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SUMMARY 
Formal methods are often used for programming language description as they can specify syntax and semantics precisely 

and unambiguously. However, their popularity is offset by the poor reusability and extendibility when applied to non-toy 
programming language design. One cause of this problem is that classical formal methods lack modularity. Meanwhile there 
are always needs for informal constructs for semantic analysis, and there is no simple and precise way to specify informal 
constructs by formal specification, which makes the formal specification too complicated to understand. To address the 
aforementioned problems with modern software engineering technology, we conbine object-oriented Two-Level Grammar 
with Java to modularize language components and apply design patterns to achieve the modularity and implement the 
informal constructs in a proper way. 
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1. INTRODUCTION 
 

The advantages of using formal methods for 
programming language definition are well known as 
they can be used to specify syntax and semantics in 
a precise and unambiguous manner and offer the 
possibility of automatically constructing compilers 
or interpreters [1]. However, despite obvious 
advantages, most widely used formal methods such 
as attribute grammars, axiomatic semantics, 
operational semantics and denotational semantics [2] 
are yet to gain popularity and wide application due 
to the poor readability, reusability and extendibility 
[3]. There are several factors for this, and the 
following two are most critical: 

 
Traditional formal specification for language 
implementation lacks modularity [3]. The 
different phases of interpreter or compiler 
implementation (e.g. lexical analysis, syntax 
analysis and semantics analysis) are always 
tangled together, and the specification for real 
programming languages is always very large 
and complex. However, the traditional formal 
methods lack mechanisms to encapsulate the 
language components for tight cohesion inside 
a module and loose coupling between modules. 

 
Formal specification for language 
implementation lacks abstraction. The 
semantics of a programming language are 
diverse, which hinders specification by pure 
formal methods. Many mathematics-based 
formal specifications do not provide a strong 
library mechanism and I/O capabilities, which 
make them quite complicated to address low-
level semantics implementation and hard for 
user comprehension, therefore the specification 
is hard to be reused even though they are well 
modularized. On the other hand, the general 
purpose programming languages (GPL) such as 

Java offer an abundant library of classes and 
can be directly used with ease. 

 
In order to address these two issues by providing 

more readability, extendibility and reusability for 
programming language specifications, we apply 
object-oriented technology and design patterns [4] 
on formal specifications and GPL Java to design a 
framework for automatic parser generation and 
semantics implementation.  

In this framework, we use Two-Level Grammar 
(TLG) [5] as an object-oriented formal method to 
properly encapsulate the entwining lexical/syntax 
rules and abstract semantics of each grammar 
symbol into a class, and use Java, a GPL, to address 
the semantics implementation details and obtain the 
interpreter for the desired language. Therefore, we 
maximize the automatic code generation capacity of 
formal specification to precisely specify syntax and 
semantics, and utilize the massive library of classes 
in programming languages such as Java to avoid 
overly complicated use of formal methods. As a 
result, reuse or extending the language can be easily 
achieved by rewriting or extending the terminal 
symbol classes. 

The reminder of this paper is structured as 
follows. Section 2 introduces TLG specification and 
the concepts of abstract semantics and concrete 
semantics. Section 3 presents the overview of the 
whole framework and some of its salient features. 
Section 4 details the object-oriented design of 
language implementation in this framework 
regarding the interpreter pattern [4]. Section 5 
presents how we use the chain-of-responsibility 
pattern [4] to separate the formal and informal 
concerns in semantics analysis and section 6 
demonstrates in depth how readability, extendibility 
and reusability are obtained with our approach. 
Section 7 describes the related work. We conclude 
and suggest future research in section 8. 
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2. BACKGROUND KNOWLEDGE 
 
2.1  Two-Level grammar specification 
 

TLG (also called W-grammar) was originally 
developed as a specification language for 
programming language syntax and semantics and 
was used to completely specify ALGOL 68 [6]. It 
has been shown that TLG may be used as an object-
oriented formal specification language to be 
translated into existing GPLs [7]. The name �two-
level� comes from the fact that TLG contains two 
context-free grammars corresponding to the set of 
type domains and the set of function definitions 
operating on those domains respectively. The syntax 
of TLG class definitions is: 

 

class Identifier-1. 
 [extends Identifier-2, �, Identifier-n].  
 {meta rule and hyper rule declarations}  
end class. 

