
Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 1

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

CHURCH’S TYPES IN LOGICAL REASONING ON PROGRAMMING

Valerie NOVITZKÁ
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, E-mail: Valerie.Novitzka@tuke.sk

SUMMARY
In our previous paper [1] of this series we defined the basic types as the startpoint of scientific problem solving by help

of logically and mathematically founded programming of mathematical machines. In this paper we extend the type system
with Church’s types that enable the first step of problem solving during logical reasoning.

Keywords: category theory, categorical logic, type theory, Church’s types, λ-calculus

1. INTRODUCTION

 In our paper [1] we have introduced the basic
concepts and facts for scientific problem solving by
help of mathematical machines, i.e. by logical
reasoning about programming of these machines.
These fundamental concepts were: category,
cartesian closed category, diagram and limit, topos
and elementary topos, but the most important was
the concept of basic types. Basic types actually form
the starting point in the process of scientific
problem solving by mathematical machines. The
main purpose of this paper is to introduce a bit
extended type system, the so called Church’s type
system as a further step of the scientific problem
solving process by mathematical machines.

2. MANY-TYPED SIGNATURES

 We begin the extension of our system of basic
types with introducing the well-known notion of
universal algebra: many-typed signature. A many-
typed signature is important not only for the type
system but also for some aspects of logical
reasoning. In the following we use only the word
signature for the notion of many-type signature.
 A signature Σ = (T, F) consists of a finite set T
of (the names of) basic types denoted by letters σ, τ,
υ, … and a finite set F of function symbols. Every
function symbol F∈ F is of a form F: σ1, …,σn →
σn+1, for some natural number n. A function symbol
F takes inputs of types σ1, … , σn and yields an
output of type σn+1. A signature morphism φ: Σ →
Σ’ from a signature Σ =(T, F) to a signature
Σ’=(T’, F) is a p air (u, (fα)), where u: T → T’ is
a function between underlying sets of types and (fα)
is a family of functions between corresponding sets
of function symbols, where α =((σ1, …,σn), σn+1).
Then for a function symbol F: σ1, …,σn → σn+1

fα (F): u(σ1), …, u(σn) → u(σn+1).

We can construct a category of signatures Sign
containing:
− as objects: many-typed signatures,

− as morphisms: signature morphisms between
them.

Sign is a category, because for every object Σ

there is an identity idΣ : Σ → Σ’, idΣ = (idT , (idF))
and composition of morphisms is inherited from the
composition of signature morphisms. The forgetful
functor U: Sign → Set from the category of
signatures to the category Set of sets and functions
assigns to every signature Σ= (T, F) from Sign its
underlying set of types T from Set and to every
morphism (u, (fα)) from Sign the function u: T→
T’ from Set. The forgetful functor ’forget’ the
structure of signatures and it is a split fibration [2].

3. TERMS FOR MANY-TYPED SIGNATURES

 In the following text we assume a many-typed
signature Σ= (T, F) defined as above. To introduce
terms we need a set Var = {v1 , v2 , …} of term
variables. Every variable has exactly assigned one
type from the set T by a variable declaration v:σ. A
finite sequence of variable declarations

Γ = (v1:σ1, …, vn:σn)

is called a context.
 Terms are defined with respect to a fixed finite
sequence of term variables which receive their types
from contexts. We denote a term M by a sequent

Γ |- M: τ

which expresses that a term M is of a type τ in
context Γ, i.e. a term M may contain only typed
variables from Γ and its value is of type τ.
 Terms are constructed by successive
applications of the following two basic rules and
three structural rules. The basic rules describe
construction of terms:

 - identity
 v:σ |- v: σ

for F:σ1, …,σn → σn+1

2 Church’s Types in Logical Reasoning on Programming

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

 Γ |- M1: σ1, …, Γ |- Mn :σn
 - function symbol
 Γ |- F(M1, …, Mn) :σn+1

The structural rules are

 v1:σ1,…, vn:σn |- M:τ
 - weakening
 v1:σ1,…, vn:σn , vn+1: σn+1 |- M:τ

 Γ, vi:σ , vi+1:σ |- M:τ
 - contraction
 Γ, vi:σ |- M:τ

 Γ, vi:σi , vi+1:σi+1 , Δ |- M:τ
 - exchange
 Γ, vi+1:σi+1 , vi:σi , Δ |- M:τ

The structural rule of weakening allows to add a
redundant variable declaration, the contraction rule
enables to replace two variables of the same type by
a single one and the exchange rule expresses that
variable declarations in contexts can permute. The
following substitution rule enables to substitute in a
term M:τ a variable v:σ by a term N:σ of the same
type, where N contains only variables from Γ :

