
Acta Electrotechnica et Informatica Vol. 8, No. 3, 2008, 61–65 61

ISSN 1335-8243 © 2008 FEI TUKE

STORING DIMENSIONS AND UNITS OF PHYSICAL QUANTITIES
IN A RELATIONAL DATABASE

Matúš CHOCHLÍK
Department of Informatics, Faculty of Management Science and Informatics,

University of Žilina, Univerzitná 8215/1, 010 26 Žilina, tel. 041/513 4061, E-mail: matus.chochlik@fri.uniza.sk

ABSTRACT
Many relational databases store records with columns containing various physical properties of the stored items. However

when using these data, the dimension and unit checking is often left to the application logic. In physical calculations the
individual terms represent various quantities both those having dimensions and dimensionless. Furthermore the values can be
expressed in various units. The dimensions and units are important as a type system that is ensuring correctness and provide
information about the meaning of the terms and results of the calculations. This paper presents the design of a working
implementation of a subsystem representing physical quantities and units in the PostgreSQL database system.

Keywords: physical quantities, units, calculations, conversions, relational database system, SQL, postgresql.

1. INTRODUCTION

When storing large amounts of values of various
physical quantities or when using these numbers in
calculations, it is important to know their dimensions and
the units in which they are expressed. When the
calculations become complex this knowledge is what can
prevent us from comparing or adding values representing
volume or mass to values representing for example length
or voltage or misinterpreting the meaning of the result of a
complicated formula.

1.1. The SI unit system

The international standard Système International
d'Unites (SI) – International Unit System, currently
recognizes seven base and two supplementary (now called
derived) dimensions and provides definitions of the base
units for these dimensions. SI is the world's most widely
used system of units, both in everyday commerce and in
science [1], [2]. According to [2], [3] as of 2008, work is
proceeding on a new standard ISO/IEC 80000, to be
referred to as International System of Quantities (ISQ).

The base dimensions and their respective base units
are [1], [2]; length [metre], mass [kilogram], time
[second], electrical current [ampere], thermodynamic
temperature [degree Kelvin], amount of substance [mole]
and luminous intensity [candela]. The two additional
quantities and units angle [radian] and solid angle
[steradian] were until 1995 called supplementary, and now
are being considered derived. However, in many practical
calculations it is better to treat them like base units.

Nearly any physical quantity can be expressed as a
combination of powers of these nine dimensions. Table 1
shows some of the possible combinations and units. Note
that this is only a very small fraction of all derived
quantities. The derivation is performed by the means of
dimensional analysis [7], [10].

In addition to the base units the SI standard also
specifies several prefixes to express amounts that are
several orders of magnitude larger or smaller than the base
units. These prefixes are based on the powers of 10 and
1000 and are listed for example in table [1], [2], [4]. The
prefixes are applied to the names of the base SI units.

Multiple prefixes are deprecated. The only base unit that
has a prefix is the kilogram, thus the basic name to which
prefixes are applied is one gram that equals to 10-3 kg.

Table 1 Examples of derived physical quantities

Derived
quantity

Compound
expression Units

volume length.lenght.length m3
frequency 1/time s-1
velocity length/time m.s-1

electric
capacitance

electric
charge/voltage m−2·kg−1·s4·A2

force mass.acceleration kg.m.s-2

1.2. Derived standard units

Many derived quantities have standard derived units,
used for convenience instead of the lengthy expressions in
terms of the SI base units. Table 2. shows few examples.

Table 2 Standard derived SI units

Quantity Symbol Name In terms of
base SI units

energy,
work, heat J joule m2·kg·s−2

electrical
conductance S siemens m−2·kg−1·s3·A2

inductance H henry m2·kg·s−2·A−2

illuminance lx lux cd·m−2

1.3. Traditional units

In everyday life multiple non-SI units, derived from
the standard units are used. For example 1 litre, a unit of
volume of fluids, that is equal to 1 dm3, which is in turn
equal to 10-3 m3, 1 km/hour a unit of velocity, 1 ton, unit
of weight equal to 103 kg or 1Mg, 1 °C or 1 °F, units of
temperature, etc. These units are used for convenience
because they are roughly equal to the common magnitudes
or multitudes in everyday practice.

62 Storing Dimensions and Units of Physical Quantities in a Relational Database

ISSN 1335-8243 © 2008 FEI TUKE

1.4. Other unit systems

Due to historical, cultural and other reasons there also
are several other unit systems that are still in use today,
most notably the Imperial Unit System, U.S. Customary
Units or Avoirdupois [1], [2], [5]. However, virtually any
physical quantity expressed in non-SI units can be
converted to SI units.