 
Identifier-1 is declared to be a class which may 
inherit from classes Identifier-2, �, Identifier-n.  

The type domain declarations (also called meta 
rules) have the following form: 

 

Id1, ..., Id-m :: DataType1; �; DataType-n. 

 
which means that the union of DataType-1, 
�,DataType-n forms the type definition of Id1, �, 
Id-m. 

The function definitions (also known as hyper 
rules) have the following forms: 

 

function-signature: 
 function-call-11, �, function-call-1j; 
 �; 
 function-call-n1, �, function-call-nj. 

 
The function body on the right side of �:� 

specifies the rules of the left hand side function 
signature. Symbol �;� is used in the right hand side to 
delimit multiple rules which share the same function 
signature on the left hand side. For more details on 
the TLG specification language see [5]. 

In this framework, we rewrite the TLG keyword 
class as terminal and nonterminal, and use the 
following TLG notations for different constructs in 
the class for each grammar symbol:  

Meta-level keyword Lexeme for lexical rules  
Meta-level keyword Syntax for syntax rules
Hyper-level keyword semantics for semantics 

 
2.2  Abstract semantics and concrete semantics 
 

One distinguishing feature of our approach is 
that we separate abstract semantics and concrete 
semantics in compiler design, using formal 
specification and GPL to handle them respectively. 

In this paper, abstract semantics refers to the 
semantics of a nonterminal that are used to describe 
the composition of this nonterminal by other 
grammar symbols. This kind of semantics can be 
easily specified by formal specification such as 
TLG. For example, if a program is composed by 
declarations and statements, then the semantics for 
program can be specified in TLG as: 
 

nonterminal Program. 
//Syntax definition 
semantics :  

Declarations,  
        Statements. 
end nonterminal. 

 
which means that the semantics of Program is 
simply composed by the semantics of Declarations 
and Statements. 

On the other hand, concrete semantics refers to 
those for which the implementation is very low-level 
or operating system related, such as the calculation 
of two complex objects (e.g. two matrices) or any 
I/O operation. Such semantics is difficult to be 
specified by formal methods and can make 
specification quite complex and low-level. However, 
this semantics is easier to be implemented by GPL 
directly. So our goal is to separate the abstract 
semantics with concrete semantics and to have them 
specified and implemented by TLG and Java, 
respectively. We will elaborate this in the following 
sections. 
 
3. OVERVIEW 
 

Figure 1 provides the control flow of 
programming language implementation in this 
framework. Tools are shown in ellipses. Shaded 
boxes contain generated code. Arrows denote 
control flow. To describe a language, the user 
specifies the lexical, syntactic rules and abstract  
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Fig. 1  Language implementation overview 
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semantics for each grammar symbol (terminal or 
nonterminal symbol) with a single TLG class. The 
framework takes the TLG class file as input, and 
extracts lexical rules and syntax rules, which will be 
compiled by the lexer generator JLex [8] and parser 
generator CUP [9], respectively, to generate the 
corresponding lexer and parser in Java, respectively. 
Meanwhile, Java classes and interfaces for 
nonterminals are generated and class structures 
(class names, method signatures, etc.) for terminals 
are generated into two separated files. Users can 
later add Java code for concrete semantics analysis 
into the second file, which is the only file users need 
to manage in the programming language level. Once 
the lexer, parser and semantics in Java are compiled 
together (using javac), an interpreter in Java byte 
code is produced. The relationship among lexer, 
parser and semantics Java classes is as follows: the 
parser takes tokens produced by the lexer as input, 
creates semantic objects of Java classes, and builds 
Abstract Syntax Tree (AST) by calling the 
construction methods of these objects. 

