
Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006 1 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

DEBUGGING OF PARALLEL PROGRAMS 
 
 
 

Marek VYSOKÝ 
Department of Computer and Informatics, Faculty of Electrical Engineering and Informatics 

Technical University of Košice, Letná 9,042 00 Košice,  Slovak Republic, E-mail: vyshko@centrum.cz 
 
 

SUMMARY 
How to debugging programs running in concurrency environment using log  files. Types of record in log file. Generating 

statistic report of using data source, detecting of logical mistakes, detecting of very used data source, detecting errors of 
recourses allocation by using curve of failed access in critical section. Detecting possible dead lock state from log files 
converting log files to database and using SQL query. 
 
Keywords:  debugging, parallel, program, log files, resource allocation 
 
 
1. INTRODUCTION 

 
We have more different models for design of 

software products. Phases of design are different in 
each model, but all models contain phases: 

• Analysis  
• Implementation  
• Debugging 
• Testing  
• Introducing system 
• Maintenance 

 
We need watch correct functionality of designed 

software product already in phase implementation. 
In simple one thread systems is possibility 
connection to instruction and debugging program 
instruction by instruction, using good or worst 
debugger programs. 

Parallel systems running in concurrency 
environment have many threads and there are 
problems connecting thread’s instructions. Problems 
are following: 

• Debugging of instruction had overhead. 
Start and stop of instruction take time and 
during this time could make changes by 
other thread. 

• It is impossible manage debugging of 
several threads and result can be out of 
focus. 

[1] 
In this case we have to choose other way, 

wherein overheads of debugging are minimal and 
result is not out of focus.   

 
Adequate way debugging of parallel programs is 

creating log files. We can describe this as inserting 
information about rise event to log file. 

 
To achieve required result, we have to reckon 

with log files already in first phases of design. 
Investment to development of logging facilities is 
very important, because quality design logging 
facilities provides simply reusability and retrieving 
of investment.   
 

2. LOG RECORD  
 

Type of log record is depend on type of 
debugging data  
 
Minimal record should be involved: 
[date and time] [source] [type of event] [event] 
[additional information] 
 
Example: 
[24.10.200314:30:001][Proces1][information] 
[open file][c:\abcd.txt] 
[24.10.2003 14:30:001][Proces2][error][file not 
found][c:\abcd.txt] 
 
Types of events are possible divide to several 
categories 
In practice are often using following categories:   

• Information – event, which had been 
occurred in system, but not had affect on 
continuity of system and is used to 
monitoring of event.  

[24.10.2003 14:30:001][Proces1][information][open 
file][c:\abcd.txt] 
 

• Warning – event, which had been occurred 
and had affect on continuity of system but 
not evoked failure of executed operation. 

[25.10.2003 17:10:135][s1][warning][count of login 
achieved maximum] 
 

• Error – event, which had been occurred and 
had affect on continuity of system and 
evoked failure of executed operation 

[26.10.2003 10:16:555][a6][error][object has null 
value] 
 

• Critical error – event, which had been 
occurred and had affect on continuity of 
system and evoked failure of executed 
operation and program 

[26.10.2003 10:16:555][z3][error][memory is not 
available] 
 



2 Debugging of Parallel Programs 
 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

In object oriented design of log facilities we need 
design simple configurable and reusable facilities. 
We have many reasons to debugging of parallel 
processes. 
 
3. DETECTING OF LOGICAL MISTAKE  

 
To detecting logical mistake we are need 

implementing methods of conditional writing to log 
file. It’s mean that apart from standard input 
parameters to log file record, it is extending by next 
parameter and that is condition of writing. There are 
useful implementing methods of positive writing, 
where record is inserting in log file if condition is 
true and negative writing where record is inserting to 
log file if condition is false. Combination of 
conditional writing and standard writing is possible 
detecting of logical mistakes and exceptions. We 
able to watching variable by using of additional 
information, but in this case are disadvantaging that 
log file can growing up. To eliminate many not 
important record we can configured log facilities by 
config file, which setting up level and range of log 
records. In practice are using xml document, which 
application reads on start and log facilities decide by 
setting in xml, which record will be writing. 
 
4. DETECTING OF CONCURRENCY FOR 

SHARED SOURCES 
 

On parallel processes rise problems of 
concurrency for shared sources (files, databases, 
hardware...).  

Critical section – rises in concurrency for one 
shared source. Critical in this case are: 

• Process overload source and do not able 
access to source for other processes. 

• Processes are reading/writing data by 
themselves without commit (dirty read/write) 

01 read ZA  
02 ZA=ZA+1 
03 write ZA 

This small program, which counts of 
access to source ZA has been executed 
by two parallel threads can evocate dirty 
read and write in case, that:     
ZA has in source value 0 
Process 1 and 2 executed program in 
order: 
P1 execute       P2 execute 
01 ZA=0   
   
02 ZA=ZA+1  
        01  ZA=0 
03 ZA=1   
        02  ZA=ZA+1 
    
        03  ZA=1 
After executed programs by processes is 
certain that counter ZA in source shows 
1, but there was two access to source 
ZA. 