1.5. Derived standard units

Having meta-information about the quantities, that are
stored as plain numbers in tables of a relational database
can be useful in many situations. They allow doing
conversions to other units and calculations with quantity
type checking with a much greater flexibility compared to
conversions and calculation hard-coded into the
applications. It is therefore useful to have an extensible
subsystem that allows storing and using the dimensions
and units and allows exploring the relationships between
them. This article presents a model and an implementation
of such subsystem in the PostgreSQL [6] DBS, which
provides several useful extensions to the SQL language.

2. DESIGN AND MODEL

In order to achieve maximal usability, our model needs
to capture the essence of the concepts from the SI
standard, like quantity, unit, prefix, composition and
conversion mentioned in the introduction.

2.1. Modelling the base concepts

2.1.1. Dimensions

One of the most important properties of the physical
quantities is, that they can be combined into other
quantities. For example force = mass . acceleration,
area = length . length pressure = force / area,
electric charge = time . electric current, etc. [7].

In order to support this kind of calculations and to
allow exploring the relationships between quantities and
units, the concept of unit dimensions is modeled by the
type si_base_unit_space. The model has been
inspired by an example from the Boost MPL library [10],
which implements a similar functionality in C++. This
composite type is defined as:
si_base_unit_space(

metre,
kilogram,
second,
ampere,
kelvin,
mole,
candela,
radian,
steradian,
qty_type

),
where the attributes metre, kilogram, ...,

steradian are of smallint type and express the
power of the base unit dimension in the unit or quantity.
The qty_type attribute is of char(1) type and is used

to distinguish between various types of quantities, mainly
those that are dimensionless, like the count of periodic
events vs. the count of aperiodic events per one second
(i.e. 1 Hz vs. 1 Bq) both defined as s-1.

This type also provides the means to relate units to
quantities and defines the usual comparison operators (=,
<>, <, <=, >, >=) and arithmetic operators (+, -, *, /,^),
that allow the addition and subtraction of equal quantities
and the multiplication and division of quantities resulting
in a new quantity.

2.1.2. Quantities

Quantities are stored in the table
physical_quantities, defined as:
physical_quantities(

#oid,
quantity_name,
quantity_space_dims

).
The oid and quantity_name are self-explaining,

and the quantity_space_dims attribute is of type
si_base_unit_space and represents the powers of
the base unit dimensions.

2.1.3. SI unit prefixes

The SI prefixes are stored in the si_prefixes table
defined as:
si_prefixes(

#exponent,
short_prefix,
full_prefix

),
where exponent is the 10n exponent for the

particular prefix, short_prefix and full_prefix
are the short and the full prefixes pre-pended to the SI unit
symbols and names respectively. Two functions,
apply_short_ prefix and
apply_full_prefix are defined to apply the prefix
symbol and the prefix name to unit symbol and unit name
respectively, when given the unit and the exponent of the
prefix.

2.1.4. Base SI units

The seven base (and the two supplemental or derived)
SI units are stored in the si_base_units table:
si_base_units(

base_symbol,
#base_name,
default_exp,
unit_space_dims

).
The base_symbol and base_name are

respectively the symbol and the name of the unit, like
'm','metre' for metre, 's','second' for second,
etc. The kilogram being a base unit and also having a
prefix introduces a minor complication. As multiple
prefixes are deprecated, we need to store the base symbol
'g' and the base name 'gram' for this unit in order to
be able to construct proper names and symbols for

Acta Electrotechnica et Informatica Vol. 8, No. 3, 2008 63

ISSN 1335-8243 © 2008 FEI TUKE

multiplies of this unit, like 'mg', 'dg', 'dag', 'kg',
etc.

 However we need also express the fact that to the
kilogram, not the gram is the base unit, in order to avoid
mistakes in calculations. This is the objective of the
default_exp attribute. It is a foreign key into the
si_prefixes table and stores the exponent of the
prefix, that is default for the base unit. Thus in the row
storing information about kilogram, this attribute has the
value of 3, that is the key of the 'kilo-' prefix and in
all other cases there is the value of 0 meaning no prefix.

The last attribute; unit_space_dims is of
si_base_unit_space type and has the same role as
the quantity_space_dims attribute in the
physical_quantities table.

2.1.5. Derived SI units

The SI derived units, mainly those having a special
name like the hertz, newton, pascal, joule, watt, coulomb,
etc. are stored in the si_derived_units table;
si_derived_units(

base_symbol,
#base_name,
unit_space_dims

).
More precisely only those units u, that can be

expressed by the formula

 Ζ∈∈= ∏
∈

ii
i

p
i puuu i ,itssi_base_un;

,...2,1
 (1)

are stored here. Therefore units like °C, °F, years, square
miles, etc. cannot be stored in this table, because the
conversion between these units and the (base or
compound) SI units requires addition and/or
multiplication of constant values.