4. OBJECT-ORIENTED MODULARIZATION 

 
Fig. 2  The context-free grammar of Sam 

 
To design the TLG specification in this 

framework, we apply the interpreter pattern [4], 
treating each grammar symbol as a class. For 
illustrative purposes, we will explore how the 
framework models grammars based on a sample 
language named Sam, which is a very simple 
language for specifying computations involving 
integer arithmetic only. Figure 2 is the context-free 
grammar of the Sam language. Symbols in bold 
stand for terminals, in which quoted strings and 
characters stand for keywords/meta-
symbols/operators, integer and id stand for integer 
values and identifiers, respectively. The other 
symbols are nonterminals. 

Nonterminal symbol classes: Each nonterminal 
symbol must have an associated class. For each 
production rule in the form of R ::= R1 R2 ... Rn, we 
create a class for the left-hand-side (LHS) 
nonterminal R, and specify the syntax rule using the 

TLG keyword Syntax followed by the right-hand-
side (RHS) of the production R1 R2 ... Rn. The syntax 
will not only help direct the grammar specification 
in CUP but also generate constructor methods of 
each Java class to store the instance variables of R1 
R2 ... Rn. For example, the TLG class for nonterminal 
Binary_expression: 
 

nonterminal Binary_expression. 
Syntax :: Expression1 Binary_operator 

Expression2.  
//semantics analysis 

end nonterminal. 

 
will generate the following constructor in the Java 
class: 
 
class Binary_expression{ 

Expression expression1; 
Binary_operator binary_operator; 
Expression expression2; 

  
Binary_expression(  

Expression expression1,  
Binary_operator binary_operator,  
Expression expression2){ program ::= declaration-list statement-list 

declaration-list ::= declaration | declaration-list declaration 
declaration ::= id �=� integer-list �;� 
integer-list ::= integer �,� integer-list | integer  
statement-list ::= statement-list | statement-list statement �;� 
statement ::= assignment-statement | print-statement 
assignment-statement ::= id �:=� expression 
print-statement ::= �print� expression 
expression ::= term | binary-expression | unary-expression 
binary-expression ::= expression binary-operator expression 
unary-expression ::= unary-operator term 
term ::= id | integer | parentheses-expression 
parentheses-expression ::= �(� expression �)� 
binary-operator ::= �+� | �-� | �*� | �/�  
unary-operator ::= �+� | �-�  

this. expression1=expression1; 
this. binary_operator = binary_operator; 
this. expression2=expression2; 

} 
//semantic analysis 

} 
 
The semantics of R is represented by the keyword 
semantics, followed by the semantics operations of 
R1 R2 ... Rn, and in the generated Java code, 
semantics implementation is obtained by applying 
method semantics() iteratively on the instance 
variables representing R1 R2 ... Rn  For example, the 
semantics for nonterminal program in Sam will be 
composed by the semantics of nonterminal 
declaration-list and statement-list. However, the 
nonterminals can directly delegate the 
responsibilities of implementing concrete semantics 
to terminals as well, as described in the next secion. 

Notice that if a nonterminal is the LHS of several 
different productions, then all the corresponding 
productions should be unit productions [10], i.e. 
only one RHS variable in the production (if there 
exists a non-unit production for this nonterminal, we 
can easily eliminate it by rewriting the original 
grammar). We make the LHS variable as a super 
class (i.e. interface in Java), with each RHS variable 
as its subclass. Since interfaces can�t be initialized in 
Java, all the semantics of this super class will be 
completely implemented by its subclasses. This 
technique reduces the number of the generated AST 
nodes and provides a proper level of abstraction for 
those LHS nonterminals, as illurstrated in Figure 3, 
where the AST of a print statement �print a� is 
presented with shaded boxes represent the actual 
AST nodes. 
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Fig. 3  The AST for a print statement 

