
Acta Electrotechnica et Informatica No. 2 , Vol. 4, 2004 33

CUSTOM FPGA CRYPTOGRAPHIC BLOCKS FOR RECONFIGURABLE
EMBEDDED NIOS PROCESSOR

Milo� DRUTAROVSKÝ, Martin �IMKA
Department of Electronics and Multimedia Communications, Faculty of Electrical Engineering and Informatics,

Technical University of Ko�ice, Park Komenského 13, 041 20 Ko�ice, Slovak Republic,
E-mail: {Milos.Drutarovsky, Martin.Simka}@tuke.sk

SUMMARY
This paper introduces two custom blocks for Nios reconfigurable embedded processor implemented on Altera Field

Programmable Gate Arrays (FPGAs). When operations like modular multiplication and modular exponentiation of long
integers or other complex algebraic functions are performed on a general-purpose processor they usually consume a lot of
processor resources and execution times are not satisfactory. A solution of this problem lies in development of custom
coprocessors. The algebraic coprocessor for Montgomery Multiplication (MM) makes possible a fast execution of modular
multiplication with large numbers that can be used in several public key cryptographic algorithms. A True Random Number
Generator (TRNG) enhances an application of the Nios processor in cryptographic protocols. Until now only few
implementations of TRNG on FPGA have been presented in literature. We describe a custom TRNG implementation based on
a recently proposed method that reliably extracts intrinsic randomness from low-jitter clock signals synthesized by on-chip
FPGA analog PLLs. Both peripheral blocks are connected to the Nios processor through Altera Avalon bus that directly
supports scalable connection and different sources of the clock signal. In this way we can optimally use the resources of
Altera FPGAs and implement designs customisable with regard to available area resources and desired level of security or
timing constraints. Proposed solutions significantly improve security and computational power of System on a Chip (SoC)
embedded cryptographic applications based on the Nios processor.

Keywords: cryptographic algorithm, SoC, embedded coprocessor, TRNG, IP blocks, Montgomery multiplication

1. INDRODUCTION

The recent rapid increase of the devices
complexity and decreasing time-to-market are
forcing new ways of system design. Capable
solution of this problem lies in application of System
on a Chip (SoC) based on pre-designed Intellectual
Property (IP) cores and building blocks. IP blocks
optimised for target devices, and with standardised
interfaces offer fast solution without need for long-
term development of often-used parts of designs.

A cryptographic IP block either executes whole
cryptographic algorithms, or, as it is in our case,
offers significant improvement of computational
power or security level of the system. The
coprocessor for Montgomery Multiplication (MM)
enables a faster execution of large numbers of
multiplication needed for several cryptographic
public key algorithms. The True Random Number
Generator (TRNG) enhances an application of the
Nios processor [1] in cryptographic protocols.

Almost all cryptographic protocols require
generation and use of secret values that must be
unknown to attackers [2]. For example, TRNGs are
required to generate public/private key pairs for
asymmetric (public key) algorithms including RSA,
DSA, and Diffie-Hellman [2]. Unfortunately,
standard processors (including synthesizable Nios
processor from Altera) are not able to generate true
random numbers, as they are deterministic systems.
The only way how to get true random numbers,
hence true security for cryptographic systems, is to
build a generator based on a random physical
phenomenon.

Current modern Field Programmable Gate
Arrays (FPGAs) provide an alternative hardware
platform even for system-level integration of
embedded symmetric and asymmetric cryptographic
algorithms, but not for high quality TRNGs. Most
hardware TRNGs follow unpredictable natural
processes, such as thermal (resistance or shoot)
noise or nuclear decay. Since these principles of
random numbers generation require additional
external devices, they cannot be embedded
completely inside the FPGAs. Such TRNGs are not
compatible with modern FPGAs and do not provide
a SoC solution.

This paper describes a custom TRNG IP block
based on a recently proposed method [3] that uses
on-chip analog PLLs included in Altera APEX
FPGAs [4]. The proposed method reliably extracts
intrinsic randomness from low-jitter clock signals
synthesized by on-chip APEX analog PLLs. The
TRNG is developed as a custom IP building block
optimised for Nios processor and provides
significantly higher system level security for
complete embedded cryptographic SoC designs.

