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SUMMARY 
This paper introduces two custom blocks for Nios reconfigurable embedded processor implemented on Altera Field 

Programmable Gate Arrays (FPGAs). When operations like modular multiplication and modular exponentiation of long 
integers or other complex algebraic functions are performed on a general-purpose processor they usually consume a lot of 
processor resources and execution times are not satisfactory. A solution of this problem lies in development of custom 
coprocessors. The algebraic coprocessor for Montgomery Multiplication (MM) makes possible a fast execution of modular 
multiplication with large numbers that can be used in several public key cryptographic algorithms. A True Random Number 
Generator (TRNG) enhances an application of the Nios processor in cryptographic protocols. Until now only few 
implementations of TRNG on FPGA have been presented in literature. We describe a custom TRNG implementation based on 
a recently proposed method that reliably extracts intrinsic randomness from low-jitter clock signals synthesized by on-chip 
FPGA analog PLLs. Both peripheral blocks are connected to the Nios processor through Altera Avalon bus that directly 
supports scalable connection and different sources of the clock signal. In this way we can optimally use the resources of 
Altera FPGAs and implement designs customisable with regard to available area resources and desired level of security or 
timing constraints. Proposed solutions significantly improve security and computational power of System on a Chip (SoC) 
embedded cryptographic applications based on the Nios processor. 
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1. INDRODUCTION 

The recent rapid increase of the devices 
complexity and decreasing time-to-market are 
forcing new ways of system design. Capable 
solution of this problem lies in application of System 
on a Chip (SoC) based on pre-designed Intellectual 
Property (IP) cores and building blocks. IP blocks 
optimised for target devices, and with standardised 
interfaces offer fast solution without need for long-
term development of often-used parts of designs.  

A cryptographic IP block either executes whole 
cryptographic algorithms, or, as it is in our case, 
offers significant improvement of computational 
power or security level of the system. The 
coprocessor for Montgomery Multiplication (MM) 
enables a faster execution of large numbers of 
multiplication needed for several cryptographic 
public key algorithms. The True Random Number 
Generator (TRNG) enhances an application of the 
Nios processor [1] in cryptographic protocols.  

Almost all cryptographic protocols require 
generation and use of secret values that must be 
unknown to attackers [2]. For example, TRNGs are 
required to generate public/private key pairs for 
asymmetric (public key) algorithms including RSA, 
DSA, and Diffie-Hellman [2]. Unfortunately, 
standard processors (including synthesizable Nios 
processor from Altera) are not able to generate true 
random numbers, as they are deterministic systems. 
The only way how to get true random numbers, 
hence true security for cryptographic systems, is to 
build a generator based on a random physical 
phenomenon. 

Current modern Field Programmable Gate 
Arrays (FPGAs) provide an alternative hardware 
platform even for system-level integration of 
embedded symmetric and asymmetric cryptographic 
algorithms, but not for high quality TRNGs. Most 
hardware TRNGs follow unpredictable natural 
processes, such as thermal (resistance or shoot) 
noise or nuclear decay. Since these principles of 
random numbers generation require additional 
external devices, they cannot be embedded 
completely inside the FPGAs. Such TRNGs are not 
compatible with modern FPGAs and do not provide 
a SoC solution. 

This paper describes a custom TRNG IP block 
based on a recently proposed method [3] that uses 
on-chip analog PLLs included in Altera APEX 
FPGAs [4]. The proposed method reliably extracts 
intrinsic randomness from low-jitter clock signals 
synthesized by on-chip APEX analog PLLs. The 
TRNG is developed as a custom IP building block 
optimised for Nios processor and provides 
significantly higher system level security for 
complete embedded cryptographic SoC designs. 

Public key algorithms, such as RSA, Diffie-
Hellman key exchange algorithm or Elliptic curve 
cryptography use modular multiplication and 
modular exponentiation of long integers (up to 2048 
bits for RSA). When these operations are performed 
on a general-purpose processor they consume a lot 
of time and processor resources. A solution of this 
problem lies in development of a custom 
coprocessor for modular long integer multiplication.  
Chosen MM algorithm provides certain advantages 
in the implementation of modular multiplication. 
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The coprocessor has a scalable structure and uses 
effectively the resources of FPGA. Thanks to the 
implementation on FPGA we can obtain a very 
flexible and secure solution.  