 Γ, v:σ |- M:τ Γ |- N:σ
 - substitution
 Γ |- M [N/v]:τ

We remember that the types in contexts and of
terms are only basic types from the signature Σ.
Basic rules, structural rules together with the
substitution rule determine the term calculus λ(Σ)
over a signature Σ. We note here that λ(Σ) calculus
will play very important role in the construction of
proof nets [3,9] (with various semantics) in the
complicated logical reasoning in the framework of
one complete theory. So, this calculus serves as a
foundation for solving scientific problems by
mathematical machines.

4. CLASSIFYING CATEGORY AND ITS

MODEL

Contexts and typed sequences of terms over a
signature Σ form a category. In this construction we
use terms-as-morphisms approach [9] based on the
following idea. A term in the form of the following
sequent

v1:σ1, …, vn :σ |- M:τ

may be regarded as an operation mapping input
values ai:σi , i=1,…,n on the left side of the sequent
to an output value M[a1/v1, …,an /vn] :τ of a type τ
on the right side of the sequent. Therefore we can
consider a term as a morphism between types

M: σ1 × …× σn → τ .

By regarding terms as morphisms between types
from the set T of basic types of signature Σ we

construct the classifying category Class(Σ) over a
signature Σ as follows:
− objects are contexts Γ =(v1:σ1 , …, vn:σ) as

defined above,
− morphisms between contexts Γ → Δ , where

Δ = (w1:τ1,…,wm:τm) are m-tuples (M1, …,Mm)
of terms Γ |- Mi:τi , for i=1,…,m,

− an identity morphism idΓ on every object Γ is
the n-tuple of variables (v1,…,vn) from Γ, and

− composition of morphisms

(M1,…,Mm) (N1,…,Nk)
 Γ Δ Θ

is the k-tuple (L1,…,Lk) of terms defined by
substitution

Li = Ni[M1/w1,…,Mm /wm].

for i=1,…n.

The classifying category Class(Σ) introduces
Gentzen’s sequent calculus into categorical logic.
For every two objects Γ, Δ from Class(Σ) a binary
product Γ×Δ can be defined as context
concatenation

(Γ,Δ)= (v1:σ1,…,vn:σn ,w1:τ1,…,wm:τm)

with two projections

π1=(v1:σ1,…,vn:σn) and π2=(w1:τ1,…,wm:τm)

as it is illustrated on Fig. 1.

 (Γ,Δ)

 π1 π2

 Γ Δ

Fig. 1 Product of contexts

The category Class(Σ) has as terminal object the
empty context ∅ = (), because for every object Γ
there is just one morphism from Γ→ ∅. Because the
category Class(Σ) has finite binary products and a
terminal object, it is cartesian category [6].

We define set-theoretical model of the
classifying category Class(Σ) as follows:
− to every basic type σ∈T we assign its carrier set

Aσ ,
− to every function symbol F∈F , such that

F: σ1,…,σn → σn+1 we assign a function

[| F |] : Aσ1×… × Aσn → Aσn+1

between corresponding carrier sets.

A Σ-model (or Σ-algebra) is a pair

((Aσ)σ∈T, [| - |])

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 3

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

which consists of a T-indexed family of carrier sets
and of a collection [| - |] of actual functions for every
function symbol from F.
 Set-theoretic models of classifying categories
form the category SModel such that
− objects are three-tuples (Σ, (Aσ)σ∈T , [| - |] Σ), such

that the last two members form a Σ-model,
− morphisms are pairs

 (φ, (hσ)):
 (Σ , (Aσ)σ∈T , [| - |] Σ)→ (Σ’ , (A’σ)σ∈T’ , [| - |] Σ’)

where φ: Σ → Σ’ is a signature morphism and (hσ)
is a corresponding model homomorphism

(hσ): ((Aσ), [| - |]) → ((A’σ), [| - |] ’).