Public key algorithms, such as RSA, Diffie-
Hellman key exchange algorithm or Elliptic curve
cryptography use modular multiplication and
modular exponentiation of long integers (up to 2048
bits for RSA). When these operations are performed
on a general-purpose processor they consume a lot
of time and processor resources. A solution of this
problem lies in development of a custom
coprocessor for modular long integer multiplication.
Chosen MM algorithm provides certain advantages
in the implementation of modular multiplication.

34 Custom FPGA Cryptographic Blocks for Reconfigurable Embedded Nios Processor

The coprocessor has a scalable structure and uses
effectively the resources of FPGA. Thanks to the
implementation on FPGA we can obtain a very
flexible and secure solution.

The paper is organised as follows: in Section 2
we present briefly the Nios processor and its features
important to interface of the coprocessor and TRNG.
In Section 3 we give a brief description of the
TRNG principle and in Section 4 the MM algorithm
is presented. In the Section 5 we deal with a way of
an implementation of the blocks and their interface
to the Nios processor, improvements of the MM
coprocessor's structure, and speed and area results of
implementations in Altera FPGA devices. In the
Section 6 we present our conclusions and propose
possible ways of future development.

2. AN OVERVIEW OF EMBEDDED NIOS

PROCESSOR

The Nios CPU [1] is a pipelined general-purpose

RISC processor that is generated by proprietary
Altera VHDL generator (SOPC Builder) and can be
synthesised and embedded in all recent Altera
FPGAs. The Nios supports both 32-bit and 16-bit
architectural variants. Both variants use 16-bit
instructions. The principal features of the Nios
instruction set architecture are:

Large, windowed register file � Nios
implementations can include up to 512 internal
general-purpose registers. The compiler uses the
internal registers to accelerate subroutine calls and
local variable access.

Simple, complete instruction set � both 32-bit
and 16-bit Nios variants use 16-bit wide instructions.
16-bit instructions reduce code size and instruction-
memory bandwidth.

Powerful addressing modes � the Nios
instruction set includes Load and Store instructions
that the compiler uses to accelerate structure access
and local-variable (stack) access.

Extensibility � users can incorporate custom
logic directly into the Nios arithmetic logic unit. The
automatically-generated software development kit
includes macros for accessing custom instruction
hardware for C and assembly-language programs.

Existing Nios peripherals (e.g. UART, Timer...)
as well as new custom peripherals can be connected
through an Avalon bus [5]. Avalon is a simple bus
architecture designed for connecting on-chip
processor(s) and peripheral together into a SoC. The
principal features of the Avalon bus are:

Simplicity � provides an easy to understand
protocol with a short learning curve.

Optimized resource utilization � conserves Logic
Elements (LEs) inside the FPGAs.

Synchronous operation � integrates well with
other user logic that coexists on the same FPGA,
while avoiding complex timing analysis issues.

An example of a SoC structure with user-defined
custom peripherals is shown in Fig. 1. Custom
peripherals can be included in a system block

generated by SOPC Builder what brings optimised
implementation of the whole system, or they can be
fed to Avalon bus as pre-synthesised blocks. The
Fig. 1 depicts a simplified clock distribution, where

1F is a primary clock signal used for clocking of the

Nios and all of peripherals, and 2F denotes

additional clock signals whose function is explained
later.

Fext
Altera FPGA

UART
Custom

peripheral

Custom
peripheral

Custom
peripheral

data_RX

data_TX

SOPC Builder System Block

PLL

F1 F2

Fig. 1 Example of a system module integrated with

custom peripherals into an Altera FPGA

3. BASIC PRINCIPLE OF TRNG IP BLOCK

Several well-known TRNGs require additional

off-chip component which decreases a security level
of the system. In addition, some practical
implementations based on free running oscillators
are not secure enough for cryptographic applications
as the entropy increase is not sufficiently high, so
that the output of the generator can be predicted [6].
In next we shortly describe an implementation
completely embedded in Altera FPGAs [3].