The paper is organised as follows: in Section 2 
we present briefly the Nios processor and its features 
important to interface of the coprocessor and TRNG. 
In Section 3 we give a brief description of the 
TRNG principle and in Section 4 the MM algorithm 
is presented. In the Section 5 we deal with a way of 
an implementation of the blocks and their interface 
to the Nios processor, improvements of the MM 
coprocessor's structure, and speed and area results of 
implementations in Altera FPGA devices. In the 
Section 6 we present our conclusions and propose 
possible ways of future development. 

 

 
2. AN OVERVIEW OF EMBEDDED NIOS 

PROCESSOR 
 
The Nios CPU [1] is a pipelined general-purpose 

RISC processor that is generated by proprietary 
Altera VHDL generator (SOPC Builder) and can be 
synthesised and embedded in all recent Altera 
FPGAs. The Nios supports both 32-bit and 16-bit 
architectural variants. Both variants use 16-bit 
instructions. The principal features of the Nios 
instruction set architecture are: 

Large, windowed register file � Nios 
implementations can include up to 512 internal 
general-purpose registers. The compiler uses the 
internal registers to accelerate subroutine calls and 
local variable access. 

Simple, complete instruction set � both 32-bit 
and 16-bit Nios variants use 16-bit wide instructions. 
16-bit instructions reduce code size and instruction-
memory bandwidth. 

Powerful addressing modes � the Nios 
instruction set includes Load and Store instructions 
that the compiler uses to accelerate structure access 
and local-variable (stack) access. 

Extensibility � users can incorporate custom 
logic directly into the Nios arithmetic logic unit. The 
automatically-generated software development kit 
includes macros for accessing custom instruction 
hardware for C and assembly-language programs. 

Existing Nios peripherals (e.g. UART, Timer...) 
as well as new custom peripherals can be connected 
through an Avalon bus [5].  Avalon is a simple bus 
architecture designed for connecting on-chip 
processor(s) and peripheral together into a SoC.  The 
principal features of the Avalon bus are: 

Simplicity � provides an easy to understand 
protocol with a short learning curve. 

Optimized resource utilization � conserves Logic 
Elements (LEs) inside the FPGAs. 

Synchronous operation � integrates well with 
other user logic that coexists on the same FPGA, 
while avoiding complex timing analysis issues. 

An example of a SoC structure with user-defined 
custom peripherals is shown in Fig. 1. Custom
peripherals can be included in a system block 

generated by SOPC Builder what brings optimised 
implementation of the whole system, or they can be 
fed to Avalon bus as pre-synthesised blocks. The 
Fig. 1 depicts a simplified clock distribution, where 

1F  is a primary clock signal used for clocking of the 

Nios and all of peripherals, and 2F  denotes 

additional clock signals whose function is explained 
later.  
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Fig. 1  Example of a system module integrated with 

custom peripherals into an Altera FPGA 
 

 
3. BASIC PRINCIPLE OF TRNG IP BLOCK 

 
Several well-known TRNGs require additional 

off-chip component which decreases a security level 
of the system. In addition, some practical 
implementations based on free running oscillators 
are not secure enough for cryptographic applications 
as the entropy increase is not sufficiently high, so 
that the output of the generator can be predicted [6]. 
In next we shortly describe an implementation 
completely embedded in Altera FPGAs [3]. 

Modern Altera FPGAs use reconfigurable analog 
on-chip PLLs to increase performance and to 
provide on-chip clock-frequency synthesis. The 
basic principle behind our method is an extraction of 
a randomness from the jitter of the clock signal 
synthesized in the embedded analog PLL [3] 
(illustrated in Fig. 2).  
 

