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SUMMARY 
In this article we are interested in proving of linear logic sequents. In linear sequent calculus one sequent can have more 

than one proof tree. We choose the best among them satisfying some criterion. There can occur some non-deterministic 
choices in the process of building the proof of a sequent. We introduce probabilities to these proof constructions. Therefore 
we can apply one method of stochastic programming (value iteration method) to determine the optimal way in the proof 
search. 
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1. INTRODUCTION 
 

Within the context of the construction of correct 
programs, some applications are based on the 
following paradigms: proofs-as-programs and proof 
search-as-computation. These paradigms are called 
the Curry-Howard correspondence that associates a 
λ-term to a proof in intuitionistic logic [7]. From a 
given specification, expressed in the given logic, we 
can construct a proof by the first paradigm 
mentioned above and extract a program from this 
proof. The second paradigm focuses on the proof 
construction: the proof search process corresponding 
to computation. Thus the common problem is to be 
able to construct proofs in the given logic. Here we 
consider linear logic (LL) that has some applications 
to computation, proof construction, for concurrent or 
functional programming [12]. 

Many works on linear logic and their 
applications to computer science [1, 4, 5, 11, 13] 
involve methods and techniques to deal with the 
problem of proof construction in linear sequent 
calculi. We propose algorithms and techniques by 
the methods of stochastic programming for proof 
construction in linear logic. 

In linear logic proof construction there are non-
determinisms like the non-deterministic selection 
between rules for different connectives and the non-
deterministic choice in the case of applying the rule 
for the ⊕  connective, where we cannot affect the 
choice of the rule ⊕1 or ⊕2 and also for the ⊗  
connective, where we have n2  ways of partitioning 
the context. ⊕  is called an external choice. On the 
other hand there exists an internal choice &, which 
expresses that we can control this choice. We 
introduce probability to the linear logic rules. We 
define the optimal strategy using value iteration 
method, which is a method of stochastic 
programming, that is a framework for modeling 
optimization problems that involve uncertainty.  
 

2. PROOF SEARCH 
 

Linear logic has been introduced by Girard as 
resource-sensitive refinement of classical logic. It is 
a strong system of logic and it has full features of 
first order and intuitionistic logic and additionally 
supports concepts of disposable resources and their 
consumptions. Linear logic provides a mechanisms 
to destroy and construct formulas in the process of 
proving, where formulas represent actions. 

In classical logic, there is one conjunction ( ∧ ) 
and one disjunction (∨ ); in linear logic, there are 
two of each (conjunctions: ℘ , ⊗ ; disjunctions: &, 
⊕). We are using one sided sequents to reduce the 
number of rules considered. The linear logic 
connectives and rules are presented in [6]. 

In linear logic proof search Andreoli formulated 
in [2] the problem of the principal formula. In his 
procedure SEARCH when an inference rule is to be 
applied at a given node, two choices must be made: 

1. choice of a (non atomic) principal formula in the 
sequent at that node; 

2. choice of an instance of the inference rule 
associated with the topmost connective of the 
selected principal formula. 

Although all forms of "don‘t know" non-
determinism cannot be eliminated in these choices, a 
definite permutation of inference rules shows that 
some of these choices are not significant and either 
need not be considered at all or could be treated 
deterministically ("don‘t care" non determinism). 

Linear connectives are divided into two groups 
which behave differently with respect to the choice 
of the principal formula. 

• The ''asynchronous'' connectives: 

 Multiplicative: ⊥ , ℘ , ? 
 Additive: T , &, ∀  
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• The ''synchronous'' connectives: 

 Multiplicative: 1, ⊗ , ! 
 Additive: 0, ⊕ , ∃  

 
The dual of an asynchronous connective is 

synchronous and vice versa. A non-atomic formula 
whose topmost connective is synchronous (resp. 
asynchronous) is called a synchronous (resp. 
asynchronous) formula. The difference in search 
behavior between these two groups can be 
characterized as follows. 

If the principal formula which has been selected 
in a sequent is asynchronous, then there is one and 
only one applicable instance of the corresponding 
inference rule, whereas if it is synchronous, one 
among several (or sometimes no) instances has to be 
selected. 