Concept of allocated source is very difficult area 
and using many of methodologies and algorithms for 
example semaphores, transaction atc. 
[3]  

In implementation of difficult processing of data 
is useful recording and detecting success in 
concurrency of processes to shared source. In object 
oriented design we are extending methods for record 
input and output into and from critical section. In 
this case is important recording success of using 
source and time of staying in critical section. Record 
is following: 
 
[Datetime][Process][Section:Source][Input/Output] 
[(No)Succes] 
 

Creating couple of input and output we are 
getting time of stay in critical section and getting 
information about success of source allocation. 
 
 
 
 
 
 
 
                                                                                                                
 
 

t 
 

Fig. 1   Input and output from critical section 
 
 

We have to transform records from log file into 
table. This table is representation time of abidance in 
critical section.    
 
 
CREATE TABLE SECTION  
( 
 ID int, 

DtInput datetime, 
DtOutput datetime 
Process varchar(20), 
Source varchar(20), 
Success varchar(1) 

) 
Then for each record in table SECTION we are 

generating count of parallel request on source in 
critical section during abidance of process in critical 
section.  
 
Query is following: 
 
In first step we load parameters from record for 
which we are finding count of parallel input.   
 
For all IDs in table Section make 
 
Select @dtInput= DtInput, @dtOutput=DtOutput, 
@Process =Process, 



Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006 3 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

 @Source=Source from SECTION  where 
ID=@ID 
 
Then select counts for this input 
 
Select @C=count(*) from SECTION  
Where ID!=@ID AND Source=@Source  

 AND NOT  
( (DtInput<= @DtInput  
AND  
DtOutput <= @DtOutput) 
OR 
(DtInput>=@DtInput 
 AND  
DtOutput>=@DtOutput) 
  ) 

this sequence we are using for each record in table 
SECTION 
 

Curve of access  ( )Ca t  – are counts of requests 
on source in time interval 
 

Curve of satisfied access ( )Csa t  (fig. 2) – are 
counts of requests, which finish with success of 
allocating of source. It‘s created by add condition in 
query 1 
Success=‘Y‘ 
 
 
c 
     
     Av  
 
 
  

    
            
            t       

 
Fig. 2  Curve of  satisfied access 

 
 

Curve of not satisfied access ( )Cnsa t  – are 
counts of requests, which finish with failure of 
allocating of source. It‘s created by add condition in 
query 1 
Success=‘N‘ 
 

( )P t – Count of changes in time t  
Av  – Average value of request on source in critical 

section 
 

( )
( )

Ca t
Av

P t
= ∑     (1) 

 
Avn – Average value of not satisfied request on 

source in critical section  
 

( )
( )

Cnsa t
Avn

P t
= ∑   (2) 

5. DETECTING ERRORS IN RESOURCE 
ALLOCATION 

 
Problems with allocating source in critical 

section have different rise.  
• Source is not able to assigning data (fig. 3).   

This state is finding if average value of success 
access are equal to zero. It’s mean:  
 
lim ( ) lim ( )

t t
Ca t Cnsa t

−>∞ −>∞
=  

and (3) 
lim ( ) 0

t
Csa t

−>∞
=  

 
and second additional information is that in log 
file exist errors of failure source handling. 
 

( )Ca t  
                

 
 
 
 
 
 
     
 

     t                              
 

( )Cnsa t  
 
           
 
 
 
 
 
 
 
                                                                    t  
 

( )Csa t  
     
           
 
 
 
      

     
                                                             
 

                                                                          t
  
 

Fig. 3  Example for state source is not able assign 
data 

 
• Source is overloading by one process (fig. 4), or 

assigning technique is too slow. 
This state is finding if average value of success 
access is too low. 



4 Debugging of Parallel Programs 
 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

lim ( )
t
Ca t Ava

−>∞
=  

  and 
lim ( )

t
Cnsa t Avns

−>∞
=                     (4) 

and 
lim ( )

t
Csa t Avs

−>∞
=  

and    
Avs Avns Ava≤ ≤    

 
When 1Avs =  then source is blocking by one 

process. 
When  Avs  is too low or Avns  is too high then 

assigning technique for resource is too slow. 
. 
 

( )Ca t  
 
          

   Av  
 
 

 
 
 
 
                                                                        t 

( )Cnsa t  
 
 
 
 
    Avns  
 
 
 
 
                                                                           t 
 
 
  ( )Csa t                   
 
             
 
    Avs  
 
 
 
 
          t 

 
Fig. 4  Example for source is overloading by one 

process 
 
 
6. DETECTING DEADLOCK STATE  
 

What is dead lock state in system? It’s occurs 
that one process lock access to one source and then 
need access to other source data, which is locked by 
other process and this process is waiting to data from 

source locked by first process. Both processes are 
waiting to unlock source and access to data failed. 
[2] 
Example of programs which can produce deadlock: 
     Process1                    Process2     

Read Z1                      Read Z2    
Lock Z1   Lock Z2  
Read Z2   Read Z1 
Z1=Z2+Z1                Z2=Z1+Z2 
Write Z1                Write Z2 
UnLock Z1                 Unlock Z2 