CLK

PLL D

CLK

Q
CLJ x(nTQ)XOR 

Decimator  
(KD) 

q(nTCLK)

 
Fig. 2  Basic principle of randomness extraction 

from the low-jitter clock signal 
 

The jitter is detected by the sampling of a 
reference clock signal  (CLK 1F  in Fig. 1) with 

frequency CLKF  using rationally related clock signal 

 (CLJ 2F  in Fig. 1) synthesized in the PLL with the 

frequency: 

M
CLJ CLK CLK

D

K m
F F F

K n k
, (1) 

where  and  can range from 2 to 160, and  
ranges from 1 to 16 [4]. Let values of multiplication 

m k n
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factor MK  and division factor DK  be relative 

primes, so  

GCD , 1M DK K , (2) 

where  is an abbreviation of Greatest 
Common Divisor. Equation (2) ensures that the 
maximum guaranteed distance between the closest 
edges of CLK  and  (denoted as 

) over the period: 

GCD

CLJ

minMAX T

Q D CLK M CLJT K T K T (3) 

is equal to [3]: 

min

GCD 2 ,
MAX

4

GCD 2 ,
.

4

M D
CLK

M

M D
CLJ

D

K K
T T

K

K K
T

K

 (4) 

By proper choosing of MK , DK  and  it is 

possible to guarantee that 
CLKT

minMAX jitT , 

where jit  is the RMS (root mean square) value of 

PLL intrinsic jitter.  According to [7] and [8], an 
intrinsic jitter can be approximated by Gaussian 
distribution and . Moreover, the 

proposed method is insensitive to an overall jitter 
characteristic as far as an intrinsic PLL jitter is 
included.  

15psjit

In general, the obtained bits are statistically 
biased random bits. Acceptable TRNG should 
produce output bits with equal probability. A 
common way how to reduce the statistical bias is to 
use a XOR corrector. Non-overlapped pairs of bits
are XORed together. In this way, a uniform 
distribution of generated true random bits with 
period  (3) is guaranteed [3]. QT

4. SCALABLE WORD-BASED 
MONTGOMERY MULTIPLICATION 
ALGORITHM 

 
Basic mathematical operation used by RSA is 

modular exponentiation [2]: 

modEZ X M , (5) 

that a binary or general -ary method can break 
into a series of modular multiplications. All of these 
computations have to be performed with large -bit 
integers (typically ). 

m

k

1024, 2048k

The well-known MM algorithm [9] speeds-up 
modular multiplication and squaring required for
exponentiation (5). It computes the MM product for 

-bit integers k X , Y  as 
 

1, modMM X Y XYR M , (6) 

where , and 2kR M  is an integer in the range 
such that . 12k kM 2 GCD , 1R M

 
Basic MM (6) can be used for efficient 

computation of (5) by the standard Montgomery 
exponentiation algorithm [2]. The starting point of 
this algorithm is the MM. The faster MM is 
performed, the faster exponentiation process will be 
accomplished. 

For implementation of MM on FPGAs we use a 
modified version of MM � Multiple Word Radix-2 
Montgomery Multiplication (MWR2MM) algorithm 
[10]. MWR2MM with word width  performs bit-
level computations and produces word-level outputs. 
The scalability and word-orientation of the 
algorithm makes possible to implement the scalable 
MM coprocessor. For operands with a -bit 
precision, 

w

k

e k w  words are required. 

MWR2MM algorithm scans word-wise operand Y  
(multiplicand) and M , and bit-wise operand X  
(multiplier). Depending on timing requirements, area 
limitations and connected version of Nios processor 
we can choose the word width  8,16,32,64w

For description of the MWR2MM algorithm we 
use the following denominations: 

1 1 0

1 1 0

1 1 0

, , , ,

, , , ,

, , , .

e

e

k

M M M M

Y Y Y Y

X x x x

 (7) 

The concatenation of vectors A  and  is 
represented as 

B
,A B . A particular range of bits in a 

vector A  from position  to position  is 

represented as 

i j

..j iA . The bit position of the  word 

of 

thk

A  is represented as k
iA . Then a fragment of the 

MWR2MM algorithm can be described as: 

0 0 0

0
0

0 0 0

1 1
0 1..1

1 1
1..1

for 0 to 1 do

,

if 1 then

,

for 1 to 1 do

,

,

,

i

j j j
i

j j j
w

e e
w

i k

C S x Y S

S

C S C S M

j e

C S C x Y M S

S S S

S C S

j

 

The computations are performed with precision 
bits, what means that they are independent on the 

operands precision . What varies is the number of 
w

k
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loop iterations needed to compute the result of 
modular multiplication.  