Modern Altera FPGAs use reconfigurable analog
on-chip PLLs to increase performance and to
provide on-chip clock-frequency synthesis. The
basic principle behind our method is an extraction of
a randomness from the jitter of the clock signal
synthesized in the embedded analog PLL [3]
(illustrated in Fig. 2).

CLK

PLL D

CLK

Q
CLJ x(nTQ)XOR

Decimator
(KD)

q(nTCLK)

Fig. 2 Basic principle of randomness extraction

from the low-jitter clock signal

The jitter is detected by the sampling of a
reference clock signal (CLK 1F in Fig. 1) with

frequency CLKF using rationally related clock signal

 (CLJ 2F in Fig. 1) synthesized in the PLL with the

frequency:

M
CLJ CLK CLK

D

K m
F F F

K n k
, (1)

where and can range from 2 to 160, and
ranges from 1 to 16 [4]. Let values of multiplication

m k n

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 35

factor MK and division factor DK be relative

primes, so

GCD , 1M DK K , (2)

where is an abbreviation of Greatest
Common Divisor. Equation (2) ensures that the
maximum guaranteed distance between the closest
edges of CLK and (denoted as

) over the period:

GCD

CLJ

minMAX T

Q D CLK M CLJT K T K T (3)

is equal to [3]:

min

GCD 2 ,
MAX

4

GCD 2 ,
.

4

M D
CLK

M

M D
CLJ

D

K K
T T

K

K K
T

K

 (4)

By proper choosing of MK , DK and it is

possible to guarantee that
CLKT

minMAX jitT ,

where jit is the RMS (root mean square) value of

PLL intrinsic jitter. According to [7] and [8], an
intrinsic jitter can be approximated by Gaussian
distribution and . Moreover, the

proposed method is insensitive to an overall jitter
characteristic as far as an intrinsic PLL jitter is
included.

15psjit

In general, the obtained bits are statistically
biased random bits. Acceptable TRNG should
produce output bits with equal probability. A
common way how to reduce the statistical bias is to
use a XOR corrector. Non-overlapped pairs of bits
are XORed together. In this way, a uniform
distribution of generated true random bits with
period (3) is guaranteed [3]. QT

4. SCALABLE WORD-BASED
MONTGOMERY MULTIPLICATION
ALGORITHM

Basic mathematical operation used by RSA is

modular exponentiation [2]:

modEZ X M , (5)

that a binary or general -ary method can break
into a series of modular multiplications. All of these
computations have to be performed with large -bit
integers (typically).

m

k

1024, 2048k

The well-known MM algorithm [9] speeds-up
modular multiplication and squaring required for
exponentiation (5). It computes the MM product for

-bit integers k X , Y as

1, modMM X Y XYR M , (6)

where , and 2kR M is an integer in the range
such that . 12k kM 2 GCD , 1R M

Basic MM (6) can be used for efficient

computation of (5) by the standard Montgomery
exponentiation algorithm [2]. The starting point of
this algorithm is the MM. The faster MM is
performed, the faster exponentiation process will be
accomplished.

For implementation of MM on FPGAs we use a
modified version of MM � Multiple Word Radix-2
Montgomery Multiplication (MWR2MM) algorithm
[10]. MWR2MM with word width performs bit-
level computations and produces word-level outputs.
The scalability and word-orientation of the
algorithm makes possible to implement the scalable
MM coprocessor. For operands with a -bit
precision,

w

k

e k w words are required.

