be
used for the definition of a scheme, which is saved
into an external file. When reading this scheme by
ATE again, let us require the user communication
interface will appear, as shown in the Fig. 4.

Fig. 4 Simple user communication interface

The communication interface in Fig. 4 is defined
by the scheme as follows:

% Language Definition
A0 -> T0
A1 -> T1
A2 -> T2
A3 -> T3
S0 -> T0 T1 T2 T3
% Control Buttons
% Display Types
A0 -> H?
A1 -> H5�{?red }{?black document}?
A2 -> M?
A3 -> H5�{?red }{?black document}?
% Displayed Areas
A0 -> /?documentclass[11pt]

 ?oddsidemarJin=-22mm/
A1 -> /?beJin{document}/

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 35

A2 -> //
A3 -> /?end{document}/
%

The scheme above consists of four parts, which

will be discussed later. At this point it may be
noticed that the communication interface according
to Fig.4 is very poor. Using safe mode, a user is
allowed just to type a text without LaTeX
commands. Preventing the use of LaTeX commands
in safe mode, (even new commands) does not
require extremely complicated analysis; suppressing
the use of backslash, just a few constructs must be
excluded.

On the other hand, the document as required in
Fig. 1 can be prepared just in unsafe mode, as shown
in Fig. 5. Then all advantages of ATE are lost again,
since there is no guarantee that the typed body text is
correct. This problem we will solve in this paper by
more detailed definition of the first two parts of the
scheme, dealing with the language definition and
control buttons.

According to the scheme above, we have a
language defined just as a sequence of four
terminals, generated from starting symbol S0, and
no control button is available to a user.

Fig. 5 SAMPLE.TEX - Unsafe mode

4. DISPLAY DEFINITION

Typing a sample, it is used to construct the
scheme in the following steps:

1. Selection of Displayed Areas
2. Definition of Display Types
3. Language Definition, and
4. Control Buttons definition

Displayed areas are selected, marking subsequent
parts of sampled text, highlighting them (for
example using two different background colors). As
a result, we obtain a set of areas, A0,..,An,
associated to the generated buttons of the same
names. Hence, Displayed Areas part of the scheme
is a mapping of button names to areas (fragments) of
source documents. The characters enclosing an area
text are the same and such that they do not occur in
enclosed text.

Of course, it is supposed that the areas are
selected using correct sample, i.e such that has been
translated using LaTeX before.

The areas are not necessarily adjacent, since not
all parts of text must be associated with buttons, just
those required to be included in the scheme. Using
just a set of associated buttons it is still impossible to
reconstruct the text exactly, since display types are
yet undefined. On the other hand, pressing all
buttons, initial state of text when ATE is started
using the scheme may be checked.

Once buttons are generated, the corresponding
area to each button is highlighted and Display Types
may be defined. Since the same display type may be
used for different areas, the display type is really the
type, which unifies the appearance of the different
areas, when they are displayed. Pressing a set of the
buttons that represent the areas of the same display
type, a type generation button is used to define a
new type, which may be as follows:

H « hiden area
HR:string « hiden area represented by a
string of characters
H? « Hiden area terminated by newline, i.e.
such that extends to the whole line
HR:string? « Hiden area represented by a
string of characters and terminated by newline
V «visible area
V? « visible area terminated by newline
M « modifiable area
M? « modifiable area terminated by newline
M+ « modifiable area of at least one
character
M+? « modifiable area of at least one
character terminated by newline

For each hidden text area, a string of characters

can be defined, which is displayed instead of LaTeX
text, or if a LaTeX text area is empty. Both hiden
and visible areas are stable, since they are not
modifiable. On the other hand, modifiable areas are
such that may be affected while editing, hence, it
must be distinguished transitive and positive
closures for area characters typed. To exclude
deleting all characters while editing, the type M+
(or M+?) is used. In this case the change of box
cursor to vertical bar cursor is suppressed, indicating
that the area cannot be empty. A terminating newline
character ? cannot be deleted, of course. In addition
to the display types above, it is possible to extend
the hidden areas types including the representation

36 Towards Adaptive Text Processing

by pictures and aligned horizontal and vertical lines,
appropriate especially for displaying the array and
tabular-like environments.

Considering just Display Types and Displayed
Areas in a scheme, this scheme can be read by ATE
from an external file and expanded to a user
communication interface. However, to provide a
communication interface, which guarantees positive
restrictions to a user, enabling him to type his text
safely, including LaTeX commands using control
buttons, both Language Definition and Control
Buttons parts must be defined. Their definition is the
most complicated part of the scheme and it is
introduced in the next section.