Due to the mutual dependency of the operations 
inside the  loop the parallel execution is not 

possible. This is not the case of the instructions in 
different  loops which can be executed in parallel. 
This fact makes possible to implement even more 
flexible and faster scalable pipelined architecture. 

j

i

 
 

5. HARDWARE MAPPING TO THE ALTERA 
FPGA 

 
The Altera Nios Embedded Processor 

Development Board with APEX EP20K200 [11] has 
been used for the implementation of the proposed IP 
blocks. The board and the provided software form 
powerful development tools for implementation and 
testing of the designs. Thanks to the fact that the 
custom blocks are described by VHDL code we 
obtained parameterised designs that can be modified 
according to the desired time and area limits. All 
presented results have been obtained by using the 
Altera Quartus II ver.2.2, Altera Nios 2.2, and FPGA 
Advantage 5.3 tools. 
 
5.1  TRNG 

The same Nios development board was also used 
in [8] for reference PLL measurements so we can 
expect that jitter characteristics presented in [8] can 
be directly applied to our design. The configuration 
of the TRNG block is depicted in Fig. 3. The board 
features a PLL-capable APEX EP20K200-2X with 
four on-chip analog PLLs. We used the same PLL 
organisation as described in the previous design of 
TRNG [3], the values of parameters MK  and DK

were chosen according to the connection of the 
TRNG to the Nios processor. The two on-chip PLLs 
shown in Fig. 3 have been used for generating 

and signals. CLJ CLK
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Fig. 3  Actual PLL configuration used in the 
proposed TRNG IP block 

 
The external clock source was 

, on-chip synthesized clocks were 

 and  

 (can be modified according to other 

requirements). According to (4) these parameters 

ensure that . The 

output bit-rate of the TRNG is 1 .  

33.3MHzEXTF

33.3MHzCLKF 1120 / 3333CLJ CLKF F

11.9 MHz

min jitMAX 6.7 ps < T

/ 10000 bits/sQT

Example of resource requirements of 16-bit and 
32-bit Nios with corresponding 16-bit and 32-bit 
TRNG implementations are shown in Tab.1 (LE � 
Logic Element is the basic building block of Altera 
FPGAs).  

 
Name of the block # LEs % of  

total capacity 
Nios-16 
Nios-32 

1140 
1480 

14 
18 

UART 170 2 
TRNG-16   
TRNG-32 

150 
200 

2 
2.5 

ALL  
ALL + interface logic 

1669 
2143 

20 
26 

 
Tab. 1  Results of TRNG mapping to Altera APEX 

EP20K200-2X 
 

5.1.1  TRNG interface 
 

The TRNG peripheral is connected to Avalon 
bus as a standard memory mapped peripheral. 
TRNG can be accessed from the Nios processor 
through three custom registers. Data (read only) and 
Control/Status registers (write/read access) are 
mapped into two memory locations shown in Fig. 4.  

 

VX X X ... X X X C

TRNG Data

read access

15 ...   2  1  0

TRNG_base+0

TRNG_base+1
(data register)

(status register)

write access

IE
(control register)
X X X ... X X X

15 ...   2  1  0

V =1/0 - valid/invalid data

C =1/0 - proper/improper clocks

IE=1/0 - interrupt enable/disable

X - undefined
 

 
Fig. 4  Data and Control/Status registers of 16-bit 

TRNG 
 

TRNG can be accessed by the standard memory 
pooling as well as by using an interrupt service 
request that can be enabled by an application 
program. The exact position of a TRNG_base 
address and TRNG_IRQ can be configured by the 
SOPC Builder. 
 