 
Terminal symbol classes: Each terminal symbol in 
a grammar may have its own class. The lexical rule 
for each terminal is defined in its own class using 
keyword Lexeme followed by the quoted regular 
expression of the symbol. However, to avoid 
creating too many terminal classes, we can only 
specify the lexeme of those non-trivial tokens using 
a class. Here non-trivial tokens refer to the 
semantics-related tokens such as Identifier, Integer, 
Operator, etc. Trivial tokens are those that have no 
significant semantics contributions, such as meta-
symbols, whose lexeme can be specified in the 
syntax of its parent class. The semantics interface 
associated with terminal symbols is also introduced 
in the terminal class followed by hyper-level 
keyword semantics. A corresponding Java class 
interface is generated, into which user can add 
concrete Java code directly. For example, the binary 
operator �+� in Sam will have the following TLG 
class: 
 

terminal PLUS. 
Lexeme :: �+�. 
semantics with Expression1 and Expression2. 

end terminal. 

Notes: The generated Java class of this TLG class 
will contain an interface of a method for concrete 
semantics implementation in Java, with Expression1 
and Expression2 as parameters (their types are both 
Expression). 

 
The use of the interpreter pattern has the 

following two benefits: firstly, it is easy to change 
and extend the grammar. As each grammar is 
composed by a number of terminals and 
nonterminals, the designer can always modify the 
grammar by class manipulation or extend the 
grammar using inheritance. Secondly, implementing 
the grammar becomes much easier. In our 
specification, each AST node is represented by a 
TLG class. The semantics part is easy to write node 
by node and the generation of the corresponding 
Java objects can be automated with a parser 
generator, such as CUP. Besides the above two 
benefits, we also make some adaptation on the basis 
of the sample approach introduced in [4]: first, 
instead of using recursive-descent parsing [10], we 
reuse the lexer and parser generator components 
JLex and CUP to generate a bottom-up parser, and 

then traverse the generated abstract syntax tree to 
implement semantics. Thus we leverage the LALR 
(1) parsing power of bottom-up parsing and the 
natural traversal property of top-down semantic 
analysis. Secondly, we create classes for 
nonterminals and terminals in contrast to the 
approach in [4] of creating classes for productions. 
Therefore, we can delegate concrete semantics of 
the nonterminals to terminal classes to separate the 
formal and informal concerns of semantic analysis 
and we only need to add Java code to terminal 
classes, which is in a separated file. This actually 
solves the major drawback for the interpreter 
pattern, namely that too many classes are to be 
managed by the user. 

expression

term

id(a)

print-statement

print

 

 
5. SEPARATION OF FORMAL AND 

INFORMAL SEMANTICS 
 

As described before, the Java codes generated 
from TLG can be used to build the AST by the calls 
to the constructor methods. This tree is built during 
parsing and the calls to constructors are embedded 
as the action codes [9] following each production of 
the CUP file. For instance, the production and action 
code for print-statement in CUP is as below: 

 
.... 
print_statement ::= 

PRINT : PRINT expression : expression  
{:  

RESULT = new  
Print_statement (PRINT , expression);  

:}; 
... 

 
In some interpreter generation approaches such as

SableCC [11] and JJForester [12], once the AST is 
built, semantic actions will be added to every AST 
node and the interpreter or compiler is implemented 
by iterative traversal of this tree. However, this kind 
of method tangles the abstract semantics and 
concrete semantics together and breaks the formal 
property of the AST. As a result, the syntax 
grammar is bounded by embedding the semantic 
actions and hard to be extended or reused. 

Another drawback of the traditional method is 
that the formal specification of those concrete 
semantics is very low-level and hard to read. For 
example, in a grammar production for doing I/O 
operations, the specification should be used to 
implement the input or output with the environment, 
which is operating system related; in an expression 
for addition calculation, specification may be used to 
deal with calculating the sum of two expression 
values. It is not hard for a formal specification to 
handle addition of two integers, however, the 
specification will be quite complicated when facing 
the addition of two matrices unless some additional 
functions are pre-defined in the formal specification 
on demand. This hampers the designer in reusing 
any implementation components of an existing 
language as they are bounded by low-level domain-
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related details. For example, the designer of a 
matrices calculator can take no benefits from the 
existing implementation of an integer calculator 
although they share quite a few syntax productions.  

