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SUMMARY 
In this paper we present essential characteristics of aspect-oriented approach to programming as provided in aspect 

programming languages. Then we de-modularize a programming structure of a process functional sample to a type definition 
module and the own definition module, using purely functional case. Adding environment variables to the type definition 
module we show that there are possible resources to the computational reflection using process functional paradigm in a 
well-defined variable environment. We also identify the weaknesses and possible directions in further development of object-
oriented process functional language to extend it to an aspect oriented language.  
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1. INTRODUCTION 

Aspect oriented programming evolves from the 
fact that there exist some crosscutting concerns in 
systems that cannot be well modularized using 
traditional structured, object or component based 
software development methodologies. There is no 
formal proof but high deal of evidence that 
combination of different concerns of computation in 
complex software systems yields to scattered and 
tangled code, which is inappropriate to maintenance 
[2,3,4]. Sometimes, the appropriate modularization 
still can be reached, but the prize is too high � the 
run-time efficiency is decreased. 

The other source for producing tangled code is 
adding a new concern of computation after a system 
has been developed. Then the situation, when 
manifold source code modifications are needed for 
the purpose of efficiency, is the nightmare of 
programmers. Scattering code manually clearly 
decreases the reliability of the system and its 
capability for the maintenance. 

AspectJ [7,8] is a programming language, which 
provides the opportunity to a programmer for the 
modular description of crosscutting concerns via 
aspect declarations. The aspect declaration, similar 
to class declaration is a modular unit, which in 
addition to class declaration contains  

 
pointcut � the definition of a collection of join 
point � well defined points of computation in 
which advice is applied, and 
advice � a part of code, which is applied in join 
points, defined by pointcut designator.  1 
 
AspectJ approach has evolved from Java � which 

is inherently object oriented imperative language. 

This work was supported by VEGA Grant No. 
1/1065/04: Specification and Implementation of 
Aspects in Programming. 

Therefore it seems that the subject of aspect 
language is applicable just to an object-oriented 
paradigm, but this is not true [1,16,35]. Crosscutting 
concerns can be taken into account also at the 
procedural level, excluding object paradigm, or at 
functional level, excluding an imperative paradigm. 
On the other hand, the crucial question is the 
usefulness of separated programming paradigms, for 
the development of large systems. Our mention is 
that better direction is to integrate them.  

For example, object paradigm is without doubt 
the best-balanced basis for applying crosscutting 
concerns across classes because of systems 
complexity and their imperative nature. 

However, the limits of AspectJ language are 
currently known [9]. The substance of these limits is 
as follows: Sometimes there is too strong 
interference between the function of computation 
and an aspect (specifically when parallel concerns 
are considered) and then the benefits of an aspect 
approach are not so high as expected. The reasons of 
this fact may be perhaps in strong binding of 
AspectJ to Java byte code. It may be noticed that 
AspectJ pointcut designators have their origins in 
Java language implementation, since AspectJ is an 
extension to Java.  

In this paper we present our approach to possible 
incorporation of aspect programming paradigm into 
PFL - a process functional programming language 
that is based on application of processes, rather than 
statement sequences [10,11,12,13,14]. Although at 
the present time we have object  PFL implemented 
[15,29,30,31,32] with both Haskell [22] and Java 
target code, it is not our aim to provide just a new 
programming language. The aim is to exploit the 
uniform and simple multi-paradigmatic structure of 
PFL integrating the functional, imperative [5,34], 
and object oriented paradigm [15] with the aspect 
paradigm. We have found it useful during 
experiments with profiling process functional 
programs [23,24,25] and mobile agents 
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programming [20]. In the following sections we 
present the essence of the aspect oriented conception 
and then, using simple tracing example, we will 
show the properties of process functional paradigm 
with respect to requirements to aspect extensions. 
Finally, we discuss the current state and possible 
directions in further research. 

 
2.  ASPECT ORIENTED CONCEPTION 

 
Let us introduce the essential conception of the 

aspect approach to system development according to 
Fig.1. For the purpose of simplicity, let us consider 
incremental development of a system, considering 
first a functional aspect of computation and after that 
some tracing aspect. Let the functionality of a 
system is defined by the structure of two modules as 
illustrated by gray rectangles in the stage 1 of 
Fig.2.1. 

