
Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 13

POINTCUT DESIGNATORS IN AN ASPECT ORIENTED LANGUAGE

Ján KOLLÁR
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Ko�ice, Letná 9, 042 00 Ko�ice, Slovak Republic, tel. 055/602 2577, E-mail: Jan.Kollar@tuke.sk

SUMMARY
The strength of aspect-oriented languages is given by pointcut designators that pick out join points. In this paper we

provide an overview of pointcut designators in AspectJ, classifying them with respect of different kinds of joint points. Our
aim in the future is to find a general and flexible way of adding a new aspect to an existing language system. The idea behind
our approach is the integration of programming paradigms, such that prevents the occasional insufficiency of a
programming language when mapping a problem to a corresponding program. Such integration, as we believe, can be done
not excluding neither abstract paradigmatic level nor practical programming language level. From this point of view PFL �
a process functional language is a perfect basis for studying the aspect phenomenon in a disciplined way as well as for
providing practical experiments. In particular, when aspect approach is considered, the goal is not to provide a complete set
of defined primitive pointcut designators � we do not think it is possible, since the world of computation may change in the
future. Instead of that, more perspective seems to be the determining the different semantic levels of computation and their
relation and hierarchy, their sources and the style in which they can be reflected and affected by a programming language.
In this matter, this paper is just a step to this research direction.

Keywords: programming paradigms, imperative functional programming, aspect oriented programming, implementation
principles, programming environments, control driven dataflow, referential transparency, side effects

1. INTRODUCTION

PFL - an experimental process functional
language [5,6,7,8,14,16] integrates the semantics of
imperative and functional languages. A programmer
is free to decide for using functional programming
methodology including monadic approach [12,18],
but he can also manipulate the memory cells, if
appropriate. Then the imperativeness is reached by
application of processes �attached� to the cells by
their arguments [8]. �Stateful� evaluation by process
application in PFL is more relaxed and less
restrictive to a programmer than exploiting side
effects encapsulated by monad.

Both monadic and process functional approaches
are the same if reduced to purely functional
methodology. They differ in exploiting imperative
methodology, although both hide assignments to a
programmer [2].

There are two main differences between them;
monadic approach uses visible side effecting
functions unit and bind, hiding memory cells to a
programmer. Process functional approach is hiding
two functions that perform the access and the
update of memory cells, but all memory cells are
visible to a programmer.

The strength of process functional approach is a
paradigm that reflects the implementation of both
imperative and functional languages bringing it to
the source form. It means that each PFL program is
a highly abstracted expression, which allows to
perform source-to-source transformations instead of
machine-independent optimization techniques that
are well known using directed acyclic graphs and
quadruples in imperative languages [9,10,20]. Since

semantic information such as binding names to
identifiers is not missing using PFL expressions, this
supports the requirement for source-to-source
transformations as desired for the implementation of
aspect-oriented languages [1,3,4,19].

On the other hand, less positive is the use of
process functional language as a �programming
language�. Seemingly, its level of abstraction is
higher than that of an imperative language, but the
methodology of performing side effects by
application of processes is still less natural than
using assignments. Using PFL, much useless control
is eliminated, but the integration of just functional
and imperative paradigms is evidently insufficient to
break the non-conformance of problems in one side
and �programs� on the other side. The weakness is
that PFL flexibility is hardly to exploit practically
since of insufficient methodology.

As a possible solution to this problem is an
extension of process functional to aspect process
functional paradigm. Aspect programming
methodology (integrating logic and imperative
programming) is more general than object oriented
approach [7,16,20] as well as multi-paradigmatic
approaches, such as concurrent constraint
programming [11,15], imperative functional
programming [13], and others.

The crucial role in aspect-oriented programming
languages play pointcut designators, which we
discuss in this paper, as used in AspectJ
programming language. The aim of this paper is to
provide a systematic but still informal overview of
pointcut designators as a basis to their formal
analysis in the future and an extension using process
functional paradigm.