MWR2MM algorithm scans word-wise operand Y
(multiplicand) and M , and bit-wise operand X
(multiplier). Depending on timing requirements, area
limitations and connected version of Nios processor
we can choose the word width 8,16,32,64w

For description of the MWR2MM algorithm we
use the following denominations:

1 1 0

1 1 0

1 1 0

, , , ,

, , , ,

, , , .

e

e

k

M M M M

Y Y Y Y

X x x x

 (7)

The concatenation of vectors A and is
represented as

B
,A B . A particular range of bits in a

vector A from position to position is

represented as

i j

..j iA . The bit position of the word

of

thk

A is represented as k
iA . Then a fragment of the

MWR2MM algorithm can be described as:

0 0 0

0
0

0 0 0

1 1
0 1..1

1 1
1..1

for 0 to 1 do

,

if 1 then

,

for 1 to 1 do

,

,

,

i

j j j
i

j j j
w

e e
w

i k

C S x Y S

S

C S C S M

j e

C S C x Y M S

S S S

S C S

j

The computations are performed with precision
bits, what means that they are independent on the

operands precision . What varies is the number of
w

k

36 Custom FPGA Cryptographic Blocks for Reconfigurable Embedded Nios Processor

loop iterations needed to compute the result of
modular multiplication.

Due to the mutual dependency of the operations
inside the loop the parallel execution is not

possible. This is not the case of the instructions in
different loops which can be executed in parallel.
This fact makes possible to implement even more
flexible and faster scalable pipelined architecture.

j

i

5. HARDWARE MAPPING TO THE ALTERA
FPGA

The Altera Nios Embedded Processor

Development Board with APEX EP20K200 [11] has
been used for the implementation of the proposed IP
blocks. The board and the provided software form
powerful development tools for implementation and
testing of the designs. Thanks to the fact that the
custom blocks are described by VHDL code we
obtained parameterised designs that can be modified
according to the desired time and area limits. All
presented results have been obtained by using the
Altera Quartus II ver.2.2, Altera Nios 2.2, and FPGA
Advantage 5.3 tools.

5.1 TRNG

The same Nios development board was also used
in [8] for reference PLL measurements so we can
expect that jitter characteristics presented in [8] can
be directly applied to our design. The configuration
of the TRNG block is depicted in Fig. 3. The board
features a PLL-capable APEX EP20K200-2X with
four on-chip analog PLLs. We used the same PLL
organisation as described in the previous design of
TRNG [3], the values of parameters MK and DK

were chosen according to the connection of the
TRNG to the Nios processor. The two on-chip PLLs
shown in Fig. 3 have been used for generating

and signals. CLJ CLK

FEXT = 33.570 MHz

PLL4
clk1

clk0

PLL2

clk1

clk0

inclk

inclk
FEXT

14
101 = 4.616 MHz

FEXT = 33.3 MHz

FEXT
14
14 = 33.3 MHz

 80*14
11*101

4 Dedicated
Clocks

G4 G2 G1 G3

4.616 MHz

CLK

:3
CLJ

Fig. 3 Actual PLL configuration used in the
proposed TRNG IP block

The external clock source was

, on-chip synthesized clocks were

 and

 (can be modified according to other

requirements). According to (4) these parameters

ensure that . The

output bit-rate of the TRNG is 1 .

33.3MHzEXTF

33.3MHzCLKF 1120 / 3333CLJ CLKF F

11.9 MHz

min jitMAX 6.7 ps < T

/ 10000 bits/sQT

Example of resource requirements of 16-bit and
32-bit Nios with corresponding 16-bit and 32-bit
TRNG implementations are shown in Tab.1 (LE �
Logic Element is the basic building block of Altera
FPGAs).

Name of the block # LEs % of

total capacity
Nios-16
Nios-32

1140
1480

14
18

UART 170 2
TRNG-16
TRNG-32

150
200

2
2.5

ALL
ALL + interface logic

1669
2143

20
26

Tab. 1 Results of TRNG mapping to Altera APEX

EP20K200-2X

5.1.1 TRNG interface

The TRNG peripheral is connected to Avalon
bus as a standard memory mapped peripheral.
TRNG can be accessed from the Nios processor
through three custom registers. Data (read only) and
Control/Status registers (write/read access) are
mapped into two memory locations shown in Fig. 4.