5. INTRODUCING CHURCH’S TYPES

Until here we have considered only basic types
from a signature Σ. Now we introduce Church’s
types constructed from basic types by constructors
’→’, ’× ’ and ’+’ . Applying the constructor ’→’
on basic types σ, τ∈ T we can construct arrow types
(function types) σ→τ , applying the constructor ’× ’
we can construct product types σ×τ , and by using
the constructor ’+’ we can construct coproduct
types (sum types) σ+τ . In accordance with this
construction we successively extend λ(Σ) term
calculus to the term calculus over Church’s types.
 First, we introduce arrow types. Let T1 be the
least set containing the set T closed under
morphisms between types, i.e. if σ,τ∈ T then σ→τ∈
T1. Term calculus λ1(Σ) built over a signature Σ
with arrow types has all the rules as λ(Σ)calculus
and the following rules for abstraction and
application:

 Γ, v:σ |- M:τ

 - abstraction
 Γ |- λv:σ.M:σ→τ

 Γ |- M:σ→τ Γ |- N:σ
 - application
 Γ |- M N:τ

The abstraction rule introduces term λv:σ.M:σ→τ
as a function assigning to a value a:σ of type σ the
result value M[a/v]:τ of the type τ .The application
rule is an elimination rule which describes the
application of a function M:σ→τ to an argument
term N:σ. These rules we complete with the
following type conversion rules [4]:

 Γ, v:σ |- M:τ Γ |- N:σ
 - β- conversion
 Γ |- (λv:σ.M) N = M[N/v]:τ

 Γ |- M:σ→τ
 - η- conversion
 Γ |- λv:σ.Mv = M:σ→τ

 Γ, v:σ |- M = M’:τ
 - ξ - conversion
 Γ |- λv:σ.M = λv:σ.M’:σ→τ

 Γ |- M = M’:σ→τ Γ |- N = N’:σ

 - translation
 Γ |- M N = M’ N’:τ

β-conversion rule describes the evaluation of
functions on their arguments, η -conversion rule
describes extensionality of functions. ξ -conversion
rule and translation rule extend conversion relation
’=’ into equivalence relations.
 Over λ1(Σ) calculus we construct new
classifying category Class1(Σ) over a signature Σ
as follows:
− objects are contexts Γ =(v1:σ1,…, vn:σn) , where

the types σi∈T1, for i=1,…,n ,
− morphisms Γ→ Δ for Δ = (w1:τ1,…,wm:τm) are

m-tuples of equivalence classes (with respect to
conversion rules above) of terms

([M1],…,[Mm]) .

 Now we extend λ1(Σ)calculus with product and
coproduct types. First we add new types 0 and 1 that
are not in the signature Σ to the set T1. The type 1
serves for empty product type and the type 0 serves
for empty coproduct type. Let T2 be the least set
containing T1 closed under finite products and
coproducts of types, i.e. if σ,τ∈ T1 then also

σ × τ ∈ T2 and σ +τ ∈ T2.

The corresponding λ2(Σ) calculus has all rules as
the λ1(Σ) calculus and the following new rules for
product and coproduct typed terms. We use for
tuples of product type angle brackets ’〈 ’ and ’〉 ’ ,
and for cotuples of coproduct types the square
brackets ’[’ and ’] ’. First two rules are introduction
rules of terms 〈〉 of empty type 1 and product typed
terms 〈M,N〉 : σ×τ. The next two rules are
elimination rules of projections π1:σ×τ → σ , π2:
σ×τ → τ.

 - 1 - introduction
 〈〉 : 1

 Γ |- M:σ Γ|- N:τ
 - × - introduction
 Γ |- 〈 M,N〉 :σ×τ

Γ |- P:σ×τ Γ |- P:σ×τ
 - projections
 Γ |- π1P:σ Γ |- π2P:τ

We add also the corresponding type conversion
rules for product types:

 Γ |- M:1 Γ |- M:σ Γ |- N:τ

 Γ |- M = 〈〉 :1 Γ |- π1〈 M,N〉 = M:σ

4 Church’s Types in Logical Reasoning on Programming

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

 Γ |- M:σ Γ |- N:τ Γ |- P:σ×τ

Γ |- π2〈M,N〉 = N:τ Γ |-〈π1P,π2P〉 = P:σ×τ

For coproduct types, i.e. disjoint union types, we
add to the λ2(Σ) calculus the rules for introduction
coproduct by injections (coprojections) κ1:σ→σ+τ
and κ2: τ → σ + τ :

 Γ |- M :σ Γ |- N:τ

 Γ |- κ1M:σ + τ Γ |- κ2N:σ + τ

For elimination rule we introduce new operation
unp similar to unpack operation in [2]. It deals for a
term Γ |- P:σ + τ of coproduct type as ’case’. Let
Q:υ containing variable x:σ and/or x’:τ . Then
− if P is in the type σ then do a term Q:υ with P

for the variable x:σ,
− if P is in the type τ then do a term Q’:υ with P

for the variable x’:τ .