 
 

Figure 2.1 Aspect � oriented conception 
 
Omitting the detailed function, the system of two 

modules can be compiled and executed. Suppose we 
need to include some tracing actions into modules. 
Instead of doing it manually, in aspect approach we 
write (in the stage 2) ASPECT module. This module 
consists of the pointcut and the advice. Pointcut is a 
collection of points in original modules that are the 
subject of interest (the subject of tracing, in our 
case). Such points are called join points. The 
pointcut is defined by the pointcut designator, i.e. a 
formula that identifies a collection of join points, 
marked by small dots in modules in Fig.2.1. In this 
manner join points are just identified, but the 
original modules are not affected.  

The second part of the aspect is the advice - a 
part of code, which we want to place at join points. 
The pointcut is used in the definition of advice. The 
stage 2 is finished. 

The stage 3 in Fig.2.1 illustrates weaving, which 
is an automated process of transforming original 
modules and defined aspect module, producing two 
modules, in which tracing actions are woven.  

The result is a new system of consisting of two 
modules, in which the advice is applied, see stage 4 
in Fig. 2.1. As can be seen, this new system has 
tracing code scattered across the original modules.  

There are two main benefits of this aspect 
approach. First, a programmer need not scatter the 
advised tracing code manually and second, 
whenever needed, tracing aspect may be �removed� 
by re-compilation of original system to obtain the 
system with functionality as before its aspectizying. 

Although tracing example yields scattered code, 
it is high deal of evidence, that combining other 
aspects can yield even tangled code, and it is not 
dependent on whether the system is developed 
incrementally or not. 

Tracing above is based on pointcut, which 
defines static joint points that are the subject of 
compile time weaving. Opposite to static join points, 
dynamic joint points are such that are defined in 
dynamic context of program i.e. while execution. An 
example is cflow pointcut designator in AspectJ, 
which is used to define join points occurring in all 
methods called from a given method of a class. 

Then, instead static weaving, dynamic (i.e. run-
time) weaving must be used to perform crosscutting 
in dynamic join points.   

The complication coming out from dynamic 
context of a program is as follows: The events 
during execution belong to a different abstraction 
levels, from such as input values of computation to 
those as architecture resources. The commonly 
accepted mechanism, which allows identify run-time 
crosscutting is computational reflection [26].  

Computational reflection is the capability of a 
computational system to reason about itself and act 
upon itself, and adjust to changing conditions. The 
computational domain of a reflective system is the 
structure and the computations of the system itself. 
A reflective system incorporates data representing 
static and dynamic aspects of it; this activity is 
called reification. This self-representation makes it 
possible for the system to answer questions about 
and support actions on it.  

Thus, the crucial task associated with dynamic 
context reasoning is to incorporate reflection data 
into a system, extracting them from original. In 
particular, we will show in this paper, how it can be 
solved using process functional program structure. 

In the next section we will present the possible 
modularization of a purely functional program, 
starting with a simple purely functional case 
obtaining separate function type definition module 
and function definition module.  In section 4 we will 
use the type module, aspectized by variable 
environment.  

 
3. TYPE AND DEFINITION MODULE 

  
Process functional paradigm is based on 

evaluation of processes that affect the memory cells 
by their applications. PFL - an experimental process 
functional language comes out from pure functional 
languages, including an imperative programming 
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environments [15]. PFL environments are 
manipulated neither in monadic manner [34] nor in 
an assignment-based manner. Instead of this, source 
form of a process functional program has strongly 
separated visible sets of environment variables (in 
type definitions) and invisible side-effect operations 
(in definitions). In this section we will consider just 
(pure) functions f and g (not processes) and main 
expression main, as introduced in Fig. 3.1 

f :: Int -> Int 
f x  = 2*x 

g :: Int -> Int -> Int 
g x y = f x + f y 

main :: Int 
main = g 2 3 

Figure 3.1 Purely functional program P 
 
 
PFL form of purely functional program P is 

identical to that in Haskell, using currying in 
application of functions, for example (g 2 3), 
instead of g(2,3) � the form usual in imperative 
languages. The evaluation of program P proceeds by 
the reduction as follows: 

 
main = g 2 3

 f 2 + f 3
 2*2 + 2*3 
 10                   (3.1) 

The evaluation is the same if the program is 
written without function type definitions, see 
Fig. 3.2, because the types are derivable from 
definitions in Milner type system. Let us designate 
this function module definition D. Then the 
semantics of P and D is the same, i.e. 