2.1.6. Viewing all SI units

There are two views that combine the base and derived
units and the SI prefixes. The si_units view is
basically defined as:
si_units=

π(si_base_units)∪
π(si_derived_units),

and the si_prefixed_units is defined as:
si_prefixed_units=π(

si_units × si_prefixes
).

2.1.7. Non-SI units

As mentioned in the introduction, there are many units
in use, which were not defined by the SI standard.
Generally, when converting values representing a physical
property expressed in SI units to values expressed in non-
SI units and vice-versa a conversion function is necessary.

[] ([]); , , ,v f u R u v U= ∈ ∈y x x, y (2)
U is the set of physical units

However, conversions between the SI units most of the
non-SI units [1], [3], [5] can be preformed according to
the following formula:

R,k,k,b,a,ba
units; physical U a set ofΡ; u,v

akbbkau[v]

yxyyxx

yyyxxx

∈
∈∈

−−+⋅+=

yx,

xy ;)))][(((
 (3)

Factors kx, ky can be expressed as fractions, both for

convenience and for additional precision, when storing
them in database where the precision of floating point
numbers is limited:

0≠∈= xxxxxxx R; d,m,k; ddmk (4)

The non-SI units are stored in the table

non_si_units defined as:
non_si_units(

base_symbol,
#base_name,
unit_space_dims,
pre_mult_offs,
multiplier,
divisor,
post_mult_offs

).
The columns base_symbol, base_name,

unit_space_dims have the same meaning as in the
previews tables, the pre_mult_offs is the term a, the
post_mult_offs is the term b, and the multiplier
and divisor are the terms m, d respectively.

We use the SI as reference unit system thus for any x,
in unit u the result z, of the expression

xxxsi bmau][u +⋅+=)][(xz must be the value of x
expressed in SI units for the given physical quantity.

2.1.8. Named physical units

To view the physical units with a special name and
prefix, like the metre, kilonewton, milligram, terahertz,
farad, etc. (as opposed to compound units, like metre per
second squared, joule per mole, ampere per metre, etc.)
the view named_physical_units(

symbol,
base_symbol,
default_exponent,
unit_name,
base_name,
unit_space_dims,
pre_mult_offs,
multiplier,
divisor,
post_mult_offs

) is defined as:
 named_physical_units=

π(si_units)∪
π(non_si_units),

the symbol and unit_name attributes are defined
as:

64 Storing Dimensions and Units of Physical Quantities in a Relational Database

ISSN 1335-8243 © 2008 FEI TUKE

symbol=apply_short_prefix(
base_symbol,
default_exponent

),
unit_name=apply_full_prefix(

base_name,
default_exponent

).
Since the si_units view does not have the

pre_mult_offs, multiplier, divisor and
post_mult_offs columns they are defined as follows:

pre_mult_offs=0
post_mult_offs=0

multiplier=if default_exponent>0 then
10default_exponent else 1

divisor=if default_exponent<0 then
10default_exponent else 1

2.2. Advanced concepts

2.2.1. Compound physical quantities

In many cases it is useful to know, whether the
physical quantities can be combined into other physical
quantities. As mentioned before, the arithmetic operators
+,-,*,/,^ are defined on the si_base_unit_space
type. The quantities can be combined according to
formula,

,...}3,2,1,0,1,2,3{...,

uantites;physical_q;
,...3,2,1

−−−∈

∈= ∏
=

i

i
i

p
i

p

i qx,qx
 (5)

if

np
n

pp qqq][...][][][21
21 ∗∗∗=x .

Finding all possible combinations even for a single

quantity x by using SQL statements can require excessive
amounts of time, especially if there are many records in
the physical_quantities table, n > 2 and the set of
possible values for powers pi is large.

Therefore there is a table
quantity_compound_term_exponents storing
reasonable values for the pi exponents and three tables,
named compound_physical_ quantity_#,
where # is 1, 2 or 3, that store the pre-calculated
identifiers of quantities and the powers of the individual
terms that form a valid quantity combination. The content
of these tables is changed by the means of trigger
functions that are executed upon insertions, deletions or
modifications on the physical_quantities table.

2.2.2. Compound SI units

To view all compound SI units that do not have a
special name but are derived from the named SI units

there is a view called si_compound_units(
symbol,
unit_name,
unit_space_dims,
rank

).

2.2.3. All physical units

To view all physical units stored in the database and to
be able to do conversions between them, the view:
physical_units(

symbol,
base_symbol,
default_exponent,
unit_name,
base_name,
unit_space_dims,
pre_mult_offs,
multiplier,
divisor,
post_mult_offs

).

