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ABSTRACT 
Real-world data containing instances corresponding to patients with otoneurological diseases were explored with fuzzy IF-

THEN rule induction. It was based on transformation of a fuzzy decision tree made with using cumulative information estimations as 
the locally optimal criterion at its nodes. This method uses linguistic variables that allow us to naturally model various situations 
appearing in this data. It also gives classification knowledge in a form of IF-THEN rules that are easily readable and 
understandable by an expert. Our study shows in comparison to multilayer perception neural networks that classification with the 
induced fuzzy IF-THEN rules is a useful technique for diagnostics of otoneurological diseases. 
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1. INTRODUCTION 
 

In the real world it is needed to work with real-world 
data. Such data is not often accurate and contains some 
uncertainties. These uncertainties are caused by various 
reasons such as vagueness and ambiguity described in [6]. 
Vagueness is associated with the difficulty of making 
sharp or precise distinctions in the world. On the other 
hand, ambiguity is associated with two or more 
alternatives such that the choice between them is left 
unspecified. These uncertainties have successfully been 
solved thanks to using fuzzy sets for several years. When 
we consider a fuzzy set, an element x belongs to the set 
with a given membership degree interpretable as 
possibility or truthfulness. It is usually denoted by 
membership function y = μ(x) whose value is in the 
interval 0,1  [13]. If y equals 1, the x belongs to the set 
completely. If y equals 0, the x does not belong to the set 
at all. Otherwise, the x belongs to the set with a possibility 
between values 0 and 1.  

By far fuzzy IF-THEN rules are the most visible 
among all techniques developed using fuzzy sets due to 
their wide range of successful industrial applications 
ranging from customer products, automotive control, 
medical imaging, to financial trading [12]. A group of 
these fuzzy rules contains rules in the following form: IF 
Condition THEN Conclusion. Both Conditions and 
Conclusions contain one or several expressions in the 
form ‘Linguistic variable is linguistic term’. Among the 
expressions there are operators such as AND. In Data 
Mining, IF-THEN rules are often classified into 
classification rules and association rules. This paper is 
focused on classification rules and this kind of rules is 
labeled rules hereafter. They are used for determining the 
classes of instances in new conditions on the basis of the 
classes of instances in known conditions. All rules in a 
group have in their conclusions only the same class 
variable – the variable whose terms are needed to be 
determined. 

Real-world data relating to the field of otoneurology 
were explored. In otoneurology, vertigo or dizziness and 

other balance disorders are investigated [3]. They are a 
common nuisance and can be stemmed from a serious 
disease such as a tumour involving the acoustic nerve. 
They can encounter people of all ages. The investigations 
in otonerology themselves are focused on searching for 
the causes of the diseases and disorders, finding 
treatments and hindering accidents originated from such 
harms. For this purpose, computational classification 
methods can be used to identify a patient’s disease and 
differentiate diseases from each other. Most of these 
methods but neural networks require a transformation of 
the quantitative part of data in the process of discretization 
[1]. But discretization of quantitative variables into crisp 
intervals does not always correspond to real situations in 
the data. For example, if commonly accepted threshold of 
severe rotating feeling of an patient is 75.5000, then 
75.4999 does not mean strong and 75.5001 severe rotating 
feeling definitely. Thus, it seems more realistic to use 
fuzzy intervals for strong as well as severe rotating 
feelings with respect to the state of the patient. 

The paper is organized as follows. In Section 2, we 
describe the used otoneurological data and its transformed 
fuzzy form. Section 3 contains details of the fuzzy IF-
THEN rule induction approach applied to that data. Its 
true positive rates and accuracy were evaluated. The 
results of evaluations are discussed in Section 4. Finally, 
we conclude this paper with discussion in Section 5. 
 