 
[P] = [D]                   (3.2) 

f x  = 2*x 

g x y = f x + f y 

main = g 2 3 

 
Figure 3.2 Function definition module D 

 
 
Since the mutual position of the type definition 

and the definition of a function in a program is not 
significant, we may write all type definitions in 
separate type definition module TM, illustrated in  
Fig. 3.3.  

 
f :: Int -> Int 

g :: Int -> Int -> Int 

main :: Int 

 
Figure 3.3 Function type definition module TM
 
 
If applying the composition W to module TM and 

D the composed program W(TM,D) is the source 
program in Fig. 3.4, then the semantics of P is the 
same as W(TM,D): 

 
[P] = [W(TM,D)]             (3.3) 

 
f :: Int -> Int 

g :: Int -> Int -> Int 

main :: Int 

f x  = 2*x 

g x y = f x + f y 

main = g 2 3 

 
Figure 3.4 Composed program W(TM,D) 

 
 
If D is an original module and TM is an advice, 

which is added at join point before the first 
definition in D by default, then, in terms of aspect 
programming, W is a trivial weaver. This weaver is 
an identity, since, as follows from (3,2) and (3,3), it 
holds: 

 
[W(TM,D)] = [D]             (3.4) 
 
Let us consider polymorphic function type 

definitions in separated module in Fig. 3.5. Instead 
of type constants Int type variables are used. 

 
f :: a -> a 

g :: a -> a -> a 

main :: a 

 
Figure 3.5 Polymorphic type module TP

 
The same weaver W is used to compose TP and D 

obtaining woven program W(TM,D), according to 
Fig. 3.6.   
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f :: a -> a 

g :: a -> a -> a 

main :: a 

f x  = 2*x 

g x y = f x + f y 

main = g 2 3 

 
Figure 3.6 Composed program W(TP,D) 

 
 

Since during type-checking phase the 
monomorphic types for all function are derived, as 
in P, we may conclude, as for monomorphic case, 
that it holds 

 
[W(TP,D)] = [D]             (3.5) 
 
Informally, including the `aspect� to a purely 

functional definition module in the form of function 
type definitions (both monomorphic and 
polymorphic) does not affect evaluation at all, since 
this is the same as introduced in (3.1). 

It may be noticed that functional programming 
style is out of our interest (clearly the form in 
Fig. 3.1 is the most appropriate form from this 
viewpoint). Here we are extremely interested in 
separating concerns in PFL with respect to aspect 
programming paradigm. 

The importance of separating concerns into 
different modules grows up when considering 
additional aspects of computation. As shown in the 
next section, we are able slightly modify the type 
module without any change of the definition module, 
and then weave them changing the semantics of 
program P, i.e. the definition D. This fact is crucial 
in aspect programming.  

 
 

4. STATE ASPECT 
  

Suppose now a �small� change of the type 
definition module TP, according to Fig. 4.1, where u, 
v, and w are the environment variables. 

 
f :: u a -> a 

g :: v a -> w a -> a 

main :: a 

 
Figure 4.1 State aspect  TS

 

In this way we have defined the state aspect of 
computation, since by TS we require two things: 

  
1. For all applications of f in D: before f is applied 

to an argument e, assign e to u and then use e as 
an argument.  This follows from (u a) in the 
type definition for f. 

2. For all applications of g in D: before g is applied 
to the first argument e1, assign e1 to v and then 
use e1 as the first argument of g., and before  (g
e1) is applied to the argument e2, assign e2 to 
w and then use e2 as the second argument of g. 
This follows from the type definition for g.  
 
For example, (f 2) will perform assignment

u:=2 (using Pascal notation), and then (f 2) will 
be evaluated as in purely functional case. 
Considering  (g 2 3), it is guaranteed, that 
assignments v:=2 and w:=3 are performed before 
(g 2 3) is evaluated continuing by f 2 + f 3 
evaluation. 

It means that except a purely functional 
evaluation according to the reduction (3.1), 
additional side effect actions (assignments) are 
performed. Or, from another viewpoint, argument 
values of functions f and g are traced using three 
environment variables: u, v, and w. 

However, the selection of join points is weak. 
Our pointcut designator can be expressed just 
informally, as follows: 

 
Join points are all arguments of functions defined

by a user, (i.e. except built-in operations).

Our joint points are identified with a very low 
flexibility, since there are no designators able to use 
quantifiers and/or logical operations in PFL.  