2.2.4. Conversion between physical units

A function defined as:
simple_unit_conversion(

dst_unit_name,
src_unit_name,
src_value

) is provided for convenience to simplify the conversions
of values between various units visible through the
physical_units view. Table
unit_conversion_functions stores the triples
(destination units, conversion function, source units) for
conversions where the formula (3) is not applicable. The
function defined as:
special_unit_conversion(

dst_unit_name,
src_unit_name,
src_value

), does the conversions by using the functions stored in
this table.

A general conversion function unit_conversion(
dst_unit_name,
src_unit_name,
src_value

)
uses both the simple_unit_conversion and the
special_unit_conversion functions at need.

3. IMPLEMENTATION AND EXAMPLES

A proof-of-concept implementation in the PostgreSQL
database system can be found and downloaded at
http://kifri.fri.uniza.sk/~chochlik/dbs/psql_unit_system.tar
. This archive contains a database dump that can be used
to create a set of types, tables, functions, operators and
triggers, described by this paper. It has been developed
and tested under the version 8.2.6. Note that it currently

Acta Electrotechnica et Informatica Vol. 8, No. 3, 2008 65

ISSN 1335-8243 © 2008 FEI TUKE

does contain only a subset of common quantities and
physical units.

Here follow some examples of the most important use-
cases.

3.1. Selecting all units of energy

SELECT unit_name, symbol
FROM physical_units
JOIN physical_quantities
ON(unit_space_dims =
quantity_space_dims)
WHERE quantity_name = 'Energy';

3.2. Selecting compound units of power

SELECT unit_name, symbol
FROM si_compound_units
JOIN physical_quantities
ON(unit_space_dims =
quantity_space_dims)
WHERE quantity_name = 'Power';

3.3. Selecting non SI units of time

SELECT base_name, base_symbol
FROM non_si_units
JOIN physical_quantities
ON(unit_space_dims =
quantity_space_dims)
WHERE quantity_name = 'Time';

3.4. Selecting names of units to which a value in metres

can be converted

SELECT DISTINCT uy.unit_name
FROM physical_units ux
JOIN physical_units uy
USING(unit_space_dims)
WHERE ux.unit_name = 'metre';

3.5. Converting a value in leagues to nautical miles

SELECT simple_unit_conversion(

'nautical mile',
'league',
1270

);

3.6. Converting a value in minutes to years

SELECT simple_unit_conversion(

'year,
'minute',
100000

);

Several other example SQL queries demonstrating the
usage of the tables, views, operators and functions, can be
found in the archive at http://kifri.fri.uniza.sk/~chochlik
/dbs/psql_unit_system_samples.tar .

4. FUTURE WORK

Further specialized tables for storing other types of
quantities, units and prefixes, could be devised and could
be united with the current physical_units view into
a general units view and the unit_conversion
function could be extended to do conversions between
these functions as well.

An explicit relationship between the columns of
database tables or the results and parameters of functions
and the units in which they are expressed, can provide
very useful semantic information. Such information would
allow creating very flexible database applications that
could derive and convey much more data from many
existing databases.

REFERENCES

[1] The NIST Reference on Constants, Units and

Uncertainity, International System of units:
http://www.physics.nist.gov/cuu/Units/units.html,
Retr. on 2008-02-29

[2] http://en.wikipedia.org
[3] http://www.bipm.org/en/si/si_brochure/, Retr. on

2008-02-29
[4] http://www.iso.org/iso/iso_catalogue.htm, Retr. on

2008-03-03
[5] General Tables of Units of Measurement, NIST,

United States Government,
http://ts.nist.gov/WeightsAndMeasures/Publicatio
ns/upload/h4402_appenc.pdf Retr. on 2008-03-03

[6] http://www.postgresql.org/
[7] Szirtes, T.: Applied Dimensional Analysis and

Modeling, McGraw-Hill Professional, 1998
[8] Gruber, M.: Mistrovství v SQL, Soft Press, 2004
[9] Hernandez, M. J. Viescas. J. R.: Myslíme

v Jazyku SQL, Grada, 2005
[10] http://www.boost.org/libs/mpl/doc/tutorial/dimens

ional-analysis.html
[11] http://www.gnu.org/software/units/
[12] Matiaško, K., Zábovská, K., Zábovský, M,:

Building the Unified Data Access Framework,
Journal of Information, Management and Control
Systems, Vol. 2, No. 2, 2004

Received March 10, 2008, accepted April 28, 2008

BIOGRAPHY

Matúš Chochlík was born in 1981. In 2005 he graduated
in the study field of Information And Management
Systems at the Faculty of Management and Informatics of
the University of Žilina. Since 2005 he is a PhD. Student
at this faculty. His research and employment activities
include object-oriented design and programming,
reflection and meta-programming, object-oriented and
distributed databases and visualization.

