
54 Acta Electrotechnica et Informatica  No. 4, Vol. 4, 2004 

 

THE ROLE OF INDUCTIVE INFERENCE IN THE DESIGN OF INTELLIGENT 
TUTORING SYSTEMS 

Ladislav SAMUELIS,  ubomír FA�IANOK 
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 
Technical University of Ko�ice, Slovak Republic, Letná 9, 042 00 Ko�ice, tel. 055/602 4313,  

E-mail: Ladislav.Samuelis@tuke.sk, Lubomir.Fasianok@tuke.sk

SUMMARY 
The ultimate goal of recent Intelligent Tutoring Systems (ITSs) is to personalize user interaction with online course 

material.  The aim of this contribution is to point out the role of the application of inductive inference based algorithms in the 
evolution of present ITS.  In particular it focuses on the utilization of a special simple (inductive inference) incremental 
algorithm and discusses its time-complexity features. Finally, it introduces correspondence (analogy) between the inductive 
inference by example concepts and the concepts of the Shareable Content Object Reference Model (SCORM). 
 
Keywords:  intelligent tutoring systems, inductive inference, programming by examples, SCORM 
 
 
1. INTRODUCTION 

 
The history of the ICAI (Intelligent Computer 

Assisted Instruction) is about 25 years old [1].  The 
history of the programming by examples (it is 
considered as a branch of the machine learning [8]) 
has approximately the same age [2]. It is obvious 
that the research results obtained in both branches 
influenced each other in the history. The 
applicability of the artificial intelligence (especially 
machine learning) tools in software engineering 
played important role in the short history of both 
sciences. This influence continues in the Internet era 
further.  

The aim of this contribution is twofold. On the 
one hand, we analyze the incremental algorithm 
introduced in the literature [4] and then evaluate its 
time complexity features. On the other hand, we try 
to raise the awareness of the applicability of already 
known techniques and concepts (of the 
programming by examples paradigm) in novel 
Internet based applications like ITSs.  

In order to achieve these goals, we introduce the 
role of the examples in the program synthesis 
paradigm and then we focus to the description of the 
time complexity features of a particular algorithm.  

At the end we sketch the analogy between the 
concepts of program synthesis by examples and the 
concepts of the SCORM standards specifications.  
 
2. PRINCIPLES OF PROGRAMMING BY 

EXAMPLES 
 

There are two main streams of automating the 
synthesis of programs: 
1. Synthesis of correct programs by formal 
specifications. The main feature of this approach is 
to generate correct programs by implementing 
correct transformations [6]. 
2. Synthesis of programs by examples. This means 
that the user knows a part of the behavior of the 
algorithm and the task is to construct program. From 

artificial intelligence point of view these algorithms 
belong to the inductive inference mechanisms. An 
overview of programming by examples is described 
in [2].  

There exist many areas when the demonstration 
is a suitable tool for automating tasks. E.g. paths of 
robots represent linear plan and the task is to 
construct program or the sequence of learning 
objects represent the progress of the student in the 
learning material and the task is to construct the 
navigation plan (learning by watching). The 
structures of the systems devoted to synthesis of 
programs by examples are similar to the structure of 
linguistic pattern recognition systems.  

In the next sections we demonstrate the 
interactive process between the students and the ITS 
on an example.  

The student has at disposal a set of conditions 
and operations. 
The student defines a trace using the conditions 
and instructions. This trace is stored for later 
processing. 
The system synthesizes the minimal possible 
program (i.e. a set of transitions and states), 
which coincide with the given trace.  
If the synthesized program does not correspond 
to the intended trace, it is possible to correct the 
trace and return back to the synthesis process 
again. 
 
The above-mentioned steps represent in fact 

rules and the task is to infer a grammar, which is a 
simplified method of machine learning. Question of 
correct interpretation of the system�s input in order 
to design appropriate hypothesis (or next step) is 
also called incremental learning. The roots of the 
incremental learning lie in the programming by 
examples topic, which were elaborated in years 1970 
and 1980 [2]. 

In the next paragraphs we describe formally the 
incremental algorithm, demonstrate its mechanism 



Acta Electrotechnica et Informatica  No. 4, Vol. 4, 2004 55 

on an example and then analyze its time complexity 
for the worst input.  

The aim of the synthesis is to construct a 
minimal final deterministic automaton with branches 
and loops, which are expressed as: 

1

2

1 2

2 3

c

c

I I

I I
 

where  1 2,I I  and 3I are the instructions of the trace  

and  and  represent the conditions for the 

execution of the respective instructions. In this 
model the program equals to the regular grammar: 

1c 2c

 

0( , , , )n tV V D I  

where 

nV  - is the set of program instructions (non terminal 

symbols) 

tV  - is set of conditions, which belong to the 

appropriate transitions between the program 
instructions (set of terminal symbols) 
D  - is set of rules, which does not contain 2 or more 
rules with the same left side 

0I  - is the start non terminal symbol 

 
The algorithm for building the model is 

summarized as follows. Let the symbol  be a set 
of available instructions, which are necessary for 
constructing the example. 