In this paper we will concentrate on advices, as 
�a parts of code� being used at join points. In this 
matter it is substantial to understand the weaving  

  
W(TS,D)                     (4.1) 
 

which, using the same weaver W and the same 
definitions D as above produces the program PS

which evaluates differently than program P. Hence, 
new aspect TS affects the semantics. Hence it holds 

 
[W(TS,D)] [D]             (4.2) 
 
The woven form of program PS is in Fig. 4.2. 

According to Fig. 4.2 we have introduced three 
environment variables in an (imperative) 
environment, we have defined three functions in a 
class Env, and we apply them to each argument of 
user-defined functions. Let us consider first these 
applications informally. 
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env
  uc:: a 
  vc:: a 
  wc:: a 

class (Env b a) where 
  u:: b -> a 
  v:: b -> a 
  w:: b -> a 

instance (Env a a) where 
  u x = let uc=x in uc

  v x = let vc=x in vc

  w x = let wc=x in wc

instance (Env () a) where 
  u x =uc

  v x =vc

  w x =wc

f :: a -> a 

g :: a -> a -> a 

main :: a 

f x  = 2*x 

g x y = f (u x) + f (u y) 

main = g (v 2) (w 3) 

Figure 4.2 Program PS = W(TS,D) 
 
 
Corresponding to our requirements to all 

applications of f and g, defined by our informal 
pointcut above, we require the result of evaluation to 
be the same as in (3.1). The function of computation 
is preserved, if it holds 

 
u e = e, v e = e, w e = e 

for all expression e of a data type. It means that 
environment variables in PFL are not just cells of 
memories, but they are identities, if their arguments 
are of a data type. 

Next, before an environment variable is applied 
to argument e, the argument e is stored to the 
variable (since the environment variable is not just 
an identity, but also a memory cell). This state 
aspect corresponds to assignments 

 
uc := e, vc := e, wc := e 

for all expression e of a data type, where variables as 
cells are marked by  c  to distinct them from 
variables as functions. Hence, the application, such 
as (v e) evaluates in two subsequent steps s and e, 
which we express by a pair  

(s; e) 
  
where s may be an assignment or empty action, i.e. 
state action and e is an expression, which defines the 
(functional) value  of application. 

 
Then the complete definition of a variable v in 

terms of two aspects is as follows: 
 
v x = (vc:=x; x), if x  () 
v x = ( ; vc),      if x = () 

Semantically equivalent definition to that above is as 
follows: 
 
Definition 4.1. Informal definition of environment 
variable 

v x = (vc:=x; vc), if x  () 
v x = ( ; vc),      if x = () 
 
The latter better expresses the argument data 

flow through the variable. The second equation is 
not used in our examples, since here we work just 
with data values.  But notice, that if an argument of a 
function would be control value, designated by (), 
then state is not affected (since state action is 
empty), and the application  v () yields the data 
value having been stored in cell vc. 

The definition of v above is informal, since the 
value of the application is not the pair on right hand 
side, just the second item, we use imperative 
sequencing (;) and imperative assignment in a pair 
on right hand side of informal definition. But 
looking at Fig.4.2 it is easy to see, that it holds 

 
(vc:=x; vc)= let vc=x in vc 
    ( ; vc)= vc

 
Using informal definition for environment 

variable the program PS is evaluated as follows: 
 

main = g (v:=2;2) (w:=3;3)
 f (u:=2;2) + f (u:=3;3)
 2*2 + 2*3 
 10                   (4.3) 

 
To simplify notation, we designate cells by  u, v, 

and w, not using uc, vc, and wc anymore. Except the 
function of computation is evaluated (the value of 
(v:=2;2) is 2, the value of (w:=3;3) is 3, etc.), 
program PS traces all argument values used in 
applications of user-defined functions storing them 
to variables � external memory cells that belong to 
variable environment env of computation.  

Since then functions affect the variable 
environment, they are rather processes than 
functions. That is why we call this paradigm process 
functional. However, in framework of this paper is 
more substantial, that weaving the module TS and D   
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the semantics of original module D will change, 
according to (4.2).  

Notice that our �weaver� W  performs compile 
time transformation, when producing W(TS,D). But 
the same W  acts as identity when producing W(D). 
In each case, the type checking is performed after 
weaving.  

Further, as follows from evaluation of  W(TS,D)
we can say, that arguments of user-defined functions 
are reflected in variable environment performing the 
next sequence of assignments. 

 
v:=2; w:=3; u:=2; u:=3;
 
The sequence above is true if all arguments are 

evaluated in the leftmost order and + is left 
associative operation. Some comments on this, and 
other problems associated with maintaining 
reflective information are introduced in the 
following section.   

