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SUMMARY 
In this paper we report a new approach to design of conventional microstatistic filters (CMF). This approach is based on 

the idea of describing the threshold decomposition operator by means of piecewise-linear functions. In particular we show 
that modification of the conventional mathematical model of the CMF yield a digital filters that can be considered to be a 
subset of the canonical piecewise-linear (CPWL) filters. 
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1. INTRODUCTION 
 

In this paper, new approach to design of CMF 
based on threshold decomposition operator 
expressed by means of piecewise-linear functions is 
shown. The aim of this approach is to compare the 
relationship between CMF and CPWL filters. In 
order to do this, the mathematical model of threshold 
decomposition, used as a segmentation operator in 
the CMF structure, is replaced by the piecewise-
linear model � generally used for design of 
piecewise-linear (PWL) filters. 

Two approaches of piecewise-linear signal 
modeling are examined here. 

First approach � based on PWL filtering, 
approximate the nonlinear model by a locally linear 
functions defined on a partition of the domain into 
small subregions [4]. 

Another approach � based on microstatistic 
digital filtering, use threshold decomposition of the 
real valued discrete-time input signal to create a 
piecewise-linear signal model [1, 2, 3]. 

In section 2, a mathematical model of the 
canonical PWL filters is described. Next section 
introduces CMFs along with a multilevel threshold 
decomposition framework for the processing of real-
valued signals. In section 4, a new representation of 
the threshold decomposition in the field of 
microstatistic digital filtering is presented. A 
comparison between the PWL and modified CMF 
approaches is given in section 5. Finally, in the 
conclusion some topics for the further research 
concerning microstatistic digital filtering are 
indicated. 
 
2. PWL FILTERS APPROACH 
 

Nonlinear system description based on 
piecewise-linear functions is a well-developed 
theory with a varied number of applications in signal 
processing [5]. It is tempting to draw upon linear 
signal processing theory, which is broad in 
application and mature in development, to devise 
non-optimal but practical solutions to nonlinear 
signal processing problems. Many such solutions 

rely on piecewise-linear models of a nonlinear 
signal. 

PWL filters are nonlinear digital filters based on 
the approximation of nonlinear systems by 
piecewise-linear functions. They assume that the 
nonlinear operator can be represented as the union of 
multidimensional linear surfaces [4]. Their 
attractiveness comes from the fact that compared to 
the Volterra or neural network approaches, PWL 
filters are generally more economic in terms of the 
number of parameters required to achieve a good 
approximation. There are several techniques for 
building PWL filters. 

One of them is based on regression trees [4]. The 
trees are typically binary. The effect of splitting the 
parent node into two branches is perceived as 
partitioning parent space into two subregions. Each 
of the subregions can be partitioned again in two 
new subdomains. The process continues resulting in 
a binary tree structure. The terminal nodes of the 
tree define a set of disjoint regions that correspond 
to partition of the original space. Ones the tree 
structure is defined, a linear filter is associated with 
each terminal node. Consequently, the whole tree 
structure plus the filters associated with the terminal 
nodes behave as a piecewise-linear filter. Tree 
structured filters have been successfully applied to 
problems in channel equalization and echo 
cancellation [4]. 

The combination of hinge planes is another 
method for building PWL approximations. A hinge 
function consists of two multivariate planes joined 
together. In this case, the nonlinear operator is built 
as the sum of several hinges, each of them having 
different orientation [4]. 

Another approach to PWL filtering and function 
approximation is referred to as Chua�s canonical 
PWL functions. This theory solves the generalized 
problem of building piecewise-linear models based 
on any type of partition grids (not necessarily 
rectangular) [4]. Based on this approach, models of 
digital filters are based on finite expansions of linear 
systems combined through absolute value operators. 
This approach we use for the comparison with the 
modified CMF model. 
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Let { } be a weakly stationary discrete-time 

real valued sequence and denote the - long 
observation window of { } as 
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where and ,  are  vectors and 

,  and 

b id Si ,,2,1 1N

a ic i  are scalar coefficients. All of these 

parameters, together with the number of terms  
have to be estimated from the observed samples. 
Expression (2) represents the mathematical model of 
CPWL filter. This model will be used for 
comparison with the CMF model in next sections. 
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3. MICROSTATISTIC APPROACH 
 
3.1.  Conventional Threshold Decomposition 
 

Threshold decomposition is a segmentation 
operator used to split a signal into a set of multilevel 
components � a set of decomposed signals [1, 2]. 
Each decomposed signal corresponds to an 
amplitude range of the input signal, where the limits 
of each range are determined by the threshold 
values. Each decomposed signal is fed into a digital 
filter and the outputs of the filters are summed to 
obtain the final filter output. 