[5] 
We insert following record for request to source data 
 
[Datetime][Process][Source][Type] 
[24.10.200314:30:001][process1][source1][requestst
art] 
 
and for finishing request to source create record  
  
[Datetime][Process][Source][Type] 
[24.10.200314:30:031][process1][source1][requestst
op] 
 
we can transform log file to data table by creating 
table  
 
REQUEST  
(                                                           Sn 
 ID int, 

DtInput datetime, 
DtOutput datetime 
Process varchar(20), 
Source varchar(20) 

) 
 
we are inserting request, it is  coupling records from 
log file where DtInput is when type=requeststart and 
DtOutput is when type=requeststop for same source 
and process.  
 

For detecting deadlock state we are need 
inserting record with following information about 
lock source. 
 
[Datetime][Process][Source][Lock] 
[24.10.2003 14:30:001][process 1][source 1][lock  ] 
 
and for unlock source insert record : 
 
[Datetime][Process][Source][Unlock] 
[24.10.200314:30:121][process 1][source 1][unlock] 
 
we can transform log file to  table   
 
CREATE TABLE LOCK  
( 
 ID int, 

DtInput datetime, 
DtOutput datetime 
Process varchar(20), 
Source varchar(20) 

) 



Acta Electrotechnica et Informatica  No. 3, Vol. 6, 2006 5 

ISSN 1335-8243 © 2006 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic 

Insert coupling records for lock and unlock source.  
Detecting of deadlock state is following: 
In first step load parameter for all records in table 
Lock  
 
Select @dtInput= DtInput , @dtOutput=DtOutput, 
@Process =Process, 
 @Source=Source from LOCK  where ID=@ID 
 
create temporary table where detect couple of input 
and output to critical section  with query  
 
Select Process,Source INTO #tmp_request from 
REQUEST  
Where Source=@Source  

 AND NOT  
( (DtInput<= @DtInput  
AND DtOutput <= @DtOutput) 
 
OR 
 
(DtInput>=@DtInput 
 AND DtOutput>=@DtOutput) 
         ) 

 
and lock temporary table  
 
Select Process,Source INTO #tmp_lock from 
LOCK  
Where Source=@Source  

AND  
NOT  
( (DtInput<= @DtInput  
AND DtOutput <= @DtOutput) 
OR 
(DtInput>=@DtInput 
AND  
DtOutput>=@DtOutput) 
  ) 

 
and create table   #tmp_lock_request with query 
 
Select l.Process ProcessLock,r.Process 
ProcessRequest, Source  
INTO #tmp_lock_request 

from #tmp_lock  
join #tmp_request r on  l.Source=r.Source 
 
and deadlock is detecting by query 
 
select * from #tmp_lock_request  t1  
     join #tmp_lock_request t2 
              on t1.LockProcess=t2.RequestProcess 
 AND  

t1.RequestProcess=t2.LockProcess 
  
by this technique we are detecting state, where one 
process lock data for other process and contrariwise. 

In this case both process finish with not satisfied 
result. 
 
 
7. CONCLUSION 
 

During design and during introducing phase is 
necessarily ensuring consistency and right 
functionality of software product.  When we are 
making investments to logging facilities it is 
probably that we are able to take advantage of it in 
introducing and maintenance software product. We 
are able to configuring logging facilities for 
detecting deadlocks and we are able to provide 
statistical monitoring of using data sources. Next 
advantage of logging facilities is that when programs 
rising error or exception we are able to detecting 
place and reason of error and make correction of 
problem. Good service is ability of monitoring count 
of users currently using resource and count of 
handling users at time. We able to growing up 
hardware facilities or managing database indexing in 
this case. Other view on log facilities is security 
aspect. It is powerful utility to monitoring security 
incident of users. We are able to monitoring access 
to each data sources and detect and prevent not 
authorized access and diversion of data sources.  
 
 
REFERENCIES 
 
[1] Performance Measurement and Debugging  

http://www.lindaspaces.com/book/chap4.htm, 
2005 

[2] Ben Adida, Detecting and Breaking Deadlock 
http://web.mit.edu/6.033/1997/reports/r03-
ben.html. 2005 

[3] A Classic Problem - Dining Philosophers 
www.isi.edu/~faber/cs402/notes/lecture8.pdf 
2005 

[4] how to detect deadlock? 
www.soe.ucsc.edu/classes/ 
cmps111/Fall04/Slides/cmps111-chap3.pdf 

[5] Pun H. Shiu, Yudong Yudong Tan,Vincent J. 
Mooney,  A Novel Parallel Deadlock Detection 
Algorithm and Architecture, Georgia Tech, 
2001 

 
 
BIOGRAPHY 
 
Marek Vysoký was born in 1978. He graduated 
(Ing.) with distinction at the Faculty of Electrical 
Engineering and Informatics at Technical University 
in Košice in 2001. He is external PhD. Student at 
Department of Computer and Informatics at 
Technical University in Košice. He deals with 
security informatics systems. 

 
 