 
 

5. DISCUSSION 
  

In this section we identify some problems 
coming out from the current state of process 
functional programming language, which is aimed to 
be adapted to an aspect programming language. 

Currently we have developed a compiler from 
object-oriented PFL to both Haskell and Java 
languages. The purpose of PFL project was to 
provide a programming language, which would 
make open view to variable environment to a user as 
it is in imperative languages, and at the same time to 
preserve the approach coming out from purely 
functional languages, that the evaluation is defined 
by application of processes and functions, excluding 
the sequences of statements. As a result, PFL is a 
simple and an expressive language, and still more 
relaxed than Haskell, since function of computation 
can be affected by evaluation order.  

 
The weaknesses of PFL language and its 

perspectives, from the viewpoint of aspect 
programming paradigm are as follows: 

 
The order of evaluation is fixed and it is 
supposed to be known to a programmer. Then 
aspect of evaluation order, which is associated 
with parallelism, cannot be defined separately. 
Since this aspect is highly dependent on target 
architecture, sometimes even at the level of built-
in operations [6,33], it must be expressible 
explicitly. 
Nothing has been said about the use of reflected 
values in this paper. But PFL is capable for the 
definition of multi-threaded programs and the 
mechanism for accessing the values in 
environments is defined by application of an 
environment variable to control value. The 
updates can be performed in one thread and the 
accesses in the second thread. 

Using control values is possible but wrong 
programming praxis. One possible solution is to 
�tear� of purely functional programs is monadic 
approach. This is well disciplined but still just 
programming methodology, so including control 
values as a new control aspect seem to be more 
perspective. 
In this paper the mechanism of application of 
environment variables is used just to reflect the 
values of arguments. But it may be noticed, that 
the mechanism is very strong, because we may 
reflect not just values coming from computation, 
but also from an external environment, such as 
architecture resources.  
Or, it is possible to use the single variable for 
many points of a program. Then, if we use v 
instead of both u and w in Ts we would obtain 
the following tracing 

 
v:=2; v:=3; v:=2; v:=3; 

 
Although PFL  arrays are over the scope of this 
paper, process functional paradigm can be 
applied in backward direction. It means that it is 
possible to generate an application of a new 
generated variable to each expression instead of 
this expression, and then compose the set of 
variables into an array that �application� to a 
type substitutes this type in a function type 
definition.  Then we would obtain something like 
this 

 
v:=2; w:=3; u{0}:=2; u{1}:=3; 

 
Using PFL, the reflection interface is still not 
flexible enough, since of using just environment 
variables in type definitions. Extensions are the 
subject of our current research. 
At the time it is strong feeling that fixed number 
of abstraction levels is not sufficient enough to 
provide a general purpose aspect language, open 
to new aspects that can arise in the future. 
Currently no pointcuts can be defined in PFL.  
It is however clear that pointcuts must be 
defined rather over abstraction levels than 
according user requirements. Providing the 
appropriate syntax and semantics of pointcuts is 
crucial task, since they affect compile-time pre-
weaving, and are related to reflection 
information when performing run time weaving. 

 
6. CONCLUSION 
 

In this paper we use the principle of composing 
multiple modules into target program by source-to-
source transformation. Using simple tracing example 
we have shown the principle of the reflection of 
values in purely functional evaluation, to an external 
variable environment.  

We also discuss briefly the use of values coming 
from external environment variables. It may be 
noticed that our type system unifies data and control 
types just for arguments of environment variables 
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(the types are unified just in the type variable b in a 
generated class Env b a, otherwise not). This 
is the difference between PFL  and Haskell.  

Opposite to the specification approaches oriented 
to the correctness of programs [17,18,19], or 
specialized tools for time-critical systems [27,28], 
our approach supports the computational 
environments of the systems in a more open way. 
We take into account different levels of abstraction, 
working still at programming language level and, at 
the same time, at the level of programming 
paradigm. 

Considering the aspects are crosscutting concerns 
of computation, pointcut designators must specify 
lexical, syntactic and semantic levels of an aspect 
language, the environmental properties and run-time 
events of computation. But this is still not sufficient, 
since it is necessary to prevent the situation, when 
adding a new aspect fails since of language 
restrictions. 

The openness to dynamic aspects is the crucial 
property of an aspect language. In this paper we 
have presented the systematic manipulation with 
environments provided by process functional 
paradigm as a proposition for the development of an 
aspect process functional language considering 
computational reflection.  
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