P

 

1 2{ , ,..., }KP I I I  

 
We introduce notation [ ]jI , for the set of equal 

instructions |1jI j K .  It is valid that  

 
[ ] {1 ,2 ,..., }j j j j jI I I X I  

 
where the integers in front of jI s are called labels. 

 
Let the overall number of jI s in the model equal 

to jI and the 
*

jI  is the actual number of 

jI . The number of the total instructions  in the 

model is:  

2c

j
1

|[I ]|
K

j

L  

where the number of various types of instructions is 
K . Because the value of the  is varying during 

the synthesis, we introduce the  for the actual 
value of . Then  

L
*L

L

* *
j

1

|[I ] |
K

j

L  

 

�Step� in the example is defined as a pair of 
. Different steps  may contain the same 

pairs, i.e. the same condition and same 

instruction 

( , )p qc I ( )l

pc

qI .  That is why we introduce the notion 

of  for the condition and the for the 

instruction in certain step l .  The will denote 

the label of the instruction . 

( )N l ( )O l

( )u l

( )O l

The principle of the program synthesis is in 
searching the value of , which will fulfill the 

following conditions: 

( )u l

1. The number of instructions  in the program is 
minimal and it is true that 

L
K L M , where 

M  is the maximum number of instructions of 
the example. 

2. If the M is the maximum number of instructions 
of the example, then during the synthesis it is 
necessary to assign a label to every 

instruction of the example and at the same 

time to achieve deterministic flow of control. I.e. 
for every step i  where i

( )u l

( )O l

l , and 
( 1) ( 1)O i O l , and ( 1) ( 1)u i u l

( ) ( )N i N l , then either  

a) ( ) ( )O l O i  and in this case it is possible to 

provide merging, i.e.  or ( ) ( )u l u i

b) the above-mentioned conditions are not true 
and ( ) ( )O l O i , then new node has to be 

created, i.e. for the respective 

instructions in and . This creation 

of the new node has to be done in order to 
secure the deterministic control of flow. 

( ) ( )u l u i

( )O i ( )O l

 
It is evident that when there does not exist a node 

in the model, which is merge able with the given
instruction in the example, then new node has to be 
created. 
 
3. EXAMPLE FOR THE INCREMENTAL 

ALGORITHM 
 
We will illustrate the mechanism of the 

incremental algorithm on the following example. Let 
the trace T be defined by a sequence of instructions 

1I , 1I , 2I  and HI . The last instruction HI  is 

executed, when the condition is fulfilled. 

Then we have  

( )NOT c

1 1 2 1{ , , , , , , , ( ), }HT I c I c I c I NOT c I

 
where 1I , 2I , and HI  are the instructions of the 

example and the c  symbol represents the condition. 
The implementation assumes that the example is 
given in advance. The processing (synthesis) is 
illustrated on the following graph. 

 



56 The Role of Inductive Inference in the Design of Intelligent Tutoring Systems 

a)  b)  c)  d)  e)  f) 
start   start  start   start  start   start 
  

 
 
 

1I1 1I1 1I1 1I1 1I1

 

 
 
                c                         c             c           c               c  
            
 
 
 

          c 

 
      g)     h) 

 
NOT(c) 

 
 

          c                                 c 
 
 
 
                c 
           c         c  
 
 

 
 

 
 
 
Explanation: 
 
a) The starting point of the program. 
b) The construction of the program begins with the 

11I  node because the first instruction of the 

example is 1I . 

c) The synthesis process continues with the second 

1I instruction and it tries to merge it with the 

already existing 11I  node. The already available 

11I  node is identical with the second instruction 

of the example and that is why the merge is 
successful. We have obtained a cycle. This 
partial model accepts infinite number of 
instructions of type 1I .  

d) The example�s third instruction is 2I , which is 

not represented in the partial model and that is 
why we have to modify the partial model. We 
modify it by adding a new node 12I  (we 

increased the label of the second instruction by 
backtracking). 

e) In the next step we try again to merge the 2I

example instruction with the existed (first) node 
in the model. This merge is unsuccessful. 

f) We try to merge again the same instruction in the 
example ( 2I ) with the second node ( 12I ) of the 

model but this is also unsuccessful (because 2I

is other type of instruction).  
g) Due to the unsuccessful merge we have to add a 

new node 21I . (This type of instruction was not 

included in the partial model as yet.) 
h) The next instruction of the example  ( 1I ) is 

merge able with the model 11I  node. The last 

instruction of the model ( HI ) is not yet in the 

model that is why it is necessary to create a new 
node 1 HI .  