VX X X ... X X X C

TRNG Data

read access

15 ... 2 1 0

TRNG_base+0

TRNG_base+1
(data register)

(status register)

write access

IE
(control register)
X X X ... X X X

15 ... 2 1 0

V =1/0 - valid/invalid data

C =1/0 - proper/improper clocks

IE=1/0 - interrupt enable/disable

X - undefined

Fig. 4 Data and Control/Status registers of 16-bit

TRNG

TRNG can be accessed by the standard memory
pooling as well as by using an interrupt service
request that can be enabled by an application
program. The exact position of a TRNG_base
address and TRNG_IRQ can be configured by the
SOPC Builder.

5.1.2 TRNG statistical testing

Statistical testing is very important for random
number generators dedicated to usage in
cryptographic algorithms. More detailed description
of applying NIST statistical test suite [12] on
presented TRNG can be found in [3].

While in [3] the generator is the only one block
implemented on the device, in this paper we present
configuration with TRNG connected to the Nios
processor. More complex design and logic clocked
by different clock sources can affect the jitter
distribution. The aim of tests was to detect possible
deviations of statistical characteristics. After testing
we have obtained similar results of statistical tests as
in [3]. This confirms the fact that the reliability of
TRNG and the randomness of its output are

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 37

independent on the design complexity, FPGA
configuration, and internal circuit activity.

5.2 Scalable MM coprocessor

The implemented radix-2 MM coprocessor is a
unit realizing the MWR2MM algorithm. Input
values (X ,Y , and M) as well as the result
obtained by the coprocessor are stored in
coprocessor's memory. Since input and output values
can have high precision (1024 bits or more), we
have decided to store inputs and intermediate results
in Embedded Memory Blocks (EMBs). EMBs can
implement various types of memory with one block
size 2048 bits [4]. Therefore, the coprocessor has
been split into two blocks: a Radix-2 Montgomery
multiplier and a dual port data memory.

S

In order to reduce storage and arithmetic
hardware complexity, data path of the MM
coprocessor uses X ,Y , and M in a standard non-
redundant form. The internal sum is received and
generated in the redundant Carry-Save form [13].
Therefore, the bit resolution of the sum is
effectively doubled and we use denomination 1

and for it. Then

S

S
S

2 S 1 2
jS represents the second bit

of the word of the first part of (see Fig. 5).

The advantage of Carry-Save form is faster addition
process without using the carry logic especially for

.

thj S

16w
The data path design is based on the structure

presented in [10]. The MM unit consists of two
layers of carry-save adders as it is shown in Fig. 5
for . Input represents latched value t that is

the least significant bit of the value and

is used to control the addition of

3w c
0 0

ixS Y

.M

Fig. 5 Structure of the MM unit for (FA �
Full Adder)

3w

The most important parameter influencing the
overall multiplier speed is the memory access time.
Since during one cycle previous results 1 and

have to be read and current results from the last
stage have to be written to the same memory, we
have chosen the EMB configuration as a dual port
RAM using the Altera-specific function
lpm_ram_dp from the Library of Parameterized
Modules (LPM). The memory with registered
input/output data has been found as the faster
implementation.

S 2 S

The pipelined version of the coprocessor has
been implemented using changes published in [14].
The data path is organized as a pipelined structure of
several MM units shown in Fig. 6. A distribution of
signal X to the units has been found as a critical
path in the time analysis. Therefore this part has
been redesigned by adding an 1-bit register for ix

into the MM unit (see Fig. 6). Thanks to this
modification there are no limitations for a number of
units as in [15].

Fig. 6 Block diagram of the MM coprocessor data
path

The maximum degree of parallelism that can be

obtained with this architecture is found as:

max .
2

e
n (8)

The number 2 in denominator expresses the
number of clock cycles after which the output of the
MM unit is valid. When less than MM units are

available, the total execution time will increase, but
on the other hand the area occupation of the
coprocessor can be changed according to the area
constraints of a target device. The computation time
of the single MM operation when MM

units are used is:

maxn

maxn n

2

MM

1
2 .MM

clk

k
T n

f wn
 (9)

The MM coprocessor has 3 main parameters
(, , and) that can be changed according to the
required area of the implemented coprocessor and
the required timings for MM computations (,)

w e n

n w

38 Custom FPGA Cryptographic Blocks for Reconfigurable Embedded Nios Processor

or the security level (). This approach gives high
flexibility to the processor and coprocessor design.

e

Area occupation expressed in LEs and maximal
possible FPGA clock frequency for Altera APEX
20K200E are given in Table 2 for precisions

, and bits. The MM coprocessor has
the maximal clock frequency significantly higher
than the Nios processor (). To

achieve higher performance of the system, we use
one clock signal () for the Nios processor, and

another one (), with higher frequency, for the

MM coprocessor.

