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SUMMARY 
We always start the solving of a problem  with the formulation of its theoretical foundations. If we would like to use 

mathematical machines (computers) in problem solving, we need to formalize its theoretical foundations as logical 
reasoning because the programs should really prove the correctness of their results. In our paper we present central ideas of 
our approach regarding programming as logical reasoning. Our first idea is that the theory in which we reason is the type 
theory starting with basic types. Our second idea is that the running program is actually a proof in the theory above 
formulated as the intuitionistic linear version of Gentzen’s calculus. We show that such a synthesis of categorical and linear 
logic forms a theoretical foundations of programming  for mathematical machines. 
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1. INTRODUCTION 
 

One of the famous computer scientist, Niklaus 
Wirth, defined programs as data structures and 
algorithms. In his book [1] he thoroughly explained 
how to develop middlesize Pascal programs, how to 
define types, declare data structures, formulate 
procedures, functions and main programs in the 
rational manner. It is true that Pascal is until now 
the most rational procedural programming 
language. His approach has minimally two 
drawbacks: the first is that the program cannot 
check the malfunctionality of hardware; the second, 
that he does not give the answer to the question how 
exactly develop correct programs in which the 
results are really proved. 

Traditional software engineering approach to 
solve the second drawback is the following: a client 
formulates his requirements specification and a 
programmer derives from it a program in whatever 
programming language, he edits (normally or 
structurally) text, compiles it, uses librarian, linkage 
editor, loader, routines of operating system,  
executes his program and gets some results that are 
not mathematically proved. Every possible form of 
testing whether the program does the required 
actions cannot be concerned as proof neither in 
Aristotelian notion of a logical proof or in the sense 
of John Stuart Mill’s idea of  inductive logic. 
 We attempt to formulate a theoretical 
foundations of program development. In such a 
manner program results after execution have to be 
formally proved using mathematical ideas, lemmas 
and theorems. We be aware of the meaning of czech 
computer scientist Antonín Svoboda that computers 
are mathematical machines which can realize 
mathematical forms of human thinking. We try to 
find such mathematical disciplines which can 
describe in formally exact way the whole process of 
development and execution of programs. We begin 
with the question: what actually a program is?; i.e. 
what does a program perform? Our analysis leads to 

the answer that a program solves human rational 
problems, i.e. really scientific problems. Solving of 
such problems is possible only in a framework of a 
mathematical theory. We find a discipline, 
categorical logic, formulated in the last decade [2], 
which is able to describe by the help of types, terms, 
morphisms and functors the whole process of 
program development starting from categories of 
basic types to a total category. Indeed, categorical 
logic can exactly describe problem solving process 
in the framework of program development process 
in  mathematically constructive manner .  
 Total category, the intermediate result of this  
process can be mapped to the categorical semantics 
of linear logic, a new approach to mathematical 
logic, which respects actions of mathematical 
machines in very disciplinary way.  
 In this paper we should like to explain the 
startpoint of program development in categorical 
logic, i.e. basic types, and basic notions of 
semantics of linear logic that can be mapped to 
some programming language. Our approach is 
practically founded in mathematics, logics and type 
theory and gives new ideas not only for constructing 
new proof assistants but also to the new 
development of hardware by extending it by new 
processors of basic types. This paper is the starting 
one which will be followed by more detail 
explanation of further aspects of categorical logic 
and linear logic, i.e. of exact reasoning proving the 
results of programs. We hope that these correct 
programs could show hardware errors and so 
increase the reliability of program execution. 
 