2. DATASET 
 

As a dataset, a group of 815 instances classified into 
six possible diseases and described by 38 variables as 
replies to queries about patients’ symptoms, medical 
history, clinical findings and the results of physiological 
measurements was used. In our earlier report we evaluated 
the 38 variables to be the most important ones from 
among a larger set [5] and, among them, we also 
identified 5 most important variables Time from 
Symptoms, Frequency of spells, Duration of attack, 
Duration of hearing symptoms, Head trauma. All of the 
38 variables and their types are shown in Tab. 1. For the 
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types, the following symbols are employed: B = binary, 
N = nominal, O = ordinal and Q = quantitative. Category 
numbers are used after the ordinal and nominal ones. 
There were 11 % missing values in the dataset. We 
imputed them with modes for 11 binary variables and one 
nominal variable and with medians for 10 ordinal and 16 
quantitative variables. The only, four-valued nominal 
variable Hearing loss type was still substituted by three 
binary variables to justify the use of Euclidean distance.  
Thus, there were 40 variables altogether. Euclidean 
measure cannot be applied to nominal variables, except 
binary. This is not essential in the current work, but we 
desired to use the data similarly to the approach in our 
earlier article [4] to justify a comparison. Imputation was 
carried out disease-wise since it is naturally crucial that 
there are differences between diseases. Use of modes and 
medians in imputation is a simple and common way, but 
sufficient here, since the number of the missing values 
was small and we earlier found [7] that such sophisticated 
imputation methods as Expectation Maximization (EM) 
and linear regression did not get better classification 
results when discriminant analysis was used. 

 
Table 1  Variables and their types 

 
No. Variable Type 

1 Patient’s age Q 
2 Time from Symptoms O7 
3 Frequency of spells  O6 
4 Duration of attack  O6 
5 Severity of attack O5 
6 Rotational vertigo  Q 
7 Floating vertigo Q 
8 Tumarkin-type drop attacks  O4 
9 Positional Vertigo  Q 

10 Unsteadiness outside attacks  O4 
11 Duration of hearing symptoms  O7 
12 Hearing loss of right ear between attacks  B 
13 Hearing loss of left ear between attacks  B 
14 Hearing loss type  N4 
15 Severity of tinnitus  O4 
16 Time of first tinnitus  O7 
17 Ear infection  B 
18 Ear operation B 
19 Head or ear trauma with noise injury  B 
20 Chronic noise exposure  B 
21 Head trauma  B 
22 Ear trauma  B 
23 Spontaneous nystagmus  B 
24 Swaying velocity of posturography eyes 

open (cm/s)  
Q 

25 Swaying velocity of posturography eyes 
closed (cm/s)  

Q 

26 Spontaneous nystagmus (eye movement) 
velocity (°/s)  

Q 

27 Caloric asymmetry (%) Q 
28 Nystagmus to right Q 
29 Nystagmus to left Q 
30 Pursuit eye movement amplitude gain (%) Q 
31 And its latency (ms) Q 
32 Audiometry 500 Hz right ear (dB) Q 

33 Audiometry 500 Hz left ear (dB) Q 
34 Audiometry 500 2 kHz right (dB) Q 
35 And left ear (dB) Q 
36 Nausea or vomiting O4 
37 Fluctuation of hearing B 
38 Lightheadedness B 

 
The dataset itself comes from Helsinki University 

Central Hospital in Finland where it has been collected for 
several years. The six diseases appearing in it are 
vestibular schwannoma, benign positional vertigo, 
Meniere’s disease, sudden deafness, traumatic vertigo and 
vestibular neuritis. Their absolute frequencies are 130, 
146, 313, 41, 65 and 120 respectively. The corresponding 
relative frequencies are 16 %, 18 %, 38 %, 5 %, 8 % and 
15 % respectively. It is clear from the frequencies that the 
subset of Meniere’s disease is far larger than two small 
subsets of sudden deafness and traumatic vertigo. These 
are not frequent disorders or diseases in general. 
Notwithstanding this, a few hundred thousand people in 
Finland suffer from vertigo and balance problems. These 
are diagnostically difficult diseases. In order to 
incorporate fuzzy sets into the dataset, we transformed it 
with the help of the fuzzification algorithm introduced in 
[8]. The transformed dataset is called fuzzified 
otoneurological dataset here and has its format as follows. 
It contains known instances corresponding to the 815 
collected instances of the dataset. The set of these 
instances is marked V. Each instance e∈V is described by 
40 linguistic variables A = {A1, A2, …, A40}. Each 
linguistic variable Ak, k = 1, 2, …, 40, measures some 
important feature and is represented by a group of primary 
linguistic terms ak,1, ak,2, …, ak,l, …, ak,nk

, which is denoted 
by Ak = {ak,1, ak,2, .., ak,l, …, ak,nk

}. Disease linguistic 
variable C classifies all possible instances e into six 
disease primary linguistic terms c1, c2, c3, c4, c5, c6, which 
correspond to the above-mentioned diseases. The fact  C 
classifies instances into those diseases is denoted by 
C = {c1, c2, c3, c4, c5, c6}. The possibility for a particular 
linguistic term and instance e is denoted by membership 
function μlinguistic term(e). 