Thus, if the synchronous formula A⊗B is 
selected as principal formula in the sequent ├ Γ, 
A⊗B, many possible instances of the corresponding 
inference rule ⊗ can be applied, corresponding to 
the different partitions of Γ along the two branches. 
Similarly, a principal formula of the form A⊕B 
requires the choice between the left ⊕1 and right ⊕2 
instances of the corresponding inference rule. On the 
other hand, when an asynchronous formula is 
selected as principal formula, there is a unique 
applicable instance of the corresponding inference 
rule and its application is therefore deterministic. 
Andreoli summarized these properties as: 
• Asynchronous → Determinism 

• Synchronous → Non-determinism 

He proposed a proof normalisation, which can be 
summarized as follows: 
• If the sequent contains some asynchronous 

formulae (at least one), then any one of them can 
be immediately and randomly selected as the 
principal formula (''don‘t care'' non-
determinism). Furthermore, as the formula thus 
selected is by hypothesis asynchronous, the 
instance of inference rule to apply is completely 
determined. Consequently, as long as the sequent 
contains an asynchronous formula, the search 
can be made completely deterministic. 

• When all the asynchronous formulae have been 
decomposed, then a principal formula must be 
selected non deterministically. But, as soon as 
one formula has been selected, the search can 
focus on it, i.e. subsequently select 
systematically the subformula stemming from 
the initial one as principal formula, and do so as 
long as this subformula is synchronous. 

Asynchronous formulae are decomposed 
immediately as soon as they appear in the sequent 
(hence their name ''asynchronous''). Synchronous 
formulae are delayed until all the asynchronous 
formulae have been decomposed, and must be non 
deterministically selected to be processed; in other 
words, synchronous connectives synchronize the 

selection process and the decomposition process 
(hence their name ''synchronous''). But once a 
synchronous formula starts being decomposed, it 
keeps on being decomposed till a non synchronous 
(i.e. atomic or asynchronous) formula is reached. 
This means that in a normal proof, each formula is 
viewed as a succesion of layers of asynchronous 
connectives and of synchronous connectives; each 
synchronous layer is decomposed in a critical 
section, i.e. which cannot be interrupted. It is called 
a ''critical focusing section'' of the proof. 

''Don‘t know'' non-determinism appears in the 
search only during the critical focusing section, 
which involve synchronous connectives 
(asynchronous connectives generate only ''don‘t 
care'' non-determinism). However, non-determinism 
can be considerably reduced by the following 
condition imposed on normal proofs. Let`s partition 
arbitrarily the atomic formulae into two dual disjoint 
classes: positive atoms X and negative atoms X┴. In 
a normal proof, when a critical focusing section 
reaches a negative atom, then the inference rule of 
Identity (id) have to be applied. This condition 
reduces the amount of non-determinism involved in 
the critical sections. 
 
3. OPTIMAL PROOF SEARCH USING 

STOCHASTIC PROGRAMMING 
 

In this section we apply stochastic programming 
to determine the optimal strategy for linear logic 
proof search. We can use Markov decision process 
(MDP) because it models decision making in 
situations where results are partly random and partly 
influenced by the decision maker. This holds in 
linear logic proof construction where we can 
sometimes force the way of building the proof but in 
the non-deterministic cases as ⊕  and ⊗, we have no 
permission to select one of some possible ways to 
continue. Therefore we assign probabilities to these 
actions, which represent the rules, which we can 
apply in each stage of the proof construction and we 
compute the most probable strategy by value 
iteration method. 

A stochastic process, or sometimes random 
process, is the counterpart of a deterministic process 
(or deterministic system) considered in probability 
theory. Instead of dealing only with one possible 
“reality” of how the process might evolve under 
time, in a random process there is some 
indeterminacy in its future evolution described by 
probability distributions. This means that even if the 
initial condition (or starting point) is known, there 
are more possibilities the process might go to, but 
some paths are more probable and others less. 