5. LANGUAGE AND CONTROL BUTTONS
DEFINITION

Suppose we want to provide a communication

interface to a user, which allows him to fill in the
white areas according to Fig. 6.

Fig. 6 SAMPLE.TEX - towards no LaTeX
knowledge

Omitting the fact that SAMPLE.TEX above is still
filled in using unsafe mode, the number of LaTeX
commands is reduced. Defining display, we require
all white areas be empty except the title Animals.
The corresponding display parts of the scheme are as
follows.

% Display Types
A0,A4 -> H?
A1 -> H5�{?red }{?black document}?
A2 -> H5�{?red section}
A3 -> M+
A5,A8,A11,A13,A16,A18 -> M?
A6 -> H5�{?red }
 {?black enumerate}?

A7,A10,A12,A15,A17 -> H5�{?red }
A9 -> H5�{?red }
 {?black itemi]e}?
A14-> H5�{?red }{?black itemi]e}?
A19-> H5�{?red }
 {?black enumerate}?
A20-> H5�{?red }{?black document}?

% Displayed Areas
A0 -> /?documentclass[11pt]

 ?oddsidemarJin=-22mm/
A1 -> /?beJin{document}/
A2 -> /?section{/
A3 -> /Animals/
A4 -> /}/
A5 -> //
A6 -> /?beJin{enumerate}/
A7 -> /?item /
A8 -> //
A9 -> /?beJin{itemi]e}/
A10 -> /?item /
A11 -> //
A12 -> /?item /
A13 -> //
A14 -> /?end{itemi]e}/
A15 -> /?item /
A16 -> //
A17 -> /?item /
A18 -> //
A19 -> /?end{enumerate}/
A20 -> /?end{document}/

LaTeX is a context-free language. Considering

that it is open language system, when defining the
restrictions for typing, we use rather something as
the syntax mining from the script, which was typed
and which correctness was proved by LaTeX
translation, than whole definition of language
syntax.

First, the selection of areas above requires at
least an essential knowledge of LaTeX structure.
Second, the scheme must be defined with respect of
positive restrictions given to a user, not restricting
him too much. Third, the scheme designer must be
familiar with the essential principles of
generalization, which are useful when defining a
language from a sample of terminals sequence,
producing a grammar for this language L. We
provide opportunity for LL(1) language, as a subset
of LaTeX. Hence the generalization principles are
coming from the definition of extended Backus-
Naur form EBNF, which (defined in EBNF itself) is
as follows:

EBNF -> P{P}
P -> N->SE
SE -> SQ{|SQ}
SQ -> SY{SY}
SY -> N|T|(SE)| [SE]|{SE}

Informally, EBNF is a nonempty sequence of
production rules P, each in the form comprising

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 37

nonterminal N on the left-hand side and syntactic
expression SE on the right hand side. A syntactic
expression is in the form of non-empty sum of
sequences SQ, and syntactic sequence is in the form
of non-empty sum of syntactic symbols SY. Each
syntactic symbol is a nonterminal symbol N, or
terminal symbol T, or a syntactic expression in
parentheses (SE), or possible occurrence of a
syntactic expression [SE], or a repetitive
occurrence of a syntactic expression {SE} including
empty symbol .

It holds

[SE]= |SE, and {SE}= |SE|SE SE|..

We use the next equivalent forms, more
appropriate for language L definition:

SE~= [SE]
SE*= {SE}
SE+= SE{SE}

designating explicitly positive closure by SE+.

The aim is to define a language L, such that

L0 L LaTeX

where L0 is a language able to generate just a
sequence of displayed areas. Hence L may be a
superset of L0 providing more flexibility to a user
than just filling in the initial form defined by
displayed areas part of the scheme.

Since different areas may be represented by the
same terminal symbol, the style in which they are
associated with a new terminal is similar as for
display types; a subset of buttons associated with
areas are pressed, followed by pressing new terminal
generation button, which generates a new button
designated by new terminal symbol name. For
example each areas corresponding to subsequent
occurrence of ?item command in an environment
are mapped into the same terminal symbol. On the
other hand, if two occurrences of ?item command
in different environments are to be displayed
differently, then they must be mapped to two
different terminals. In general, there is no relation
between the number of display types and the number
of terminal symbols. To be more concrete, let us
introduce Language Definition part, as follows.