In order to address these problems, we apply the 
chain of responsibility design pattern [4] in the AST 
to recursively throw the responsibilities of 
implementing concrete semantics from the upper 
nodes to the lower nodes, until they reach the leaf 
nodes, i.e., nodes for terminal symbols. The 
applicability of this delegation method is explored 
below. Given a program written in a certain 
language, each concrete semantics operation is 
actually represented and distinguished from each 
other by at least one terminal symbol. For example, 
an I/O operation is indicated by terminal �print� and 
a requirement of addition is expressed by terminal 
�+�. Since each semantic action is represented by a 
terminal such as �print� or �+�, it is applicable for 
the concrete semantics operating on nonterminal 
nodes to finally find a terminal node to delegate the 
analysis responsibility. Even if no such terminal 
node can be found or the path between the 
nonterminal node and the terminal node is too long, 
we can introduce a dummy terminal, which has no 
lexeme at all and is only used to delegate the 
concrete semantics. This idea is actually similar to 
the well know mechanism of inserting markers in 
the attribute grammar [10]. 

 

Figure 4 is the partial UML diagram of the 
generated Java classes. Since we separated the 
concrete semantics with abstract semantics, we keep 
all the middle nodes (nodes for nonterminals) 
abstract and formal, and leave the concrete and 
informal semantics implementation to terminal 
nodes. For example, the TLG classes for 

nonterminal print-statement and terminal �print� in 
Sam can be as following: 
 

nonterminal print_statement. 
Syntax :: PRINT Expression. 
semantics : PRINT with Expression. 

end nonterminal. 

Notes: nonterminal print-statement delegates the 
concrete semantics to terminal PRINT with 
Expression as the parameter. 
 

terminal PRINT. 
Lexeme :: �print�. 
semantics with Expression. 

end terminal. 

Notes: The generated Java class of this TLG class 
will contain an interface of a method for concrete 
semantics implementation in Java, with Expression 
as the parameter of the method. 
 

Now the user only needs to add concrete 
semantics into all the generated terminal classes 
(represented by gray boxes in Figure 4), using the 
full-featured operation library of Java. Continuing 
with the above example, the completed Java class 
for PRINT is: 

 

class PRINT{ 
public void semantics(Expression expression){ 
   System.out.println( 

Print_statement 

semantics() 

Expression 

semantics() 

Print 

semantics() 

Term 

semantics() 

Binary_expression 

semantics() 

Plus 

semantics() 

Integer 

semantics() 

Parentheses_expression 

semantics() 

Minus 

semantics() 

Binary_operator

semantics() 

((Integer)expression).intValue()); 
} 

}
 

If we want to modify the language to make it 
handle matrix computation instead of integer 
computation, we need to make some adaptation to 
the semantics since there are different calculation 
methods and I/O strategies applied to integers and 
matrices. In our approach, we only need to rewrite 
the terminal Java classes to achieve this adaptation. 
As in Figure 4, we only need to rewrite the Java 
classes of leaf nodes represented by the gray-boxes, 
e.g. Print, Integer and Plus with the middle nodes 
intact. In the case of terminal class Print, the new 
semantics class could be as below: 
 
class PRINT{ 

public void semantics(Expression expression){ 
   DecimalFormat fmt =  

new DecimalFormat ("0.##"); 
System.out.println(); 
for(int i=0;i<matrix.getRowNum();i++){ Fig. 4  Partial UML diagram of the generated 

Java classes for(intj=0;j<matrix.getColumnNum();j++){ 
System.out.print(fmt.format( 
matrix.getFloat(i,j).floatValue())+"   \t"); 

} 
System.out.println(); 

}  
System.out.println(); 

} 
}
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In our real implementation of this language, we 
utilized lots of existing Java APIs, such as ArrayList 
to store the matrix value and we used Java applets 
for polished output of the matrices.  