5.1.2  TRNG statistical testing 
 

Statistical testing is very important for random 
number generators dedicated to usage in 
cryptographic algorithms. More detailed description 
of applying NIST statistical test suite [12] on 
presented TRNG can be found in [3].  

While in [3] the generator is the only one block 
implemented on the device, in this paper we present 
configuration with TRNG connected to the Nios 
processor. More complex design and logic clocked 
by different clock sources can affect the jitter 
distribution. The aim of tests was to detect possible 
deviations of statistical characteristics. After testing 
we have obtained similar results of statistical tests as 
in [3]. This confirms the fact that the reliability of 
TRNG and the randomness of its output are 
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independent on the design complexity, FPGA 
configuration, and internal circuit activity. 

 
5.2  Scalable MM coprocessor 

The implemented radix-2 MM coprocessor is a 
unit realizing the MWR2MM algorithm. Input 
values ( X ,Y , and M ) as well as the result  
obtained by the coprocessor are stored in 
coprocessor's memory. Since input and output values 
can have high precision (1024 bits or more), we 
have decided to store inputs and intermediate results 
in Embedded Memory Blocks (EMBs). EMBs can 
implement various types of memory with one block 
size 2048 bits [4]. Therefore, the coprocessor has 
been split into two blocks: a Radix-2 Montgomery 
multiplier and a dual port data memory. 

S

In order to reduce storage and arithmetic 
hardware complexity, data path of the MM 
coprocessor uses X ,Y , and M  in a standard non-
redundant form. The internal sum  is received and 
generated in the redundant Carry-Save form [13]. 
Therefore, the bit resolution of the sum  is 
effectively doubled and we use denomination 1  

and  for it. Then 

S

S
S

2 S 1 2
jS  represents the second bit 

of the  word of the first part of  (see Fig. 5). 

The advantage of Carry-Save form is faster addition 
process without using the carry logic especially for 

. 

thj S

16w
The data path design is based on the structure 

presented in [10]. The MM unit consists of two 
layers of carry-save adders as it is shown in Fig. 5 
for . Input  represents latched value t  that is 

the least significant bit of the value  and 

is used to control the addition of 

3w c
0 0

ixS Y

.M  
 

 
 

Fig. 5  Structure of the MM unit for  (FA � 
Full Adder) 

3w

 
 

The most important parameter influencing the 
overall multiplier speed is the memory access time. 
Since during one cycle previous results 1  and  

have to be read and current results from the last 
stage have to be written to the same memory, we 
have chosen the EMB configuration as a dual port 
RAM using the Altera-specific function 
lpm_ram_dp from the Library of Parameterized 
Modules (LPM). The memory with registered 
input/output data has been found as the faster 
implementation. 

S 2 S

The pipelined version of the coprocessor has 
been implemented using changes published in [14]. 
The data path is organized as a pipelined structure of 
several MM units shown in Fig. 6. A distribution of 
signal X  to the units has been found as a critical 
path in the time analysis. Therefore this part has 
been redesigned by adding an 1-bit register for ix  

into the MM unit (see Fig. 6). Thanks to this 
modification there are no limitations for a number of 
units as in [15]. 

 

 
 

Fig. 6  Block diagram of the MM coprocessor data 
path 

 
The maximum degree of parallelism that can be 

obtained with this architecture is found as: 

max .
2

e
n   (8) 

The number 2 in denominator expresses the 
number of clock cycles after which the output of the 
MM unit is valid. When less than  MM units are 

available, the total execution time will increase, but 
on the other hand the area occupation of the 
coprocessor can be changed according to the area 
constraints of a target device. The computation time 
of the single MM operation when  MM 

units are used is: 

maxn

maxn n

2

MM

1
2 .MM

clk

k
T n

f wn
 (9) 

The MM coprocessor has 3 main parameters 
( , , and ) that can be changed according to the 
required area of the implemented coprocessor and 
the required timings for MM computations ( , ) 

w e n

n w
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or the security level ( ). This approach gives high 
flexibility to the processor and coprocessor design. 

e

Area occupation expressed in LEs and maximal 
possible FPGA clock frequency for Altera APEX 
20K200E are given in Table 2 for precisions 

, and  bits. The MM coprocessor has 
the maximal clock frequency significantly higher 
than the Nios processor ( ). To 

achieve higher performance of the system, we use 
one clock signal ( ) for the Nios processor, and 

another one ( ), with higher frequency, for the 

MM coprocessor. 