2. BASIC CONCEPTS FOR PROBLEM  

SOLVING 
 
 From the disscussion in previous section it 
follows that the resulting data structure of executed 
program have to give proved answers to the 
questions formulated at the beginning of program 
development process. We can achieve these only in 
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the case when the program itself represents such 
problem solving process which is formulated in a 
well-formed and general mathematical theory. After 
a thorough foundation of the acceptable logical 
reasoning leading to the proved result we decided to 
start our reasoning with the most general 
mathematical theory, i.e. with category theory .   
 We will shortly introduce here only those 
notions from category theory that serve for our 
purposes. A category C consists of two collections: 
a collection of objects A, B, ...; and a collection of 
arrows (or morphisms) denoted f, g, .... For and 
arrow f: A → B the objects  A and B are  the domain 
and codomain, respectively. A homset Hom(A, B) is 
the set of all arrows with domain A and codomain B 
in C. The arrows f: A → B and g: B → C are 
composable, its composition g ο f = g f : A → C is 
associative in C and every object A has identity 
arrow idA: A → A. We say that a category C has 
terminal object 1 (initial object 0) if for every 
category object A there exists unique arrow A → 1  ( 
0 → A ).  
 Categories as other kinds of mathematical 
structures come equipped with the notion of 
homomorphism between categories called functor. 
A functor  F: C → D from a category C to the 
category D takes the objects of  C  to the objects of 
D  and the arrows of C  to the arrows of D 
preserving domains, codomains, identities and 
composition. If F,G: C → D are functors with the 
common domain and codomain, a natural 
transformation μ: F → G is a family of arrows μA: 
FA → GA for every object A of the category C, such 
that for every arrow f: A→ B in C 
 

G f ο μ A  =  μ . 
. 

 We note here that the objects of a category are 
something so general that in a category we can only 
distinghish one object from other ones. In general 
category theory we do not suppose anything more 
about the nature of category objects. But of course, 
these objects may be sets in the sense of an 
axiomatic set theory. Therefore we can denote by 
Set the category of sets as objects and functions 
between them as morphisms.  

For a category C and its fixed object A we define 
hom functor Hom(A, -): C → Set, which assigns to 
every object  B from the category C the homset 
Hom(A ,B) of all arrows from the object A to B, and 
to every arrow f:B → C a function  
 

Hom(A , f): Hom(A, B) → Hom(A, C). 
 

 One of the important perceptions of category 
theory is that an arrow x:T→ A in a category C can 
be regarded as an element of A over T. An object T 
is called the domain of variation of x and x is called 
a (variable) element of the object A. This method 
enables a generalization of the set-theoretic 
membership relation. It is clear that any object A of 

a category C  has at least one  element idA , its 
generic element. 
 We denote by Func(C, Set) the category of 
functors F: C→ Set from the category C to the 
category Set as objects and natural  transformations 
between them as arrows. Similarly as above, 
elements of a functor F are natural transformations 
from objects of functor category, i.e. the functors, 
into the functor F. From Yoneda lemma [3] it 
follows: if an element u of a functor F over the hom 
functor Hom(A, − ) is a natural  A - isomorphism, u 
∈ FA, then this unique u is called the universal 
element for functor F. A functor F that has the 
universal element is representable functor.  A 
functor Sub: C → Set is a subobject functor if it 
assigns to every object  A  in C  the set of subobjects 
of A. 
 Category theory expresses equations by means 
of commutative diagrams. A diagram D in a 
category C is a graph homomorphism D: I → C, 
where I is the index (shape) graph  of the diagram 
D. A diagram D is commutative, if all paths from an 
object A to the object B in diagram constructed as 
compositions of corresponding arrows are equal, 
e.g. the diagram in Fig. 1. commutes  
 
                     f2                            fn-1     
              •               •    . . .    •              •      
  f1                                                                                                  fn 
 
A                                                                       B 
   
 g1                                                                  gm      
             •              •    . . .    •               •       
                   g2                            gm-1    
                

Fig. 1  Commutative diagram in category 
 
and expresses the following equation: 
 

fn  fn-1  ...  f2  f1 = gm  gm-1  ...  g2  g1 .          
 
 A commutative cone α with vertex V over a 
diagram D  is an element of D over a constant 
diagram V, as in Fig. 2. 
 

    V 
 

 
      αi  

 
. . . Di-1                   Di  . . . 

 
 

Fig. 2  Commutative cone 
 

A functor Cone ( −, D) : C → Set  assigns to an 
object V of the category C  the set Cone(V, D) of 
commu- tative cones with vertex V over the diagram 
D. A universal element of the functor Cone(− , D),  
if exists, is a limit of the diagram D.  A category C 
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has finite limits if every finite diagram D in C  has a 
limit. 
 If A and B are objects of a category C, then A × 
B is the product object together with two arrows 
(projections): 
 

π1 : A × B →  A        and       π2 : A × B → B, 
 
such that for any object C  and arrows  f: C → A 
and h: C →  B  there exists unique arrow h: C → A 
× B with 
 

π1  h = f    and   π2  h = g 
 
as in Fig. 3.  
 