 
6. SIGNIFICANCE 

 
With the help of T-Clipse [13], which is an 

Integrated Development Environment (IDE) for two-
level grammar based on the Eclipse framework [14], 
we have developed an interpreter for the Sam 
language. Then we reused the Sam specification to 
quickly develop a language called BasicM for matrix 
calculation, as well as reusing the interpreter for 
Sam to build an interpreter for BasicM. Our 
experience in developing these two languages show 
that our approach does improve the readability, 
extendibility and reusability, as described below: 

 
Readability. The TLG classes embrace a one 
to one mapping with grammar symbols (except 
the punctuation such as comma or semicolon). 
Each grammar symbol�s lexical/syntax rules 
and semantics are all defined in the same class, 
which is easy to read. In the TLG level, we 
only specify the abstract semantics in TLG 
classes, which makes the formal specification 
concise; in the Java code level, the user only 
needs to manage the file that contains terminal 
Java classes. This reflects the separation of 
concerns principle in software engineering.  

 

Extendibility. Adding another output operation 
in this language (e.g. output to a window 
instead of the console) can be achieved by 
make the terminal PRINT as a nonterminal, i.e. 
make it abstract, and let two new terminal 
classes named GUIPRINT and BASICPRINT to 
extend PRINT as in Figure 5. Terminal 
BASICPRINT can reuse the semantics 
component for original terminal PRINT. In this 
manner, to extend the output statements, user 
only needs to write a semantics class for 
terminal GUIPRINT. 

 
Reusability. Swithing the domain of 
expressions from integer calculation to matrix 
calculation can be achieved as below. A new 
grammar symbol Matrix is created, which is 

composed by some nonterminals and terminals, 
and replace the Integer class in the TLG level 
to regenerate the lexer, parser and abstract 
semantics (nonterminal Java classes) for the 
new language. To maximize the reuse of the 
concrete semantics components, only the Java 
classes of new terminals are automatically 
regenerated, while the Java classes of existing 
terminals are changed manually, which is the 
same approach used in JavaCC when 
regerating AST node classes[15]. 

 
7. RELATED WORK 
 

Many researchers are working on object-oriented 
modular specifications from which compilers or 
interpreters can be automatically produced. Java 
Comiler Compiler (JavaCC) [15] is a Java parser 
generator written in the Java programming language. 
JavaCC integrates lexical and grammar 
specifications into one file to make specification 
easier to read and maintain. Combined with tree 
generators such as JJTree [16] or Java Tree Builder 
[17], it can be used to generate object-oriented 
interpreter/compilers. JavaCC (together with the tree 
generator) use the Visitor pattern [4] for tree 
traversal. However, JavaCC cannot handle left 
recursive grammars since it only generates 
recursive-descent parsers, which are less expressive 
than LALR(1) parsers. Another drawback of JavaCC 
is that the Visitor pattern is only applicable when the 
grammar is rarely changed because changing the 
grammar requires redefining the interface to all 
visitors, which is potentially costly [4]. This 
provides bad reusability for the specifications. 

The ASF+SDF Meta-Environment [18] is an 
environment for the development of language 
definitions and tools. It combines the syntax 
definition formalism SDF with the term rewriting 
language ASF. SDF is supported with Generalized 
LR (GLR) parsing technology. ASF is a rather pure 
executable specification language that allows rewrite 
rules to be written in concrete syntax. However, 
though ASF is good for the prototyping of language 
processing systems, it lacks some features to build 
mature implementations. For instance, ASF does not 
come with a strong library mechanism, I/O 
capabilities, or support for generic term traversal 
[12]. As a major step to alleviate these drawbacks, 
JJForester [12] was implemented, which combined 
SDF with the general purpose programming 
language Java. However, again, it has the same 
drawback as JavaCC as it uses the Visitor pattern for 
tree traversal.  