1024k 2048

Nios
33.33 MHzclkf

Niosclkf

MMclkf

The computational time (in µs) of the single MM
operation (according to the equation 9) is presented
in Table 3 for frequency value of the MM
coprocessor clock signal .

MM
99.99 MHzclkf

5.2.1 MM coprocessor interface

The way in which the MM coprocessor is
connected to the embedded processor is important
for the computing process control (the process
starting and the processor status checking), and for
an exchange of processed data.

In the previous solution [15] the status register
has been used for checking the actual status of the
coprocessor and the computational process. The
current version uses the communication over an
interrupt. This solution is more suitable for software
control of coprocessors and for a configuration with
several MM coprocessors that can be used for
parallel computation of MM. After the computation
of MM the interrupt signal of the processor is
asserted. This state persists until the results are read
within the interrupt routine by the processor.

1024k 2048k

LEs
MMclkf LEs

MMclkf

1n 542 107.22 551 105.83
2n 1100 110.43 1136 106.96
3n 1621 108.34 1644 104.39
4n 1943 106.67 1980 103.85

Tab. 2 Area occupation (LEs)/max

MMclkf (MHz) of

the MM coprocessor (,) 32w 1..4n

 1024k 2048k
1n 327.7 1310.72
2n 163.88 655.38
3n 109.26 436.94
4n 82.00 327.76

Tab. 3 Computational time MMT (µs) for ,

,

32w

99.99 MHz
MMclkf 1..4n

Thereafter new operands can be loaded into the
memory and the whole process starts again.

The second area where the most suitable solution
needs to be found is the interface between the
coprocessor's memory block and the bus of the
embedded processor. Since there is a need for faster
clocking of the coprocessor, we have assumed the
case with two clock signals (see Fig. 7).

Fext MM
Coprocessor

SOPC Builder System Block

PLL

f clkMM

f clkNios

Fig. 7 Block diagram of the interface between the
MM coprocessor and the Nios processor

The slower one is connected to the processor,

and through the bus and the interface to the
coprocessor. All the processes concerning the
operations between the processor's bus and the
coprocessor's memory block are clocked by this
signal (). The operations inside the MM

coprocessor are clocked by the external faster clock
signal (). Thanks to this clock signals

organisation almost three times higher performance
has been obtained compared to the previous
implementation [15].

Niosclkf

MMclkf

6. CONCLUSIONS AND FUTURE
DEVELOPMENT

The paper has demonstrated the possibility of

custom IP blocks development for cryptographic
applications in FPGAs. Advancements in FPGAs
provide new options for design engineers. FPGAs
maintain the advantages of custom functionality, like
an ASIC, but avoid high development costs and the
inability to make design modifications after
productions.

Implemented IP blocks enhance the applicability
of the Nios processor in a cryptographic SoC. Both
blocks have scalable structure and hence create
together with the parameterisable Nios processor
very flexible solution. A support for faster modular
multiplication and a need of true random numbers
are functions required for several currently used
cryptographic protocols and algorithms

Thanks to the changes in implemented MM
coprocessor we obtained faster solution with
optimised features of the interface. The fact that
TRNG can be implemented inside the FPGAs
represents significant security and system advantage
in embedded cryptographic applications.

The future development should include the
implementations of other cryptographic algorithms
and the improvements of the presented blocks.

Acta Electrotechnica et Informatica No. 2, Vol. 4, 2004 39

REFERENCES

[1] NIOS 2.2 CPU. Data Sheet, September 2002,
ver. 1.3, pp. 1-14, www.altera.com/nios.