π2 

A × B                          B 
 
 

                        π1                       h            g    
 
 

A                               C 
f 
 

Fig.  3  Cartesian product in category 
 
 

To generalize cartesian product of objects of a 
category C we have to introduce the concept of 
indexing. Let B be a base category with the index 
sets I, J, ... as objects and functions u: I → J  
between them as arrows. We define two way of 
indexing of objects in a category  C : 
 

1. pointwise indexing by a functor B → C, 
such that it assigns to every index set 
object I a family (Ai )i∈I of objects from C; 

2. display indexing by a functor C → B 
which assigns to a subcategory of C the 
object I indexing it. 

 
Now we can say that a category C has (finite) 

products if any (finite) indexed family of objects in 
C has a product. A category C is cartesian closed  
category (ccc) if the following conditions hold: 

 
1. C  has a terminal object 1; 
2. C  has finite products; 
3. for any pair of objects A and B in C there is 

an exponential object BA such that for 
every object C in C the following homsets 
are isomorphic 

 
Hom(C × A, B) ≅ Hom(C, BA). 

 
A topos is a special kind of category defined by 

axioms saying roughly that certain constructions 
one can make with sets can be done in a category. A 
topos  is a category E which satisfies the following 
properties: 

1. it is ccc, 
2. it has finite limits; 
3. it has representable subobject functor. 
 

Moreover, if we want a topos to be a generalized 
mathematical theory, we suppose that a set of 
hypotheses or axioms are formulated in predicate 
logic. They implicitly define some kind of structure 
of objects and some properties of morphisms in the 
category E. A topos is really a structure of a general 
theory defined by axioms formulated possibly in 
higher-order logic. An elementary topos is such one 
whose axioms are formulated in the first-order 
logic, i.e. as it was mentioned above by defining 
element, elementary topos is generalized axiomatic 
set theory.   

In elementary topos we can define a 
mathematical structure on every its object  in the 
sense of [4]. Such a structure is an ordered sequence 

 
U = ( M, R1 , ... , Rn , F1 , ... Fm , { ci }i∈I ), 

 
where M is a non-empty set, R1 , ... Rn are relations 
on M, F1 , ... Fm are functions on M and ci are 
elements (constants) of M.  Of course, the properties 
of mathematical entities of such a structure are also 
determined by axioms that can be regarded as a 
conservative extension of axioms of set theory. 

An elementary topos whose objects are some 
distinguished structures we regard as a category of 
basic types. Categories of basic types are the 
starting point for constructing more complex types 
via functors representing also the type-theoretical 
constructors for simple types (×, →, + ), dependent 
types, inductive types, recursive types [5] (by 
recursive morphisms and functors) and polymorphic 
types (allowing type variables) as in [2] and of 
course the morphisms between such constructed 
objects.  

So, we have formulated a way how to construct 
arbitrary data structures according to the types and a 
mathematical discipline of derivation data structures 
from simple ones starting with basic types. We note 
that like the floating point processor, some of 
denoted basic types (which can be not only trivial) 
would need their own processors in hardware of 
mathematical machines of future.   

Constructive process of mathematically proved 
and uniquely typed data structures finishes with a 
total category contaning proofs and results of our 
problem solving process. We note that it is possible 
to think about such a constructive approach to 
problem solving on account of the continually 
evolving discipline called categorical logic.  

 
 

3. BASIC CONCEPTS FOR PROGRAMMING  
 

After the basic theoretical reasoning which will 
finish by the construction of a total category 
containing the result of problem solving or 
answering the interested questions by a didaction 
based on a well-formed theories, we follow by 
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construction of a program that realizes the 
categorical logical reasoning in a form of linear 
logic. But we mention that in the last two decades 
we are more and more convinced of the basic 
importance of the semantics, because from the 
semantical framework we can already generate an 
understandable syntax of some text characterizing 
logical reasoning. This circumstance was 
comprehended already in the framework of classical 
mathematical logic, where the most important 
questions of the consistency, completeness and 
independence of axioms of the theories must be 
proved in mathematical structures or models. We do 
not divide the syntactical writing of a logical 
reasoning as a proof from the structures, in which 
the symbols of logic get their senses and 
denotations, i.e. from the appropriate structures. 
This is why we will map firstly the total category to 
the categorical semantics of linear logic and 
generate the syntactical aspects and visible sequent 
calculus by a proved manner too from this 
semantics. 