In the case of discrete time, a stochastic process 
amounts to a sequence of random variables known 
as a time series (for example Markov chain). In 
probability theory, a stochastic process has the 
Markov property if the conditional probability 
distribution of future states of the process, given the 
present state and all past states, depends only upon 
the present state and not on any past states, i.e. it is 
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conditionally independent of the past states (the path 
of the process) given the present state. A process 
with the Markov property is usually called a Markov 
process. 

Markov decision processes (MDPs) provide a 
mathematical framework for modelling decision-
making in situations where outcomes are partly 
random and partly under the control of the decision 
maker. MDPs are useful for studying a wide range 
of optimization problems solved via dynamic 
programming. 

Stochastic programming [9] is a framework for 
modeling optimization problems that involve 
uncertainty. Its models are similar in style but take 
advantage of the fact that probability distributions 
governing the data are known or can be estimated. 
The goal here is to find some strategy that is feasible 
for all (or almost all) the possible data instances and 
maximizes the expectation of some function of the 
decisions and the random variables. More generally, 
such models are formulated, solved analytically or 
numerically, and analyzed in order to provide useful 
information to a decision-maker. 
 
3.1. Markov Decision Process 
 

Consider a system being observed over a finite or 
infinite time horizon split up into periods or stages. 
At each stage, the state of the system is observed, 
and a decision (or an action) concerning the system 
has to be made. The decision influences 
(deterministically or stochastically) the state to be 
observed at the next stage, and depending on the 
state and the decision made, an immediate reward is 
gained. The expected total rewards from the present 
stage until the end of the planning horizon is 
expressed by a value function. The relation between 
the value function at the present stage and the one at 
the following stage is expressed by the functional 
equation. Optimal decisions depending on stage and 
state are determined backwards step by step as those 
maximizing the right hand side of the functional 
equation. This way of determining an optimal 
strategy is based on the Bellman principle of 
optimality which says: "An optimal strategy has the 
property that whatever the initial state and initial 
decision are, the remaining decisions must constitute 
an optimal strategy with regard to the state resulting 
from the first decision". 

Markov Decision Process: 

1. Definition: MDP is defined as a 4-tuple 
 ( S, A, TP, R ): 
• S is a finite set of states, 
• A is a finite set of actions which permits the 

transition between states. There is generally a 
discrete number of actions. 

• TP: S×A×S → <0,1> is a transition 
probability which encodes the probabilistic 
effects of actions; T (s, a, s') is the probability 
to go from state s to state s', when action a is 
performed. 

• R: S → R is the reward function used to 
specify the goal to reach and the dangerous 
parts. R(s) gives the reward or penalty for 
being in state s. 

2. Optimal strategy: In MDP, we know at each 
instant the current state. Actions must provide 
all the information for predicting the next state. 
Once the set of states S has been defined and the 
goal state chosen, then an optimal strategy σ: S 
→ A gives the optimal action to execute in each 
state of S in order to reach the goal state(s) 
(according to a given optimality criterion). 

The two most important algorithms used to 
calculate the optimal policy are: Value Iteration [3] 
and Policy Iteration [8]. The Value Iteration 
algorithm proceeds by little improvement at each 
iteration and requires a lot of iterations. Policy 
Iteration however, yields greater improvement at 
each iteration and accordingly needs fewer 
iterations, but each iteration is very expensive. 
 
3.2. Optimal Proof Tree Planning Method  
 

We specify MDPs approach in our case of 
searching for an optimal proof in linear sequent 
calculus. 

 
1. Definition: of ( S, A, TP, R ): 

• S = {s1, s2,…, sn} where every state is 
associated to the set of sequents at each stage. 

• A = {{ai}, {ai1, ai2,…, ai1},…, {ai1, ai2,…, aik}} 
where i is the number of rules required for the 
proof construction, and each action represents 
rules which we can apply for sequents at each 
stage. 

• The transition probability remains the same 
as defined, i.e. TP: S×A×S → <0,1> where 

a
ijp  is the probability to go from state si to 

state sj, when action a is performed. 
• We modify the reward function R: S×A → R 

where a
ir  gives the reward for being in state 

si and performing action a. 

2. Optimal strategy: An optimal strategy σ: S → A 
gives the optimal action to execute in each state 
of S in order to reach the goal state(s). 