14 Pointcut Designators in an Aspect Oriented Language

2. ASPECT PARADIGM AND ASPECT
LANGUAGE

The motivation for aspect-oriented programming
is the realization that there are issues or concerns
that are not well captured by traditional
programming methodologies.

For object-oriented programming languages, the
natural unit of modularity is the class. But in object-
oriented programming languages, crosscutting
concerns are not easily turned into classes precisely
because they cut across classes, and so these they
aren't reusable, they can't be refined or inherited,
they are spread through out the program in an
undisciplined way, in short, they are difficult to
work with.

Aspect-oriented programming is a way of
modularizing crosscutting concerns much like
object-oriented programming is a way of
modularizing common concerns.

AspectJ is an implementation of aspect-oriented
programming for Java. AspectJ adds to Java just one
a new concept, a join point, and a few new
constructs: pointcuts, advice, introduction and
aspects. Pointcuts and advice dynamically affect
program flow, and introduction statically affects a
program's class hierarchy.

A join point is a well-defined point in the
program flow. Pointcuts select certain join points
and values at those points. Advice defines code that
is executed when a pointcut is reached. These are,
then, the dynamic parts of AspectJ.

AspectJ also has a way of affecting a program
statically. Introduction is how AspectJ modifies a
program's static structure, namely, the members of
its classes and the relationship between classes.

The last new construct in AspectJ is the aspect.
Aspects, are AspectJ's unit of modularity for
crosscutting concerns They are defined in terms of
pointcuts, advice and introduction.

AspectJ advices are expressions (in most cases of
unit type) that are advised to be executed before,
after or instead other expressions code parts,
depending on pointcut designators.

Then AspectJ advice a would be expressed in
PFL style in the next form:

advice :: T1 T2 � Tm T
advice x x � x = e[x , x , � , x1 2 m 1 2

 (before | after | around)
m]

 p[x1, x2, � , xm]

which designates the set of constant expressions
e[x1, x2, � , xm] selected for join points
picked out by pointcut designator

p[x1, x2, � , xm]

This pointcut uses variables x1, x2, � , xm
which are substituted by the values (that usually
differ for different join points) and are used by
expression e[x1, x2, � , xm] � the advice.

The crucial role of pointcut designators is evident,
because after a join point and a set of values

[c1, c2, � , cm]

are selected, there is no problem to insert before or
after a join point or replace the expression forming a
join point (in case of around advice) by constant
expression which is obtained by the application

(x1 x2 � xm. e[x1, x2, � , xm])
 c1, c2, � , cm

performed in the compile time.

The detailed analysis of pointcut designators in
this paper is informal. We decided for this approach
for these reasons: Instead of detailed formal
semantics in the whole, AspectJ documentation is
oriented to explanation of many examples, which
sometimes make more blur than appropriate.
Although formal semantics is often available but just
for particular constructs, such as in [19], this is
insufficient for our purposes. Before we introduce
poincut designators (also called poincuts) we will
deal with join points as classified in AspectJ system.

3. JOIN POINTS

While aspects do define crosscutting types, the
AspectJ system does not allow completely arbitrary
crosscutting. Rather, aspects define types that cut
across principled points in a program's execution.
These principled points are called join points. A join
point is a well-defined point in the execution of a
program. The join points defined by AspectJ are:

Method call
When a method is called, not including super calls.

Method execution
When the body of code for an actual method
executes.

Constructor call
When an object is built and a constructor is called,
not including this or super constructor calls.

Constructor execution
When the body of code for an actual constructor
executes, after its this or super constructor call.

Initializer execution
When the non-static initializers of a class run.

Static initializer execution
When the static initializer for a class executes.

Object pre-initialization
Before the object initialization code for a particular
class runs. This encompasses the time between the
start of its first called constructor and the start of its
parent's constructor. Thus, the execution of these
join points encompass the join points from the code
found in this() and super() constructor calls.