 
It is evident, that during the construction of the 

final model, a new instruction of the example could 
completely modify the existing model.  

 
 
4. THE TIME COMPLEXITY OF THE 

INCREMENTAL ALGORITHM 
 

The time complexity is tightly coupled with the 
structure of the example. Let us investigate the worst 
case of the example from the time complexity of 
view. An example represents the �worst case�, when 
it is necessary to execute maximum number of 
backtrackings. From the construction of the 
algorithm it is evident that the more uninterruptible 

2I12I1 2I1

1I1

2I1

1I2

1I1

2I1

1I2

1IH



Acta Electrotechnica et Informatica  No. 4, Vol. 4, 2004 57 

identical steps contains the example, the more 
backtracking it is necessary to execute.  

The number of backtracking steps, which the 
above-mentioned incremental algorithm has to 
execute, is:  

1

( 1) ( 1)

2 2

n

i

i i n n
W  

where  denotes the longest sequence (in the 
example), which consists of identical steps (pair of 
condition, instruction). 

n

From the time complexity of view, the is the 
most relevant element. Investigating the relation 
between the length of the uninterruptible sequence 
(trace) and the number of backtrackings, we may 

express the element also with the following 

expression: 

2i

2

1

n

i

i

2 3 2

1

1 1 1
3 2

n

i

i n n 6 n

it means that time complexity of the worst-case 

example is polynomial . 3( )O n

This algorithm suffers from the flaw that the 
computing time is cubic for some inputs. This makes 
it impractical in any system, which is continuously 
receiving (identical) inputs over a long period of 
time. Reference [3] suggests a possible solution with 
the pre-processing of the trace. This could be subject 
for further investigation. 

Programming by examples gains attention from 
language constructs point of view too. E.g. in [5] the 
author designs language constructs for programming 
by examples.  

 
5. THE ROLE OF THE EXAMPLES IN 

INTELLIGENT TUTORING SYSTEMS 

Early researchers on the subject believed that we 
were on the threshold of computers that could teach. 
The major restraint was the need for faster, bigger 
computers. That need is almost met today.  Another 
restraint was the scope of artificial intelligence 
applications. 

Increased access to the Internet and greater 
bandwidth are both expected to increase the number 
of individuals moving into online learning. The first 
LMSs (Learning Management Systems) passively 
presented hypermedia materials (hypertext 
multimedia). At the present time the need for the 
personification forced the implementation of 
artificial intelligence algorithms. In other words, we 
can say that the implementation of the already 
established algorithms (dealt in the field AI or SW 
engineering) in new environments, created the 
abstraction of �intelligent tutoring systems�.  
Another stream of research is the standardization in 
the �provision of access to the highest quality 
education and training, tailored to individual needs, 
delivered cost effectively, anywhere and anytime� 

[7]. These efforts are aimed at the development of 
the �Shareable Content Object Reference Model� 
(SCORM), which defines a web-based learning 
�Content Aggregation model� and �Run-Time 
Environment� for learning objects. In the next 
paragraphs we sketch the analogy between the 
concepts incremental learning and the SCORM 
concepts. 

The SCORM Content Model describes the 
components used to build a learning experience from 
reusable learning resources. This model identifies 
three types of components and defines how these 
lower-level reusable learning resources may be 
aggregated into higher-level units of instruction. The 
three classes of components within the SCORM 
Content Model are:   

Assets: are texts, images, sound, media, web 
pages and assessments that can be delivered via a 
web client. 

Sharable Content Objects (SCOs): it is a 
collection of one or more assets that can be launched 
by and communicate with a LMS. 

Content Aggregation: is an organization of assets 
and SCOs into a cohesive unit of instruction.  

We can relate it also to a classroom example; 
(according to the [7]). The Content Model might be 
thought of as the classroom itself, containing assets 
and SCOs (books, maps, displays, teaching kits) that 
may be aggregated into lessons (content 
aggregations) by a skilled teacher. 

Sequencing and Navigation is information for the 
LMS telling it what to present to a learner, in what 
order and what navigation choices to offer. In this 
way SCORM supports the tracking of the learning 
activities. They can be, paced, assessed, or any of 
the other important things, which we can accomplish 
by using a SCORM conformant learning 
management system. 

To sum up, the implementation of the adaptivity 
feature into the LMSs is a mainstream in the e-
learning research.  The question is: �What and where 
is the role of the examples (or inductive inference 
algorithms) in the ITSs architecture?� Considering 
the recent developments in the standardization and 
the role of the examples in this context, we should 
derive the following conclusions from the above-
mentioned facts: 
 

1. Conditions c  of the input example could be 
replaced by the characteristics of the learning 
context. I.e. if a certain aggregation (course) 
consists of shareable content objects (modules), 
which consists of assets (chapters), then these 3 
features (elements) may define the conditions  
(or logical expression of conditions) of the input 
example. 

c

2. Instructions I of the example could be replaced 
in fact by the shareable content objects, which 
are referred to by hyperlinks in the course.   