The operation unp binds variables x:σ and x’:τ .
Then the corresponding rule for elimination
coproduct is

 Γ |- P:σ+τ Γ , x:σ |- Q:υ Γ, x’:τ |- Q’:υ

 Γ |- unp P as [κ1x in Q , κ2x’ in Q’]:υ

If the context contains a variable of empty
coproduct type z: 0 then the term with such context
is empty cotuple [] :

 Γ, z:0 |- []:υ

The following rules define type conversion for
coproduct types

 Γ |- M:σ Γ, x:σ |-Q:υ Γ, x’:τ |-Q’:υ

 Γ |- unpκ1M as [κ1x in Q , κ2x’ in Q’] = Q[M/x]:υ

Γ |- N:τ Γ, x:σ |- Q: υ Γ, x’:τ |- Q’:υ

Γ |- unpκ2N as [κ1x in Q , κ2x’ in Q’] = Q’[N/x’]:υ

The last rule describes that if empty coproduct type
variable is in the context, then every term with this
context has to be convertible into empty cotuple

 Γ , z:0 |- M:υ

 Γ , z:0 |- []:υ

In constructing corresponding classifying
category Class2(Σ) for λ2(Σ) calculus over
Church’s types we have the advantage that we can
use types instead contexts. Finite product types
ensure that any term M:τ with context

 v1:σ1 ,…,vn:σn |- M:τ

is in one-to-one correspondence with a term N:τ of
the same type with a single variable of product type

 v:σ1×…× σn |- N:τ .

If n= 0 then v:1 .
 The category Class2(Σ) for λ2(Σ) calculus has
then
− as objects Church’s types σ∈ T2 constructed

from basic types of signature Σ,
− as morphisms between types σ→ τ equivalence

classes [M] of terms with respect to conversion
of types v:σ |- M:τ .

It is easy to see that the empty coproduct type 0
is the initial object and the empty product type 1 is
the terminal object of the classifying category
Class2(Σ). For every Church’s type σ there is a
term z:0 |- []:σ and to every term z:0 |- M:σ from
the last conversion rule holds z:0 |- M = []:σ , so
that the equivalence class

 [M] = [[]]: 0 → σ .

6. CHURCH’S FIBRATION

Until now we presented the sketch of a model of

Church’s type theory in usual, i.e. many-typed
algebraic sense [7,8]. We intend to reason about
scientific problem solving not only in the
framework of many-typed algebras but also in the
framework of Gentzen’s logic, general type theory
based on basic types in the framework of the
language of categories. To do this we generalize the
previous section in the theory of categories.

Let B be a category that is cartesian and has
finite coproducts and which objects are set-theoretic
structures as in section 4 above. We say that a
model of classifying category Class2(Σ) is a functor

 M : Class2(Σ) → B

which assigns to every object σ in Class2(Σ) an
object (carrier set) [| σ |] in B and to every morphism
between Church’s types σ→τ in Class2(Σ) a
morphism (function) between corresponding
images.
 Under proposition-as-types approach the
Church’s type theory corresponds to proof theory of
propositional logic, where type constructors ’→’ ,
’×’ and ’+’ correspond to logical connectives for
implication ’⇒ ’ , for conjunction ’∧’ and for
disjunction ’∨ ’, respectively. Types 0 for empty
coproduct type and 1 for empty product correspond
with logical constants ⊥ (bottom, false) and T (top,
true), respectively. In this approach we can
construct from propositions as objects and from
propositional connectives as morphisms also
cartesian category with finite coproducts.
 In a fibred description of a type theory [5] the
contexts form objects of a base category B . These
objects we can generalize as indexing objects. So,
we can consider every set of Church’s types [| T2 |] ,
where T2 is a set of Church’s types over a signature
Σ , as an indexing object in a base category of fibred
category theory. Every indexing object of a base