% Language Definition
A0 -> T0
A1 -> T1
A2 -> T2
A3 -> 7�
A4 -> T4
A5,A8,A11,A13,A16,A18 -> 7�
A6 -> T6
A7,A10,A12,A15,A17 -> T7

A9 -> T8
A14 -> T9
A19 -> T10
A20 -> T11
S0 -> [] T0 T1 S1+[S1+,S1-]T11
S1+ -> [] T2 7� T4 [S2*,S2-]S2*
S2* -> [S3,S4,S5]
S3 -> [] 7�
S4 -> [] T6 S6+[S6+,S6-]T10
S5 -> [] T8 S6+[S6+,S6-] T9
S6+ -> [] T7 [S2*,S2-]S2*

The mappings of areas to terminal symbols of a
subset of LaTeX are in the forms, such as follows

A7,A10,A12,A15,A17 -> T7

The production rules follow them and they comprise
the information about the control buttons visibility
(such as [S6+,S6-]) in a context of the parse tree
which represents a derivation from starting symbol
S0, which, at the same time, represents a control
button S0.

It may be proved, that the grammar above is
equivalent to that as follows

S0 -> T0 T1 (T2 7� T4 (7� | S1 |
S2)*)+ T11
S1 -> T6 (T7 (7� | S1 | S2)*)+ T10
S2 -> T8 (T7 (7� | S1 | S2)*)+ T9

where the terminals 7� and 7� are emphasized to
designate that they express modifiable areas - lexical
units of the language. It is easy to see, that reading
the Displayed Areas subsequently (introduced below
in the top top line), the leftmost derivation will result
to the sequence of terminals (in bottom line), as
follows:

A0 A1 A2 A3 A4 A5 A6 A7 A8
T0 T1 T2 7�� T4 7���T6 T7 7��

A9 A10 A11 A12 A13 A14 A15 A16 A17
T8 T7 7���T7 7���T9 T7 7���T7

A18 A19 A20
7���T10 T11

When a scheme is expanded, parse tree representing
the derivation is constructed. While editing using
ATE, it is not just required the parse tree
construction, but also its manipulation. Hence, the
production rules must be defined in the way, which
guarantees each nonterminal on left hand side of a
rule be mapped to a button, which, when pressed,
causes an incremental generation of corresponding
syntactic expression on right hand side. Except that
when working in closures, additional buttons, such
as for copy, delete, and other actions can be added.
We however restrict here just to a button S-, which
means exit from closures.

Let us explain the meaning of the first rule of our
Language Definition, which is as follows

38 Towards Adaptive Text Processing

S0 -> [] T0 T1 S1+[S1+,S1-]T11

Pressing a button S0, no button is visible ([]) and
areas from Displayed Areas part corresponding to
terminals T0 and T1 are produced. Then the string
of terminals is produced from nonterminal S1+.
After that, buttons [S1+,S1-] will appear.
Pressing S1+, the production from S1+ is repeated.
Pressing S1-, terminal T11 is produced. It may be
seen, that button S1+ serves to include multiple
sections of the defined structure in a document. In
this matter, a user may press just the visible buttons
that, surely, must be mapped to some pictures from a
given set. The goal of Control Buttons part is to
provide such mapping to a user. This is simple, for
example, as follows.

% Control Buttons
S0 -> pic1
S1+ -> pic2
S2* -> pic3
S3 -> pic4
S4 -> pic5
S5 -> pic5
S6+ -> pic6

Finally, we illustrate the style in which the document
may be written sequentially pressing the sequence of
buttons S0 S1+ S2* S3 S2* S4 S6+ ..
S1-. Bold-faced terminals mean switching to the
edit (lexical) mode, which, when exited, cannot be
never repeated in the single session in this case,
since we have not defined a buttons for tracing the
parse tree. The derivation controlled by pressing the
buttons is as follows

S0 T0 T1 S1+ <1> S1- T11

<1>=T2 7��T4 S2* S3 7����
 S2* S4 <2> S2-

<2>=T6 S6+ T7 S2* S3 7��
 S2* S5 <3> S2-
 S6+ T7 S2* S3 7�� S2-
�������S6+ T7 S2* S3 7�� S2-
�������S6-
 T10

<3>=T8 S6+ T7 S2* S3 7��S2-�
�������S6+ T7 S2* S3 7��S2-�
�������S6-
 T9

We have used the substitutions <1>, <2>, and <3>
to make the derivation more readable. As a result,
the text of hidden areas comprising LaTeX
commands is mixed with user text, producing
correct LaTeX document, provided that user works
in safe mode, of course. The language defined is a
superset of a minimal language required for scheme
areas expansion, being stil a subset o LaTeX. A user
in safe mode is allowed to repeat sections, items of
environments and to include itemize environment in

enumerate environment and vice versa. However,
emphasizing and referencing is suppressed and may
be used just in unsafe mode sofar.