The inductive inference mechanism is able to 
archive the �history� of the progress in condensed 
form. The obtained program represents the path of 



58 The Role of Inductive Inference in the Design of Intelligent Tutoring Systems 

 

the learner�s progress in the learning material and 
may be stored for further evaluation of the learning 
activities of the student. 

The synthesized model could be helpful also for 
the instructor (or facilitator), because it demonstrates 
the learning path of the student. It enables the 
instructor to analyze learner�s decisions. Of course 
the process may act vice-versa too. In that case the 
learner may study the thinking process of the 
instructor during the revision and marking processes 
of the students� work. The system AWS [9] could be 
helpful too. This system is able to generate 
information about visitor stereotypes � the user 
model, by the end of machine learning methods. The 
system was designed to suggest web pages to the   
user.  

 
6. CONCLUDING REMARKS 

 
This paper revisits the role of the examples in the 

design of intelligent tutoring systems. It provides 
formal description, analysis an example in detail and 
computes the time complexity of the worst example. 
Finally, it introduces the correspondence between 
the concepts of the incremental learning and the 
concepts used in the SCORM context. 

Recent years have witnessed significant progress 
in intelligent user interfaces.  It seems that the role 
of the examples is important in the human oriented 
subsystem of the ITSs. The issue remains: �How the 
learner can gain more insight into the 
knowledgebase interactively and help tailored to 
her/his personal needs?� 
 
REFERENCES 
 
[1]  Venezky, R.L., Osin, L.: The intelligent design 

of computer-assisted instruction. (New York: 
Longman, 1991). 

[2]  Maulsby, D., Turransky, A.: Watch what I do 
Watch What I Do: Programming by 
Demonstration edited by Allen Cypher, co-
edited by Daniel C. Halbert, David Kurlander, 
Henry Lieberman, David Maulsby, Brad A. 
Myers, and Alan Turransky, 1993, The MIT 
Press, Cambridge, Massachusetts, London, 
England 

[3]  Biermann, A.W., Baum, R.I, Petry, F.E.: 
Speeding up the synthesis of programs from 
traces. IEEE Trans. On Computers, Feb. 1975, 
pp.122-136 

 
 
 
 
 
 
 
 
 
 
 

[4]  Biermann, A.W., Krishnaswamy, R.: Construc-
ting Programs from example computations 
IEEE Trans. on Software Eng., Vol.SE-2, No.3, 
Sept.1976, pp.141-153 

[5] Rubin, V.R.: Language Constructs for 
Programming by Example, Proceedings of the 
third ACM-SIGOIS conference on Office 
automation systems, Providence, Rhode Island, 
United States, Pages: 92 � 103, Year of 
Publication: 1986, ISBN:0-897910210-1  

[6] Bjorner, D., editor: Abstract Software 
Specifications, volume 86 of Lecture Notes in 
Computer Science. Springer-Verlag, 1980. 

[7]  ADL SCORM Model. http://www.adlnet.org/
[8] Machová, K.: Machine Learning. Principles and 

Algorithms. Elfa, s.r.o., Ko�ice, 2002, 117, 
ISBN 80-89066-51-8 

[9] Machová, K., Klimko, I.: Application of 
Machine Learning for Solving Internet 
cognitive load. Proc. of the 2nd Slovakia-
Hungarian Symposium on Applied Machine 
Intelligence, Her any, Slovakia, 2004, 237-242, 
ISBN 963-7154-23-X 

 
 
BIOGRAPHY 
 
Ladislav Samuelis, Assistant Prof.: Obtained MSc. 
in Electrical Engineering at Prague Technical 
University (1975), and PhD. in Informatics at 
Budapest University of Technology (1990). Has 
been engaged in research into the automatic program 
synthesis at the Institute of Computer Technology at 
the Technical University of Ko�ice, Slovakia. Since 
1998 affiliated with the Dept. of Computers and 
Informatics, Faculty of Electrical Engineering and 
Informatics, taught Operating systems, 
Database systems, Computer Networks and Java. 
Currently is now involved in research of intelligent 
tutoring systems.  
 
 

ubomír Fa�ianok, PhD. student: Obtained MSc. in 
Informatics and Management at Technical 
University of Ko�ice (2001). Since 2001 is PhD. 
student at the Department of Computers and 
Informatics at the Technical University of Ko�ice. 
Currently is involved in research of tutoring systems 
and computer aided eLearning systems design with 
orientation to the special pattern and template based 
techniques.  
 