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 15

Object initialization
When the object initialization code for a particular
class runs. This encompasses the time between the
return of its parent's constructor and the return of its
first called constructor. It includes all the dynamic
initializers and constructors used to create the object.

Field reference
When a non-final field is referenced.

Field assignment
When a field is assigned to.

Handler execution
When an exception handler executes.

4. BASIC PRIMITIVE POINTCUTS

Corresponding to join points introduced in
preceding section, AspectJ primitive pointcut
designators (primitive pointcuts) are classified as
follows:

Method and Constructor-related pointcuts
Object creation-related pointcuts
Class initialization-related pointcuts
Field-related pointcuts
Exception handler execution-related pointcuts

One very important property of a join point is its
signature, which is used by many of AspectJ's
pointcut designators to select particular join points.

Method-related pointcuts

AspectJ provides two primitive pointcut

designators designed to capture method call and
execution join points.

call(Signature)
execution(Signature)

At a method call join point, the Signature is
composed of the type used to access the method, the
name of the method, and the types of the called
method's formal parameters and return value (if
any).

At a method execution join point, the signature is
composed of the type defining the method, the name
of the method, and the types of the executing
method's formal parameters and return value (if
any).

Formally, Signature is the method pattern
MethodPat, in the form:

[ModifiersPat] TypePat [TypePat .]
IdPat (TypePat | .. , �)

[throws ThrowsPat]

ModifiersPat (modifiers pattern) may be a
keyword, such as private, public, or static.
Another wildcard ".." is used to designate any
number of type patterns, each TypePat is one of:

IdPat [+] [[] �]
! TypePat
TypePat && TypePat
TypePat || TypePat
(TypePat)

Here "+" denotes all subtypes and "[]" denotes

array patterns.
Further, operators "!", "&&", and "||" are

boolean operators not, and, and or, respectively.
In IdPat (the identifier pattern), the "*"

wildcard matches zero or more characters except for
".".

The second meaning of ".." wildcard is that it
matches any sequence of characters that start and
end with a ".", so it can be used to pick out all types
in any subpackage, or all inner types.

ThrowsPat is a name of an exception handler
being thrown when a method fails its execution
yielding an exception.

Both two pointcuts above also pick out constructor
call end execution join points.

Object creation-related pointcuts

AspectJ provides three primitive pointcut
designators designed to capture the initializer
execution join points of objects.

call(Signature)
execution(Signature)
initialization(Signature)

At a constructor call join point, the signature is
composed of the type of the object to be constructed
and the types of the called constructor's formal
parameters.

At a constructor execution join point, the
signature is composed of the type defining the
constructor and the types of the executing
constructor's formal parameters.

At an object initialization join point, the
signature is composed of the type being initialized
and the types of the formal parameters of the first
constructor entered during the initialization of this
type.

Formally, Signature is the constructor pattern
ConstructorPat, in the form:

[ModifiersPat] [TypePat .]
 new (TypePat | .. , �)

[throws ThrowsPat]

Class initialization-related pointcuts

AspectJ provides one primitive pointcut
designator to pick out static initializer execution join
points.

staticinitialization(TypePat)

16 Pointcut Designators in an Aspect Oriented Language

Field-related pointcuts

AspectJ provides two primitive pointcut

designators designed to capture field reference and
assignment join points:

get(Signature)
set(Signature)

At a field reference or assignment join point, the
Signature is composed of the type used to access or
assign to the field, the name of the field, and the type
of the field.

Formally, the Signature is the field pattern
FieldPat, in the form:

[ModifiersPat] TypePat [TypePat .]
IdPat

All set join points are treated as having one

argument, the value the field is being set to, so at a
set join point, that value can be accessed with an
args pointcut.

Exception handler execution-related
pointcuts

AspectJ provides one primitive pointcut

designator to capture execution of exception
handlers:

handler(TypePat)

At a handler execution join point, the signature is

composed of the exception type that the handler
handles.