6. CONCLUSION

As shown in this paper, typesetting is a two-
dimensional architecture, considering the final form
of document. At the same time, the documents are
highly structured and this fact is exploited when a
user communication interface is defined by a
scheme. A scheme comprises the information about
the initial state of a source document, and the
information about its possible restrictions and/or
extensions, given by a LL(1) language ± a subset of
LaTeX. In this way, it is possible to define less or
more restrictive schemes, according to user
application areas. The schemes are stable, since they
cannot be destructed when editing a document.

Sofar we have implemented just display
definition part, not language definition parts of ATE.
Since ATE will be implemented in framework of a
master thesis, it was time to formulate our aims
more precisely, and still not too formally.
Theoretically, the task is simple: it is necessary to
maintain LaTeX text, related to a parse tree [2,4].
The implementation is exploits well known methods
[1], but it is more complicated than the theoretical
background, since we require ATE be an open
system, which is able to define each potential user
communication interface and to use it while editing.

Special attention must be paid to array and
tabular environments, since the numbers of columns
is defined in constructs ?beJin{tabular} and
?beJin{array}. That is why columns in the
tabular and/or array body, separated by & character,
cannot be constructed using positive closures, but
they must be restricted to the number of iterations.
Although ATE is not a WYSIWYG, vertical lines
separating columns must be aligned. Also
emphasizing may be performed in a WYSIWYG
fashion. It is also necessary to think about the
method of automatic generation of labels, if
appropriate. The composition of many documents
must prevent the clash of labels and bibitems.

Syntax driven text processing is simple,
especially for LL(1) language. Moreover, the
language syntax is derived manually, using LaTeX
constructs that have semantics determined. It may be
noticed however, that the derived language may be a
macro language over LaTeX, being still a subset of
LaTeX. It is so, since hidden areas may comprise
multiple language elements of LaTeX.

An interesting problem is to mine the syntax
from samples of database or even natural language
records, associating the semantics to production
rules (of course not restricted to context-free
grammar), and to use this semantic information
when building the language incrementally [7]. In
this way a new user requirement would be simply
generalized and the maintenance would not require
unreliable affecting the implementation. This,
however, is the future.

Acta Electrotechnica et Informatica No. 2, Vol. 3, 2003 39

REFERENCES

[1] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data
Structures and Algorithms. Addison-Wesley,
1985

[2] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers -
Principles, Techniques, and Tools. Addison
Wesley, 1988

[3] Knuth, D.E.: The TeXbook. Addison-Wesley,
Reading, MA, 1986. ISBN 0-201-13447-0. 483
pp.

[4] Kollir, J., Havlice, =.: Language Systems
Technology. Elfa, s.r.o., Koãice, 2001. ISBN
80-89066-12-7, 186pp. (in Slovak: Technolygia
jazykovêch systpmov)

[5] Lamport, L.: LaTeX ± A Document Preparation
System. Addison-Wesley, Reading, MA, 1985.
ISBN 0-201-15790-X. 242 pp.

[6] LaTeX3 Project Team: LaTeX2e for authors.
33pp. TeXLive 5.0d distribution.

[7] Novitzki, V.: Semantics of programs. Elfa,
s.r.o., Koãice, 2001. ISBN 80-88964-59-8, 145
pp.

[8] Olãik, P.: Typesetting System TeX. Brno-
Konvoj, 2000. ISBN 80-85615-91-6. 300. pp.
(in Czech: Typografickê system TeX)

BIOGRAPHY

-iQ .RlliU (Assoc. Prof.) was born in 1954. He
received his MSc. summa cum laude in 1978 and his
PhD. in Computing Science in 1991. In 1978-1981
he was with the Institute of Electrical Machines in
Koãice. In 1982-1991 he was with the Institute of
Computer Science at the University of P.J. âafirik in
Koãice. Since 1992 he is with the Department of
Computers and Informatics at the Technical
University of Koãice. In 1985 he spent 3 months in
the Joint Institute of Nuclear Research in Dubna,
Soviet Union. In 1990 he spent 2 month at the
Department of Computer Science at Reading
University, Great Britain. He was involved in the
research projects dealing with the real-time systems,
the design of (micro) programming languages,
image processing and remote sensing, the dataflow
systems, the educational systems, and the
implementation of functional programming
languages. Currently the subject of his research is
process functional paradigm and its application to
aspect oriented programming.