 
3. FUZZY IF-THEN RULE INDUCTION 

 
A fuzzy rule induction method based on 

transformation of a fuzzy decision tree made with 
cumulative information estimations and the process of 
classification with the method are presented here. The 
following form of fuzzy rules is considered: ri = IF Ei 
THEN C is cj (ECRi), j = 1, 2, …, 6, where 

 
Ei = Ai1

 is a i1
,j1 AND Ai2

 is a i2
,j2 AND ...  

... AND Aimi
 is aimi

,jmi
 

(or equally Ei = a i1
,j1 AND a i2

,j2 AND … 
… AND aimi

,jmi
) 

 
is a sentence linguistic term containing at least one 
linguistic variable Ak∈A and any of Ak∈A is its part 
once, or is not its part at all. ECRi means Extra Criteria for 
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Rule ri, i = 1, 2, …, p. ECRi is an abstraction used because 
of generality and the criteria themselves can be different 
when another algorithm is applied for making the rules. In 
our case, ECRi = {Fi

1, Fi
2, Fi

3, Fi
4, Fi

5, Fi
6} where Fi

j is a 
value interpreted as the certainty degree of disease 
primary linguistic term cj in fuzzy rule ri. If the possibility 
of sentence linguistic term Ei for instance e μEi

(e) is 
required, it is computed as multiplication of the 
possibilities of its linguistic terms, i.e. 
μEi

(e) = μai1
,j1

(e) ⋅ μai2
,j2

(e) ⋅ … ⋅ μaimi
,jmi

(e). 

 
The applied form of the fuzzy rule induction method 

can be described as it is in Tab. 2 and Tab. 3. In Tab. 2 the 
process of fuzzy decision tree induction based on 
cumulative information estimations is presented and in 
Tab. 3 the process of transformation of such a tree into the 
fuzzy rules is recounted. For the fuzzy decision tree 
induction, five input parameters α, β, A, C, V are required. 
Parameters α, β∈ 0,1  are used for controlling the height 
of the fuzzy decision tree, i.e. the numbers of linguistic 
variables in the paths from the root to the leaves. 
Increasing α and decreasing β leads to decreasing these 
numbers and vice versa. It may increase classification 
accuracy for instances outside e∈V as well as decrease 
classification accuracy for instances e∈V. In Tab. 2 there 
are some other symbols and their meanings are as follows. 
Function argmax{f(x) | x∈X} returns the x∈X which f(x) 
has the maximal value for. M(V) is the cardinality of V. 
Expression A – E is a set containing all linguistic 
variables in Ak∈A with the exception of those variables 
that appear in the sentence linguistic term E. Symbols 
II(E) and I(cj/E) express cumulative information and 
conditional information belonging to cumulative 
information estimations whose detail explanation is in our 
previous study [9]. Briefly, cumulative information II(E) 
is defined as it is in Formula 1. In it, expression E = θ 
means that sentence linguistic term E does not contain any 
linguistic variable. Otherwise, it contains at least one 
linguistic variable Ak∈A. It describes vagueness of E. 
The greater its value is, the greater the vagueness of E is. 
Conditional information I(cj/E) of cj∈C assuming that E 
is known is defined in Formula 3 and describes the 
vagueness of cj if E is known. Its definition contains 
II(E AND cj) defined in Formula 2. It is cumulative 
information for a sentence linguistic term containing also 
a disease linguistic term cj∈C. Some other symbols such 
as F(cj/E) and CRIT(Ak; E) appear in Tab. 3. Symbol 
F(cj/E) is defined in Formula 4 and is interpreted as 
frekvency of disease linguistic term cj∈C for a rule with 
condition E. Symbol CRIT(Ak; E) is defined in Formula 8 
and stands for the criterion used for association of 
linguistic variable Ak∈A with the node whose path from 
the root to the branch it is connected to corresponds to 
combinations ‘linguistic variable is primary linguistic 
term’ in E. It is defined with Formulas 6, 7. Formula 6 is 
defined with Formula 5 because of lack of space. I(E;Ak) 
is mutual information expressing average amount of 
information that is gained about disease linguistic variable 
C if μak

(e), ak∈Ak, e∈V, and E are known. HH(Ak) is 
cumulative entropy. Its formula is a part of Shannon’s 
entropy whose definition is H(Ak) = HH(Ak)/M(V). 

2

2

-log ( ); if
( )
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Table 2  Algorithm for fuzzy decision tree induction 

 
fuzzy decision tree = makeTree(α; β; A; C; V) 

Step 1 Make the root and associate fuzzy attribute 
maxAk = argmax{CRIT(Ak; θ) | Ak∈A} with 
it. Make a branch for each ak,l∈Ak, connect 
them with the root, associate them with the 
particular ak,l and consider them unprocessed. 