All handler join points are treated as having one
argument, the value of the exception being handled,
so at a handler join point, that value can be accessed
with an args pointcut, introduced in the next
section.

Except pointcuts above, other primitive pointcuts

are provided, as introduced in the next section.

5. OTHER PRIMITIVE POINTCUTS

Other primitive pointcuts are as follows:

State-based pointcuts
Program text-based pointcuts
Dynamic property-based pointcuts

State-based pointcuts

Many concerns cut across the dynamic times

when an object of a particular type is executing,
being operated on, or being passed around. AspectJ
provides primitive pointcuts that capture join points
at these times. These pointcuts use the dynamic
types of their objects to discriminate, or pick out,

join points. They may also be used to expose to
advice the objects used for discrimination.

this(TypePat or Id)
target(TypePat or Id)

The this pointcut picks out all join points where
the currently executing object (the object bound to
this) is an instance of a particular type. The target
pointcut picks out all join points where the target
object (the object on which a method is called or a
field is accessed) is an instance of a particular type.

args(TypePat or Id or "..", ...)

The args pointcut picks out all join points where
the arguments are instances of some types. Each
element in the comma-separated list is one of three
things. If it is a type pattern, then the argument in
that position must be an instance of a type of the
type name. If it is an identifier, then the argument in
that position must be an instance of the type of the
identifier (or of any type if the identifier is typed to
Object). If it is the special wildcard "..", then any
number of arguments will match, just like in
signatures. So the pointcut

args(int, .., String)

will pick out all join points where the first argument
is an int and the last is a String.

Control flow-based pointcuts

Some concerns cut across the control flow of the
program. The cflow and cflowbelow primitive
pointcut designators capture join points based on
control flow.

cflow(Pointcut)

The cflow pointcut picks out all join points that
occur between the start and the end of each of the
pointcut's join points.

cflowbelow(Pointcut)

The cflowbelow pointcut picks out all join points
that occur between the start and the end of each of
the pointcut's join points, but not including the initial
join point of the control flow itself.

Program text-based pointcuts

While many concerns cut across the runtime
structure of the program, some must deal with the
actual lexical structure. AspectJ allows aspects to
pick out join points based on where their associated
code is defined.

within(TypePat)

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 17

The within pointcut picks out all join points
where the code executing is defined in the
declaration of one of the types in TypePat. This
includes the class initialization, object initialization,
and method and constructor execution join points for
the type, as well as any join points associated with
the statements and expressions of the type. It also
includes any join points that are associated with
code within any of the type's inner types.

withincode(Signature)

The withincode pointcut picks out all join points

where the code executing is defined in the
declaration of a particular method or constructor.
This includes the method or constructor execution
join point as well as any join points associated with
the statements and expressions of the method or
constructor. It also includes any join points that are
associated with code within any of the method or
constructor's local or anonymous types.

Dynamic property-based pointcuts

if(BooleanExpression)

The if pointcut picks out join points based on a

dynamic property. It's syntax takes an expression,
which must evaluate to a boolean true or false.
Within this expression, the thisJoinPoint
object is available. So one (extremely inefficient)
way of picking out all call join points would be to
use the pointcut

if(thisJoinPoint.getKind().equals("
call"))

6. FORMULAS ON POINTCUTS

Primitive (and also non-primitive pointcuts) are
combined using logical formulas, in the form as
follows.

! Pointcut
picks out all join points that are not picked out by
the pointcut.

Pointcut0 && Pointcut1
picks out all join points that are picked out by both
of the pointcuts.

Pointcut0 || Pointcut1
picks out all join points that are picked out by either
of the pointcuts.

(Pointcut)
picks out all join points that are picked out by the
parenthesized pointcut.

It can be noticed that boolean operators are used
to combined pointcuts, not type patterns, as it is in
type patterns.