Linear logic was introduced by J.Y.Girard [6] 
and its simplicity and elegance makes it suitable 
also for reasoning about programming mathematical 
machines. To start to work on linear logic reasoning 
we need to construct a functor that maps the total 
category to the appropriate category forming the 
categorical semantics of linear logic. 

In the next we formulate the categorical  
semantics of linear logic for which we use the 
following concepts. A  commutative quantale is a 
structure of the form 

 

( Q , ≤ , ο , 1, 0, T ), 
 

where (Q , ≤ , 0, T ) is a complete lattice and (Q ,ο , 
1) is a commutative monoid. The symbol ’ο’ 
denotes a monoid multiplicative operation with the 
neutral element 1 such that  it distributes over 
suprema: 
 

a ο ( Vi∈ S bi ) = Vi ∈ S (a ο b ), 
 

where S ⊆ Q.  The multiplication in such monoid is 
called fusion. The monoid forms a locale. For 
quantales Q and Q’ a quantale homomorphism is a 
mapping  q: Q → Q’, which preserves fusion, its 
neutral element 1, and suprema. We can construct 
the category CQuant of quantales as objects and 
quantale homomorphisms between them as arrows. 
It is clear that for every quantale Q there is identity 
homomorphism idQ: Q → Q , the quantale 
homomorphisms are composable and this 
composition is associative. Therefore we can say 
that   CQuant is a category. For any quantale Q we 
introduce residuation as a binary operation defined 
as follows:  for  any a,b∈ Q 
 

a ⎯o b = V{ x |  x ο a ≤ b }. 
 

Residuation operation corresponds with interesting 
aspects of a connective of linear logic as we shaw 
later.  

A monoidal category C = ( C , ⊗ , I, a, l, r ) 
consists of  

1. a category C ; 
2.  a tensor functor  ⊗ : C × C → C; 
3. natural isomorphisms a , l , r  
 

aX ,Y,Z : ( X ⊗ Y) ⊗ Z → X ⊗ ( Y ⊗ Z) 
                lX : I ⊗ X → X 
               rX : X ⊗ I → X, 
  

where X, Y, Z are objects of the category C. The 
first isomorphism expresses associativity of tensor 
functor, the two latter left and right neutral element 
of it. They have to satisfy the coherence axioms 
expressed by the following diagrams: pentagon and 
triangel in Fig. 4 and Fig. 5, respectively. 
 
                                    a ⊗ id 
((W ⊗ X) ⊗ Y) ⊗ Z                      (W ⊗ (X ⊗ Y)) ⊗ Z 
 
 
         a 
 
 (W ⊗ X ) ⊗ (Y ⊗ Z)                                         a 
 
 
        a 
 
W ⊗ (X ⊗(Y ⊗ Z))                       W ⊗ ((X ⊗ Y) ⊗ Z) 
                                                  

                                   id  ⊗ a 
 

Fig. 4  Pentagon – coherence axiom for  
isomorphism  a 

 
 

a 
(X ⊗ I) ⊗ Y                  X ⊗ (I ⊗Y ) 

 
 

                  r ⊗ id                             id ⊗ l 
 
 

X ⊗ Y 
  

Fig. 5  Triangle – coherence axiom for 
isomorphisms l and r 

 
 

 A monoidal category is strict if the 
isomorphisms a , l and r are identities. To achieve 
commutativity of tensor product we add to 
monoidal category a natural isomorphism 
 

cX , Y : X  ⊗ Y → Y ⊗ X, 
 
which satisfies coherence axioms in Fig. 6 and 
Fig. 7, and we call such category symmetrical 
monoidal category.   
 For example, if C  is a category with finite 
products, it is easy to show that it is symmetric 
monoidal category, tensor functor  ⊗ is here given 
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by cartesian product, I is the terminal object and 
isomorphisms a, l, r, c are given by appropriate 
combinations of pairing and projections.  