Step 2 If there is no unprocessed branch, END. 
Otherwise, choose one of the unprocessed 
branches and consider it the current branch. 
Make linguistic term E for the current branch. 
E consists of all “Linguistic variable
associated with node is linguistic term 
associated with branch” from the root to the 
current branch connected with AND operator. 

Step 3 Set branchII = II(E) and minClassTermI = 
min{I(cj/E) | cj∈C}. If [branchII≥ -
log2(α ⋅ M(V))] ∨  [minClassTermI ≤ -log2(β)] 
∨  [(A – E) = θ], go to Step 4. Otherwise, go to 
Step 5. 

Step 4 Make a leaf, connect it with the current branch 
and consider this branch processed. Associate 
values Fj = F(cj/E) ∀ cj∈C and class 
linguistic term argmax{Fj | cj∈C} with the 
made leaf. Go to Step 2. 

Step 5 Make a node, connect it with the current 
branch and associate linguistic variable maxAk
= argmax{CRIT(Ak; E) | Ak∈V, Ak∉E}. 
Consider the current branch processed. Make a
branch for each ak,l∈maxAk, connect them 
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with the made node, associate them with the
particular ak,l and consider them unprocessed.
Go to Step 2. 

 
 

Table 3  Transformation into fuzzy rules 
 

{ri} = makeRules(fuzzy decision tree) 
Step 1 For each leaf i, mark the linguistic term 

associated with it as ci. For each leaf i, take the 
branch going to it and make linguistic term E
for this branch. E consists of all “Fuzzy 
attribute associated with node is linguistic 
term associated with branch” from the root to
that branch and they are  connected with AND
operator. Set ECRi={Fi

j |  all Fi
j that were 

associated with leaf i} for each leaf i. 
Step 2 Make a rule in the form ri = IF Ei THEN C is ci

(ECRi) for each ci, Ei, and ECRi. 
 

 
Table 4  Classification of an instance e 

 
{μcj

(e)} = classify({ri}; e; C) 
Step 1 Compute μi

E(e) for each fuzzy rule
ri = IF Ei THEN C is cj (ECRi). 

Step 2 Set μcj
(e) = ∑

∀i

μi
E(e) ⋅ Fi

j, where Fi
j∈ECRi. 

 
Since classification is a process of determining values 

of μcj
(e) for all disease linguistic terms cj∈C on the basis 

of fuzzy rules made in accordance with Tab. 2 and Tab. 3 
here, an algorithm that may perform it is needed. Such an 
algorithm is presented in our previous study [10] and it is 
described according to the used terminology of this paper 
in Tab. 4. This algorithm supposes that the values of all 
membership functions μak,l

(e), ak,l∈Ak∈A, are known for 
a classified instance e.  

 
4. EXPERIMENTS AND RESULTS 
 

The algorithms described in the previous section are 
labeled MCI - Minimization of Cumulative Information 
hereafter and had been implemented in Java as a part of 
software library Fuzzy Rule Miner technically introduced 
in [2]. This implementation was used for testing and its 
results were compared with multilayer perception neural 
networks (MLP) implemented in Matlab as we had done 
comprehensive research ([4] and some other papers) in the 
area of MLP. These two methods also highly differ from 
each other in the understandability of the obtained 
knowledge. While MLP are frequently applied as a ‘black-
box technique’ to the classification of data without any 
explanation of what the networks learnt, generated fuzzy 
rules are easily understandable and readable for the expert.  

The neural networks were formed with five input 
nodes, six hidden nodes at one layer and six output nodes 
corresponding to the six diseases. The most important five 
variables stated in Section 2 were only input, since using 
more variables, i.e. 9, 13, 20, 30 and 40, deteriorated 
results. This seemingly contradictory situation was caused 

by the relative scarcity of training instances compared to 
the number of weights to be trained in a network. The 
significantly imbalanced distribution among the six 
diseases also had impairing influence, which finally 
resulted, with 30 and 40 attributes, in a situation where the 
Meniere’s disease having largest number of instances was 
the only learnt. The number of hidden nodes was the only 
free parameter with respect to the network structure, and it 
was tested up to as small as eight to keep the size of the 
structure small enough. To guarantee reasonable training 
for a multilayer perception network, there is a rule of 
thumb that the number of weights to be trained should not 
be larger than 1/10 of the number of training instances 
[11]. When we used five input, six hidden and six output 
nodes, we obtained 5 ⋅ 6+6 ⋅ 6=66 weights, which were 
fewer than 1/10 of 0.90 ⋅ 815 training instances in 
crossvalidation. Feedforward backpropagation learning 
algorithm was applied with the sigmoidal threshold 
function, adaptive learning rate and momentum 
coefficient. Before the learning stage, we experimented 
with disjoint validation sets to observe possible 
overlearning, which did not affect when no more than 500 
training epochs were executed. 