7. POINTCUT NAMING AND USING

Pointcut naming

A named pointcut is defined with the
pointcut declaration.

pointcut PointcutId(Type Id, �):
Pointcut;

A named pointcut may be defined in either a class or
aspect, and is treated as a member of the class or
aspect where it is found. As a member, it may have
an access modifier such as public or private.

class C {
pointcut publicCall(int i):

call(public * *(int)) &&
args(i);

}

class D {
pointcut myPublicCall(int i):

C.publicCall(i) &&
within(SomeType);

}

Pointcuts that are not final may be declared
abstract, and defined without a body. Abstract
pointcuts may only be declared within abstract
aspects.

abstract aspect A {
abstract pointcut

publicCall(int i);
}

In such a case, an extending aspect may override the
abstract pointcut.

aspect B extends A {
pointcut publicCall(int i):

call(public Foo.m(int)) &&
args(i);

}

For completeness, a pointcut with a declaration may
be declared final.

Though named pointcut declarations appear
somewhat like method declarations, and can be
overridden in subaspects, they cannot be overloaded.
It is an error for two pointcuts to be named with the
same name in the same class or aspect declaration.
The scope of a named pointcut is the enclosing class
declaration. This is different than the scope of other
members; the scope of other members is the
enclosing class body.

Context exposure

Pointcuts have an interface; they expose some

parts of the execution context of the join points they
pick out. In this case formula Pointcut in

18 Pointcut Designators in an Aspect Oriented Language

pointcut declaration above exposes the arguments Id.
This context is exposed by providing typed formal
parameters to named pointcuts and advice, like the
formal parameters of a Java method. These formal
parameters are bound by name matching. On the
right-hand side of advice or pointcut declarations, a
regular Java identifier is allowed in certain pointcut
designators in place of a type or collection of types.
There are primitive pointcut designators available,
where this is allowed: this, target, and args.
In all such cases, using an identifier rather than a
type is as if the type selected was the type of the
formal parameter, so that the pointcut

pointcut intArg(int i): args(i);

picks out join points where an int is being passed
as an argument, but furthermore allows advice
access to that argument. Values can be exposed from
named pointcuts as well, so

pointcut publicCall(int x):
call(public *.*(int)) && intArg(x);

pointcut intArg(int i): args(i);

is a legal way to pick out all calls to public

methods accepting an int argument, and exposing
that argument.

There is one special case for this kind of
exposure. Exposing an argument of type Object will
also match primitive typed arguments, and expose a
"boxed" version of the primitive. So,

pointcut publicCall(): call(public

.(..)) && args(Object);

will pick out all unary methods that take, as their
only argument, subtypes of Object (i.e., not
primitive types like int), but

pointcut publicCall(Object o):

call(public *.*(..)) && args(o);

will pick out all unary methods that take any
argument: And if the argument was an int, then the
value passed to advice will be of type
java.lang.Integer.

Pointcut using

PointcutId(TypePattern or Id, ...)

picks out all join points that are picked out by the
user-defined pointcut designator named by
PointcutId.

8. EXAMPLES

The difference between call and execution join
points is as follows: Firstly, the lexical pointcut
declarations within and withincode match

differently. At a call join point, the enclosing code is
that of the call site. This means that

call(void m()) &&
withincode(void m())

will only capture directly recursive calls, for
example. At an execution join point, however, the
program is already executing the method, so the
enclosing code is the method itself:

execution(void m()) &&
withincode(void m())

is the same as

execution(void m())

Secondly, the call join point does not capture super
calls to non-static methods. This is because such
super calls are different in Java, since they don't
behave via dynamic dispatch like other calls to non-
static methods.

Next example illustrate the use of wildcard * and
modifiers.

call(public final void *.*() throws

ArrayOutOfBoundsException)

picks out all call join points to methods, regardless
of their name name or which class they are defined
on, so long as they take no arguments, return no
value, are both public and final, and are
declared to throw ArrayOutOfBounds
exceptions.