Acta Electrotechnica et Informatica No. 2, Vol. 6, 2006 5

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

category indexes objects of a fibre category EI over
this object in pointwise manner. Because the set of
Church’s types [| T2 |] of a signature Σ is actually a
special case of an indexing object in a base
category, we can also form Church’s fibred
category, whose objects are pointwise indexed by
elements of this Church’s type set [| T2 |] .
 Generally, let B be a cartesian category with
finite coproducts. If we consider B as a base
category, we construct a category E of fibrations
which objects are indexed by objects (types) from B
as follows:
− objects are pairs (I, X),such that I is indexing

object and X is indexed object both from B,
− morphisms (u,f): (I, X)→ (J, Y) are pairs of

morphisms u: I→ J and f: I× X→ Y in B,
− identity on object (I, X) is a pair (idI , π2),

where π2: (I, X)→ I is second projection,
− a composition

 (u,f) (v,g)
 (I, X) (J, Y) (K, Z)

is a pair (vο u, gο 〈 u ο v, f 〉), where

 〈 u ο π1 , f 〉 g
 I× X J × Y Z

A projection functor

 p: E → B

from the category E of fibrations defined by

 p (I, X) = I , and
 p (u, f) = u

is Church’s fibration on B. It is a fibration because
for every object (J, Y) from B we can find
cartesian lifting of u:I → J from B in the category
E as a pair (u, π2):

 E (u, π2)
 (I, Y) (J, Y)
 p

 u
 B I J

For any fixed object I from the base category B the
subcategory EI of objects indexed by I is fibre
category over I. Morphisms in EI are vertical
morphisms. This fibre category is also called
Church’s slice category and is denoted by B//I. Its
objects are objects X from B indexed by I and its
morphisms X → Y are morphisms I× X → Y in B.
These ideas we illustrate in Fig. 2.

 E

 p

 M
 Class2(Σ) B

Fig. 2 Church’s fibration

It is easy to see that such a classifying category and
Church’s slice category enable to start logical
reasoning from proposition-as-types and proofs-as-
morphisms approach [9]. Of course, this very simple
logic allows to derive only simple results.

7. CONCLUSION

 After introducing the Church’s types we follow
our research by defining such new type
constructions in our logical reasoning that are able
to capture not only the syntax of a logical language
as it is excellently written in Gentzen’s sequent
calculus. We would like to construct these new type
constructions in such a manner that they enable
various semantics as algebraic topological, category
theoretical and game semantics. We plain to use
them in the development of an assistent system for
scientific problem solving by mathematical
machines.

This work was supported by VEGA Grant
No.1/2181/05: Mathematical Theory of Programming and
Its Application in the Methods of Stochastic
Programming.

REFERENCES

[1] V.Novitzká: Logical Reasoning about

Programming Mathematical Machines, Acta
Electrotechnica et Informatica, 3,No.3,2005,
pp.50-55

[2] B.Jacobs: Categorical Logic and Type Theory,
Elsevier, Amsterdam, 1999

[3] J.-Y.Girard: Linear Logic, Theoretical Computer
Science, 50, 1987, pp.1-102

[4] R.Hindley, J.P.Seldin: Introduction to
Combinators and λ calculus, Cambridge
University Press, 1990

[5] C.A.Hermida: Fibrations, Logical Predicates and
Indeterminates, PhD. Thesis, Univ.Edinbourgh,
1993

[6] M.Barr, C.Wells: Toposes, Triples and Theories,
Springer , 2002

[7] V. Novitzká,V. Novitzký: Metamathematical fun-
damental concepts of computer programming, In:
Kátai, I.(Ed.): Annales Universitatis Scientiarum
Budapestinensis de Rolando Eotvos Nominatae,
Section Computatorica Vol.22, Budapest,
Hungary, 2004, pp.193-212

[8] B.Ehrig, B.Mahr: Fundamentals of Algebraic
Specifications 1,2, Springer , 1985, 1990

[9] J.-Y.Girard, P.Taylor, Y.Lafont: Proofs and
Types, Cambridge University Press, 1990

BIOGRAPHY

Valerie Novitzká defended her PhD Thesis: On
semantics of specification languages at Hungarian
Academy of Sciences in 1989. She works at
Department of Computers and Informatics from 1998,
firstly as Assistent Professor, from 2004 as Associated
Professor. Her research areas covers category theory,
categorical logic, type theory, classical and linear logic
and theoretical foundations of program development.