∀  si ∈  S: σ(si) ∈  A 
 
3.3. Value Iteration Method  
 

Under finite planning horizon the value iteration 
method is excellent. The optimal strategy is 
determined sequentially using the functional 
equations [10]: 
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where the action a maximizes the right hand side, 
which is optimal for the state si at the stage n. The 
function )(nfi  is the total expected rewards from 
the process when it starts from state si and will 
operate for n stages before termination. Thus )0(if  
is the salvage value of the system when it is in state 
si. At each stage an optimal strategy is chosen using 
these functional equations. 

An optimal strategy is one with maximum 
expected value. 
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In this equation in each stage we choose the 

action which maximizes the function. 
 
4. APPLICATION OF THE VALUE 

ITERATION METHOD 
 

Suppose we have a sequent ├ a ⊗ b, a┴ ℘  b┴. 
We construct the proof trees by Andreoli’s proof 
normalisation. We want to decide which one is 
optimal. We use the above mentioned value iteration 
method to compute the optimal strategy. 

Possible proof trees look like that on Fig. 1: 
 

 

 
 

Fig. 1  Proof trees obtained by proof normalisation. 
 

There are n2  ways of partitioning the context  
a┴ , b┴ in the case of the sequent ├ a ⊗ b, a┴ , b┴. 
Hence we got four proof trees. We have to decide, 
which of these are optimal in the sense that every 
leaf is an axiom. 

Therefore we apply MDP to these proof trees to 
compute the optimal strategy. The set of states, 
actions, the reward function and transition 
probability function are described below. 

 
S = {s1, s2, s3, s4, s5, s6, s7} 
A = {a1, a2, a3} 
where a1 = {⊗}, a2 = {℘}, a3 = {id, id} 
 
The reward function defines for all states the 

most suitable action to perform and the probabilities 
of the transition from one state to another are 
determined by the chance of realizing the defined 
transition under a given action. 

 
 

Fig. 2  The set of states and the reward function. 
 

 

 
 

Fig. 3  The probability function. 
 

In this example we are proceeding by the 
following algorithm: 
 
Procedure: value iteration (TP, R) 
Inputs: TP is transition probability specifying a

ijp  

R is a reward function a
ir  

Outputs: σ [s] is an optimal strategy 
  f [s] is a value function 

 
for s∀ do  
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end for 
return σ,kf  
 
For the initial state 1s  the functional equation is: 
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It is a recursive function which values are calculated 
by the functional equations (1) and these values are 
presented in the table below. 
The optimal strategy for the initial state 1s  is 
computed by the equation (2) as follows: 
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The total expected rewards and the optimal 
strategy are presented in the following tables 
 

 
 

Fig. 3  Total rewards and the optimal strategy. 
 

In this way we got the optimal strategy for the 
proof construction, i.e. for all states we get the set of 
actions which maximize the total expected rewards. 
 
5. CONCLUSION 
 

In our contribution we proposed a stochastic 
programming method (value iteration method) in 
linear logic proof construction. This new approach is 
used mainly in the case, when a "don‘t know" non-
determinism occurs. In the case of such a non-
determinism the branch of a proof tree is chosen 
only with a certain probability. We used Markov 
decision process because it models decision making 
in situations where the results are partly random and 
partly influenced by the decision maker. It is similar 
to linear logic proof construction, where in some 
cases we can force the way of building the proof but 
in non-deterministic case like ''⊕ '' we have no 
permission to select one of the two possible ways to 
continue. Also in the case of the synchronous 
connective ''⊗'' many possible instances of the 
appropriate inference rule can be applied, 
corresponding to different partitions of the context 
along two branches. 

We presented by a concrete example for the 
above mentioned connective ⊗ finding the most 
probable paths in searching for the proof of a given 
linear sequent. In one part of the proof search we 
applied Andreoli’s proof normalisation. It was in the 
case of the selection of a principal formula. In such 
a way we have build the possible proof trees. Then 
we investigated asynchronous formulas. We 
assigned probabilities to actions representing 
inference rules of linear sequent calculus and we 

have computed the most probable strategy for 
building correct proofs by maximizing the expected 
reward of functional equations using the algorithm 
of the Value Iteration Method. 
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