[2] J.A. Menezes, P.C. Oorschot, and S.A.
Vanstone: Handbook of Applied Cryptography,
CRC Press, New York, 1997.

[3] V. Fischer and M. Drutarovský: True Random
Number Generator Embedded in
Reconfigurable Hardware, Proceedings of the
Workshop on Cryptographic Hardware and
Embedded Systems � CHES�2002, Redwood
Shores, California, USA, August 2002, pp.
415-430.

[4] APEX 20K Programmable Logic Device
Family. Data Sheet, February 2002, ver. 4.3,
pp. 1-116, www.altera.com.

[5] Avalon Bus Specification, Altera Reference
Manual, January 2003, ver. 2.1, pp. 1-108,
www.altera.com/nios.

[6] M. Dichtl: How to Predict the Output of a
Hardware Random Number Generator, In C.D.
Walter, C. K. Koc, Ch. Paar (Eds.):
Cryptographic Hardware and Embedded
Systems 2003, LNCS 2779, Springer, Berlin,
2003, pp. 181-188.

[7] Jitter comparison analysis: APEX 20KE PLL
vs. Virtex-E DLL, Technical Brief 70, January
2001, ver.1.1, pp.1-7, www.altera.com.

[8] Superior Jitter management with DLLs. Virtex
Tech Topic VTT013(v1.2), January 21, 2002,
pp. 1-6, www.xilinx.com.

[9] C.K. Koc, T. Acar: Analyzing and Comparing
Montgomery Multiplication Algorithms, IEEE
Micro, (16) 3, pp. 26-33, June 1996.

[10] A.F. Tenca, C.K. Koc: A Scalable Architecture
for Modular Multiplication Based on
Montgomery�s Algorithm, IEEE Transactions
on Computers, 52(9), pp. 1215-1221,
September 2003.

[11] Nios Embedded Processor Development Board,
Altera Data Sheet, v.2.1, April 2002, pp.1-22,
www.altera.com/nios.

[12] A. Rukhin, et al.: A statistical test suite for
random and pseudorandom number generators
for cryptographic applications, NIST Special
Publication 800-22, May 15, 2001, pp. 1-153,
cs-www.ncsl.nist.gov/rng.

[13] C.K. Koc: RSA Hardware Implementation,
www.rsa.com, pp.1-28, August 1995.

[14] M. Drutarovský, V. Fischer: Implementation of
Scalable Montgomery Multiplication Co-
processor in Altera Reconfigurable Hardware,
Proceedings of 5th International Scientific
Conference � DSP MCOM 2001, Ko�ice,
Slovakia, pp. 132-135, November 2001.

[15] M. �imka, V. Fischer: Montgomery
Multiplication Coprocessor for Altera Nios
Embedded Processor, Proceedings of the 5th

International Scientific Conference on
Electronic Computers and Informatics 2002,
Ko�ice, Slovakia, pp. 206-211, October 2002.

BIOGRAPHY

Milo� Drutarovský was born in 1965 in Pre�ov,
Slovak Republic. He received the MSc degree and
PhD degree in radioelectronics from the Faculty of
Electrical Engineering and Informatics, Technical
University of Ko�ice, in 1988 and 1995,
respectively. He defended his habilitation work -
Digital Signal Processors in Digital Signal
Processing in 2000. He is currently working as an
associated professor at the Department of
Electronics and Multimedia Communications,
Technical University of Ko�ice. Main areas of his
research are applied cryptography, digital signal
processing, and algorithms for embedded
cryptographic architectures.

Martin �imka was born in 1979 in Ko�ice. He
received his MSc. degree in Electronics and
Telecommunications in 2002 after defending his
Master's Thesis - Conception of connection of
embedded processor to arithmetic coprocessor in
SOPC Altera. Currently he is a PhD student at the
Department of Electronics and Multimedia
Communications, Technical University of Ko�ice
and his main research area is an implementation of
cryptographic blocks on FPGAs.