 
                                        c ⊗ id     
            ( Y ⊗ X) ⊗ Z                      (X ⊗ Y) ⊗ Z  
 
 
                  a                                                   a 
 
 
                 Y ⊗ (X ⊗ Z)                   X ⊗ (Y ⊗ Z) 
 
 
              id ⊗ c                                              c 
 
 
              Y ⊗ (Z ⊗ X)                       (Y ⊗ Z) ⊗ X 
                                             a      
 

Fig. 6  Coherence axiom for a and c 
isomorphisms 

 
                                                                   c                           
                  X ⊗ Y                 I  ⊗ X                   X ⊗ I   
 
           c                  id            l                           r     
 
      Y ⊗ X                X ⊗ Y                    X     
                     c 
 

Fig. 7   Coherence axiom for c, l and r 
isomorphisms 

 
 
A symmetric monoidal category C is closed, if for 
every object  X in C  the functor − ⊗ X  has  a 
specified right adjoint,  the hom functor Hom (X , - ) 
 

− ⊗ X  ⎯| Hom (X, - ), 
 
that is, there exist natural transformations 
 

εX ,Y : Hom(X, Y) ⊗ X → Y    and 
 

δX, Y : X → Hom(Y, X ⊗ Y), 
 

which satisfiy the triangle identities for an 
adjunction 
 
1= ε (δ ⊗ 1): X ⊗ Y → Hom(Y, X ⊗ Y) ⊗ Y → X ⊗ Y  
 
and 
 
 1 = Hom(1, ε) δ : 
Hom(X,Y) → Hom(X, Hom(X, Y) ⊗ X) → Hom (X, Y). 
 

Every quantale Q regarded as a category is strict 
symmetric monoidal category. So, we constructed 
strict symmetric monoidal category as unique 
semantics of the whole linear logic. This categorical 
semantics gives a possibility to introduce the 

sequent calculus of linear logic in the category 
CQuant. 

Then we can write down syntax of linear logic 
defined e.g. in [7] by a sequent calculus. It is not the 
aim of this short paper to characterize the all aspects 
of linear syntactical reasoning in the framework of 
sequent calculus, we only point out that it is proof 
oriented.  Linear reasoning using this calculus may 
contain very difficult proof nets [8] with possible 
interactions.  

Because linear logic is different from classical 
logic, but is an extension of it, we illustrate here 
differences between some logical connectives at 
least in two cases. Linear logic formulas are actions. 
In contrast to classical logic where conjunction has 
a very simple Tarski-Hilbert semantics, the linear 
logic conjunction is fusion, that is two operands of 
linear logic conjunction can actually ’annihilate’ by 
the fusion (the notion of annihilation is known from 
high-energy physics). In linear implication  we say 
that the first operand ontologically causes the result 
of implication, i.e. the second operand. Such 
explanation only help our phantasy, the exact 
semantics we formulated mathematically above. 
Here we would like to mention that some new 
research projects about semantics of linear logic [9] 
may help to conceive the proof nets also as a 
purposeful finding of conclusion and so combining 
the ontological causality with the ontological 
teleology. We try to paraphrase the original Girard’s 
example for linear implication. Assume that the first 
operand A (action) is the sentence’ I spend some 
amount of money ’ and the second operand  B is the 
following one’ I get some article’. The linear 
implication 

A ⎯o B 
 

expresses that I spent some amount of money  and 
then I have got some article. But after implication I 
have not this amount of money. That means the 
cause of implication is also annihilated after the 
relization of linear implication. This circumstance 
has further interesting property of linear reasoning. 
This reasoning has stages (as it is shown in the 
framework of Zermelo-Fraenkel set theory 
formulated in linear logic) in which the following 
stage rewrites the previous stage. So, the reasoning 
in linear logic realizes also garbage collection.   

Finishing our short description we would like to 
mention that from the categorical semantics of 
linear logic we can generate a category for a 
functional programming language of linear logic by 
appropriate functor containing also its syntax in 
ASCII form. 
 
 
4. CONCLUSION 

 
In this introducing paper we have shown that we 

can solve scientific problems based theoretically in 
the framework of categorical logic over basic types.  
After obtaining the mathematical solution we can 
construct a linear logic reasoning which represents 
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this solution by proofs in the semantics and syntax 
of linear logic and so this solution can give in 
mathematical machine the desired type structure 
formulated in a theory based on intuitionistic linear 
logic.  
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Stochastic Programming 
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