The defining type name, if not present, defaults
to *, so another way of writing that pointcut would
be

call(public final void *() throws

ArrayOutOfBoundsException)

Formal parameter lists can use the wildcard .. to
indicate zero or more arguments, so

execution(void m(..))
picks out execution join points for void methods
named m, of any number of arguments, while

execution(void m(.., int))
picks out execution join points for void methods
named m whose last parameter is of type int.

withincode(!public void foo())
picks out all join points associated with code in null
non-public void methods named foo, while

withincode(void foo())
picks out all join points associated with code in null
void methods named foo, regardless of access
modifier.

Acta Electrotechnica et Informatica No. 4, Vol. 4, 2004 19

call(int *())
picks out all call join points to int methods
regardless of name.

call(int get*())
picks out all call join points to int methods where
the method name starts with the characters "get".

call(Foo.new())
picks out all constructor call join points where an
instance of exactly type Foo is constructed,

call(Foo+.new())
picks out all constructor call join points where an
instance of any subtype of Foo (including Foo
itself) is constructed, and the unlikely

call(*Handler+.new())
picks out all constructor call join points where an
instance of any subtype of any type whose name
ends in "Handler" is constructed.

Object[] is an array type pattern, and so is
com.xerox..*[][], and so is Object+[].

staticinitialization(Foo || Bar)
picks out the static initializer execution join points
of either Foo or Bar, and

call((Foo+ && ! Foo).new(..))
picks out the constructor call join points when a
subtype of Foo, but not Foo itself, is constructed.

9. CONCLUSION

Except some inaccuracies in AspectJ definition,

such as the ability for use multiple modifiers such as
�public final� which does not correspond to
syntax in section 4, we may notice the ambiguity of
boolean operators (operands may be either type
patterns or pointcuts) the ambiguity of wildcard
�..� which designate any number of arguments but
also any sequence of qualifiers (A.. designate
A.B. A.B.C. etc.)

Using PFL we can exclude each initialization,
provided that we initialize object by default.

We are able to exclude field manipulation
poincuts set and get, because we manipulate
environment variables indirectly.

Instead of call and execution it would be
probably better to thing about an application as
a common pointcut.

Great simplification is omitting all modifiers,
such as public, private static, final, etc. that come out
from imperative organizing a memory cells. In fact,
static cells are just those associated with architecture
resources, but then static without exact memory
positions is still not sufficient.

Then, of course, it is substantial to deal with not
just user organization of his application but also with
time and space resources of computation. Hence,
defining physical time and space aspects of

computation may affect building embedded systems
in the future significantly. In particular, it is clear
that control flow poincuts are insufficient since of
the existence of the second mirroring principle in
computation which is data flow [17].

We are not sure, if it is possible to make the
combining of different pointcuts more clear. We just
recognize experimental basis as wrong. It was the
reason why we decided to give attention to pointcuts
in AspectJ as a basis for further detailed analysis and
extension, based however on process functional
language. Its uniform concept of modules,
polymorphic classes with multiple superclasses,
instances, objects as an application of classes to
expressions provide us with simple basis for
performing such a task. This however is the future.

REFERENCES

[1] Avdicausevic, E., Lenic, M., Mernik, M.,

Zumer, V.: AspectCOOL: An experiment in
design and implementation of aspect-oriented
language. ACM SIGPLAN not., December
2001, Vol. 36, No.12, pp. 84-94.

[2] Hudak, P.: Mutable abstract datatypes - or -
How to have your state and munge it too. Yale
University, Department of Computer Science,
Research Report YALEU/DCS/RR-914,
December 1992, revised May 1993.

[3] Kiczales, G. et al: An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327-
355, 2001.

[4] Kiczales, G. et al: Aspect-oriented
programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, 11th Europeen Conf.
Object-Oriented Programming, volume 1241 of
LNCS, pp. 220-242. Springer Verlag, 1997.

[5] Kollár, J.: Process Functional Programming,
Proc. ISM'99, Ro�nov pod Radho�t m, Czech
Republic, April 27-29, 1999, pp. 41-48.