The LISA system [19] is a tool for automatic 
language implementation in Java. LISA uses well-
known formal methods, such as regular expressions 
and BNF for lexical and syntax analysis, and use 
attribute grammar to define semantics. LISA 
provides reusability and extendibility by integrating 
the key concepts of object-oriented programming, 
i.e. templates, multiple inheritance, and object-
oriented implementation of semantic domains [3].  

PRINT 

semantics()

BASICPRINT 

semantics() 

GUIPRINT 

semantics() 
 

Fig. 5  Extend the output function of Sam
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Our major distinction with all the above research 
is as follows:  

As we use TLG to encapsulate the lexical, 
syntactic rules and semantics of each grammar 
symbol in a single class based on an object-
oriented manner, we provide good 
modularization for grammar components 
making them easily extendible and reusable.  

 
We successfully separate the formal concerns 
and informal concerns in language 
implementation, and combine the feature of 
automatic code generation from formal 
specification with the massive library of classes 
in Java, to precisely specify syntax and 
semantics and minimize complexity in the use 
of formal methods. 

 
We separate the parsing from semantics 
analysis, realizing bottom-up parsing and top-
down semantics analysis. The LALR(1) [10] 
parsing power and the natural property of 
recursive descent semantics analysis are 
combined together. 

 
An additional benefit in our approach which is not 

discussed in this paper is the TLG specification�s 
strong computation power compared to other formal 
methods [20], e.g. TLG can specify the semantics of 
a loop statement in programming languages while 
attribute grammar cannot.  

 
8. CONCLUSION & FUTURE WORK 

 
In this paper, with an aim to provide good 

modularization and abstraction for formal 
specification in programming language description, 
Two-Level Grammar is introduced as an object-
oriented formal specification language for modeling 
language components and constructs. Some software 
design patterns are also applied to help with the 
organization of the TLG classes and separate the 
informal concerns from formal concerns in language 
implementation. Therefore, we provide good 
modularity, readability, reusability and extendibility 
for TLG specification while leveraging mature 
programming language technology such as Java, 
thereby achieving our research objectives. 
Therefore, our approach offers a means to take 
advantage of the synergy between formal methods 
and general programming languages. The benefits of 
using our approach have been demonstrated by a 
sample language.  

Besides the interpreter pattern and chain-of-
responsibility pattern we described in the paper, 
there are other possible patterns that could be 
applied in this framework For example, the 
generated AST is actually an instance of the 
Composite pattern [4], with the terminal classes as 
leaf, and the nonterminal classes as composite. 
Another pattern we are interested to use in the future 
is Mediator pattern [4]. Once the grammar becomes 
large, it is quite common that non-local dependency 

[21] will appear, which means that the semantics of 
one AST node is dependent on another node which 
is contained in another sub-tree, such as the name 
analysis problem where properties of an identifier 
use site depends on properties of an identifier 
declaration site. Attribute grammar uses a 
propagating method to deliver related attributes 
through the path of linked nodes. This is obviously 
inefficient and Hedin has listed four drawbacks of 
this kind of approach in [22]. Our current practice is 
to forward the reference of one object to the others 
by the common ancestor of two node objects, which 
is similar to Hedin�s reference attribute grammar. 
However, our strategy is still not as efficient as 
desired and complicates the formal specification 
somewhat. We found that the Mediator pattern is 
well suited to solve this problem as its applicability 
is to the situation when a set of objects have to 
communicate in complex ways and the 
interdependencies are unstructured and difficult to 
understand. So, for AST nodes that need to 
communicate to other ones far away, we could 
create a mediator for them to communicate with. 
The major challenge is it is hard to design an 
algorithm for dynamically creating mediators for 
objects, since the AST is only built dynamically 
during parsing. We are still working on this. 
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