1024k 2048

Nios
33.33 MHzclkf

Niosclkf

MMclkf

The computational time (in µs) of the single MM 
operation (according to the equation 9) is presented 
in Table 3 for frequency value of the MM 
coprocessor clock signal . 

MM
99.99 MHzclkf

 
5.2.1  MM coprocessor interface 

The way in which the MM coprocessor is 
connected to the embedded processor is important 
for the computing process control (the process 
starting and the processor status checking), and for 
an exchange of processed data. 

In the previous solution [15] the status register 
has been used for checking the actual status of the 
coprocessor and the computational process. The 
current version uses the communication over an 
interrupt. This solution is more suitable for software 
control of coprocessors and for a configuration with 
several MM coprocessors that can be used for 
parallel computation of MM. After the computation 
of MM the interrupt signal of the processor is 
asserted. This state persists until the results are read 
within the interrupt routine by the processor. 

 
1024k  2048k   

LEs 
MMclkf  LEs 

MMclkf

1n  542 107.22 551 105.83 
2n  1100 110.43 1136 106.96 
3n  1621 108.34 1644 104.39 
4n  1943 106.67 1980 103.85 

 
Tab. 2  Area occupation (LEs)/max 

MMclkf (MHz) of 

the MM coprocessor ( , ) 32w 1..4n
 

 1024k  2048k  
1n  327.7 1310.72 
2n 163.88 655.38 
3n  109.26 436.94 
4n 82.00 327.76 

 
Tab. 3  Computational time MMT (µs) for , 

,  

32w

99.99 MHz
MMclkf 1..4n

 
Thereafter new operands can be loaded into the 
memory and the whole process starts again. 

The second area where the most suitable solution 
needs to be found is the interface between the 
coprocessor's memory block and the bus of the 
embedded processor. Since there is a need for faster 
clocking of the coprocessor, we have assumed the 
case with two clock signals (see Fig. 7).  

Fext MM
Coprocessor

SOPC Builder System Block

PLL

f clkMM

f clkNios

 
 

Fig. 7  Block diagram of the interface between the 
MM coprocessor and the Nios processor 

 
 
The slower one is connected to the processor, 

and through the bus and the interface to the 
coprocessor. All the processes concerning the 
operations between the processor's bus and the 
coprocessor's memory block are clocked by this 
signal ( ). The operations inside the MM 

coprocessor are clocked by the external faster clock 
signal ( ). Thanks to this clock signals 

organisation almost three times higher performance 
has been obtained compared to the previous 
implementation [15]. 

Niosclkf

MMclkf

 
 

6. CONCLUSIONS AND FUTURE 
DEVELOPMENT 

 
The paper has demonstrated the possibility of 

custom IP blocks development for cryptographic 
applications in FPGAs. Advancements in FPGAs 
provide new options for design engineers. FPGAs 
maintain the advantages of custom functionality, like 
an ASIC, but avoid high development costs and the 
inability to make design modifications after 
productions. 

Implemented IP blocks enhance the applicability 
of the Nios processor in a cryptographic SoC. Both 
blocks have scalable structure and hence create 
together with the parameterisable Nios processor 
very flexible solution. A support for faster modular 
multiplication and a need of true random numbers 
are functions required for several currently used 
cryptographic protocols and algorithms  

Thanks to the changes in implemented MM 
coprocessor we obtained faster solution with 
optimised features of the interface. The fact that 
TRNG can be implemented inside the FPGAs 
represents significant security and system advantage 
in embedded cryptographic applications.  

The future development should include the 
implementations of other cryptographic algorithms 
and the improvements of the presented blocks.  
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