[6] Kollár, J.: PFL Expressions for Imperative
Control Structures, Proc. Scient. Conf. CEI'99,
October 14-15, 1999, Her any, Slovakia, pp.
23-28.

[7] Kollár, J.: Object Modelling using Process
Functional Paradigm, Proc. ISM'2000, Ro�nov
pod Radho�t m, Czech Republic, May 2-4,
2000, pp. 203-208.

[8] Kollár, J., Václavík, P., Porubän, J.: The
Classification of Programming Environments,
Acta Universitatis Matthiae Belii, 2003, 10,
2003, pp. 51-64, ISBN 80-8055-662-8

[9] Mernik, M., Zumer, V.: Incremental language
design. IEE Proc. Soft. Eng., April-June 1998,
145, pp. 85-91.

[10] Mernik, M., Lenic, M., Avdicausevic, E.,
Zumer, V.: A reusable object-oriented approach
to formal specification of programming
languages. L�Objet, 1998, Vol.4, No.3, pp.
273-306.

20 Pointcut Designators in an Aspect Oriented Language

[11] Parali , M.: Mobile Agents Based on
Concurrent Constraint Programming, Joint
Modular Languages Conference, JMLC 2000,
September 6-8, 2000, Zurich, Switzerland. In:
Lecture Notes in Computer Science, 1897, pp.
62-75.

[12] Peyton Jones, S. L., Wadler, P.: Imperative
functional programming, In 20th Annual
Symposium on Principles of Programming
Languages, Charleston, South Carolina,
January 1993, pp. 71-84.

[13] Peyton Jones, S. L., Hughes, J. [editors]:
Report on the Programming Language Haskell
98 - A Non-strict, Purely Functional Language.
February 1999, 163 p.

[14] Porubän, J.: Profiling process functional
programs. Research report DCI FEII TU
Ko�ice, 2002, 51.pp, (in Slovak)

[15] Smolka, G.: The Oz programming model, In
Jan van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science
1000, Springer-Verlag, Berlin, 1995, pp. 324-
343.

[16] Václavík, P.: Abstract types and their
implementation in a process functional
programming language. Research report DCI
FEII TU Ko�ice, 2002, 48.pp, (in Slovak)

[17] Vokorokos, L.: Data flow computing model:
Application for parallel computer systems
diagnosis, Computing and Informatics, 20,
(2001), 411-428

[18] Wadler, P.: The essence of functional
programming, In 19th Annual Symposium on
Principles of Programming Languages, Santa
Fe, New Mexico, January 1992, draft, 23 pp.

[19] Wand, M.: A semantics for advice and dynamic
join points in aspect-oriented programming.
Lecture Notes in Computer Science, 2196:45-
57, 2001.

[20] Zumer, V., Korbar, N., Mernik, M.: Automatic
Implementation of Programming Languages
using Object Oriented Approach. Journal of
System Architecture, 1997, Vol.43, No.1-5, pp.
203-210.

BIOGRAPHY

Ján Kollár (Assoc. Prof.) was born in 1954. He
received his MSc. summa cum laude in 1978 and his
PhD. in Computing Science in 1991. In 1978-1981
he was with the Institute of Electrical Machines in
Ko�ice. In 1982-1991 he was with the Institute of
Computer Science at the University of P.J. �afárik in
Ko�ice. Since 1992 he is with the Department of
Computers and Informatics at the Technical
University of Ko�ice. In 1985 he spent 3 months in
the Joint Institute of Nuclear Research in Dubna,
Soviet Union. In 1990 he spent 2 month at the
Department of Computer Science at Reading
University, Great Britain. He was involved in the
research projects dealing with the real-time systems,
the design of (micro) programming languages,
image processing and remote sensing, the dataflow
systems, the educational systems, and the
implementation of functional programming
languages. Currently the subject of his research is
process functional paradigm and its extension to
aspect paradigm.