Let us assume a static -level threshold 

decomposer, whose input signal  given by 

expression (1) is decomposed into  output signals 

, . In this way the threshold 

decomposer contains  threshold values (  

for ) confined as 
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The performance of the decomposer is given by 
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where  is the threshold decomposed sample 

at the -th level at discrete time . 
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where .kD  denotes the threshold decomposition 

operation of the -th level.  is for 

nonnegative values of input signal ( ) given 

by 
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whereas )(nxDk  is for negative values of input 

signal ( 0)(nx ) given by 
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An example of threshold decomposition is shown in 
Fig. 1-3. Input signal of the decomposer  is 

illustrated in Fig. 1. 
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Fig. 1  Input signal of the threshold decomposer 

 
 
Threshold values used for segmentation of  are 

listed in the Tab. 1. 

)(nx

 

1l  2l  3l  4l 5l  6l  7l  

3 1 0 -1 -3  
 

Tab. 1  Threshold decomposition values 
 
Threshold decomposed signals , )()( nx k 6,,1k  

for nonnegative half plane and negative half plane of 
 are depicted in Fig. 2 and Fig. 3, respectively. )(nx
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Fig. 2  Threshold decomposed signals , 

 for nonnegative half plane 
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Fig. 3  Threshold decomposed signals , 

 for negative half plane 
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3.2. Conventional Microstatistic Filters 
 

CMFs [1, 2] are nonlinear estimators based on 
estimation of desired signal by using a linear 
combination of vector elements obtained by the 
threshold decomposition of signal . In 

conventional microstatistic filtering, each 
decomposed vector (5) is fed to an individual 
Wiener filter and the estimates of the desired result 
are summed. Block scheme of the CMF is given in 
the Fig. 4, where  and  is the input and 

output signal of the CMF, respectively. It can be 
seen from Fig. 1 that the CMF consists of the 
threshold decomposer,  WFs and sumator. The 

-th output signal of the threshold decomposer, 
given in (4), is fed into the -th WF (WF

)(nx

)(nx )(� ny

DL

k
k k). The 

output signal of the CMF is given by 
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where  is constant term to be applied in CMF 

structure in order to obtain an unbiased CMF output 

and are the CMF weights containing all weights 

of WF
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Fig. 4  Block diagram of CMF 
 
 
4. NEW THRESHOLD DECOMPOSITION 

REPRESENTATION 
 

In this section we define the mathematical model 
of the threshold decomposition given by (6) and (7) 
in the form of piecewise-linear functions. For the 
simplicity, let us modify the boundary thresholds 
defined by (3) as follows 
 

 )( max1 nxl , (9) 
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This modification does not violate the conditions 

in (3). �Empty space� only has been removed, in 
which the decomposed signals would be identically 

equal to zero ( ). 0)()( nx k

Let us modify the conventional threshold 
decomposition operator )(nxDk  given in (6) and 

(7) in the form of piecewise-linear functions. Let 
)(nxk  be the new threshold decomposition 

operator. In order to describe CMF by the , 

following condition must be satisfied 
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Analysis of relations (6), (7), (9), (10) and (11) 
shows, that operator )(nxk  can be given by 
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where  is scalar coefficient that can be written as ks
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1sign kkk lls . (13) 

 
Fig. 5 and Fig. 6 show an example of the 

graphical representation of threshold operators 
 for nonnegative and negative half plane, 

respectively. The decomposition levels used in this 
example are listed in the Tab. 2. 
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Fig. 5  Threshold operators , )(nxk 3,,1k for 

nonnegative half plane 
 
 

 

1l  2l 3l  4l  5l 6l 7l  

4 3 1 0 -1 -3 -4 

Tab. 2 Threshold decomposition values 
 

 

 

 

 
 
Fig. 6  Threshold operators , for 

negative half plane 
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5. MODEL COMPARISON 
 

In this section we define the mathematical model 
of the CMF based on piecewise-linear functions. 
This derivation will be compared with the Chua�s 
canonical representation (2). 

In order to define the output signal of the CMF 
following terms can be written as 
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Let us define the  a sign vector   1DL s

 
T
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21 ,,,s . (19) 

 
Elements of the vector  have for the nonnegative 
half plane the value +1 and for the negative half 
plane the value �1. 
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Next, define the weight vectors for decomposition 
level  and in the form 0k 1DLk
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where  is  zero vector. Similarly, the weight 
vector can be given by 
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Finally, the output signal of the CMF is given by 
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where  is E 1N  identity vector. Equation (25) 
represents the mathematical model of CMF based on 
piecewise-linear functions.  
 
6. CONCLUSION 
 

In this paper, new approach to piecewise-linear 
signal modeling based on CMF with modified 
threshold decomposer have been presented. This 
framework has been compared with PWL system. 
This comparison has shown that CMFs can be 
considered to be a subset of the CPWL filters. This 
information can be helpful by the further research of 
microstatistic digital filtering, and leads to new areas 
of research in this field like channel equalization and 
echo cancellation [4]. 
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