 
Table  5  Average true positive rates and accuracies 

 
True positive rate [%] Disease term 

MCI[40] MLP[5] MLP[40]
Vestibular 
schwannoma 71 71 4 

Benign positional 
vertigo 69 68 2 

Meniere’s disease 97 91 99 
Sudden deafness 71 1 0 
Traumatic vertigo 28 70 0 
Vestibular neuritis 84 83 1 

Accuracy [%] 79 76 39 

 
Crossvalidation technique was employed in the 

performed tests themselves. On the basis of this technique, 
10 % of the entire dataset was picked up as a testing set 
and the other instances (90%) as a learning set. Ten 
disjoint testing sets of 10 % were run along with the 
corresponding learning sets. Thus, every instance was 
included in some testing set. Initialization values were, of 
course, also varied between runs. Therefore, we 
performed 10 runs for each testing set. We computed true 
positive rate for each disease j, j = 1, 2, 3, 4, 5, 6, and 
accuracy for all the data. Let pj be the number of instances 
in the disease j and tpj true positive instances computed 
for disease j. The true positive rate was formed as it is 
defined in the following Formula 9: 

 

100 j
j

j

tp
tpr

p
= ⋅ [%] (9)

 
Let k be the number of diseases and M the number of 

all instances in a testing set. Formula 10 was used for 
calculation of the accuracy of classification for all 
diseases: 
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1 100

k

j
j

tp
acc

M
== ⋅
∑

[%] 

 

(10)

 
The above-defined true positive rate and accuracy 

were computed as means over all 100 runs (10 times 10 
crossvalidation). The means of the results are presented in 
Tab. 5. In it, the true positive rates for particular diseases 
are in columns MCI[40], MLP[5] ad MLP[40] and the 
accuracies of these methods are in the last row. MLP[5] 
means multilayer perception neural networks described in 
this section and used for five most important input 
variables stated in Section 2. MLP[40] means multilayer 
perception neural networks applied for forty variables as 
they are explained in Section 2. In the case of MCI[40], 
forty fuzzy variables A = {A1, A2, …, A40} defined in 
Section 2 are used as the input for the algorithms from 
Section 4. Including MLP[40] into the comparison allows 
us to compare the results with the same set of initial input 
variables. On the other hand, MLP[5] represents the 
results of MLP including our previous investigations with 
MLP as well as the used dataset.  

 
5. DISCUSSION 
 

The classification accuracy of MCI[40] with 79 % is 
better than the results of MLP as it is  in Tab. 5. The 
neural networks lost the instances of sudden deafness 
virtually entirely, since it was the disease with the smallest 
number of instances comprising mere 41 of all 815 
instances. In addition to this fact, it is known to be 
medically awkward, i.e. its diagnosis can be erroneously 
mixed with the features of some other one such as 
Meniere’s disease.  Since the distribution between the 
diseases was so skewed in the present data that the disease 
with the largest number of instances included 38 % of the 
instances in the dataset and the one with least number only 
5 % of the instances, this dataset was difficult especially 
for multilayer perception neural networks, which often 
seem to require a fairly uniform distribution of diseases in 
instances to learn features of our dataset. In addition, a 
sufficiently great number of training instances related to 
the size of a network, the number of its arc weights in the 
graph structure was needed which limited the number of 
variables to five. This was a considerable restriction in our 
earlier work [4]. When five most important variables were 
used, an average accuracy of 76 % was gained for this 
data in [4]. For the most important nine variables, it was 
73 %, but considerably decreased down to 47 % and 39 % 
for twenty and forty variables respectively.  However, the 
use of principal components of the data in [4] enabled the 
application of all forty attributes and produced at least 
equally good results. The use of principal components 
may be an interesting technique for improving accuracies. 
However, for practical applications, this idea is perhaps 
not the best choice because principal component analysis 
has to be performed for the whole data, including training 
instances, not only testing instances.  

Sudden deafness was not detected by multilayer 
perception neural networks successfully and its 
classification is significantly better with the presented 

method. Besides, we believe there is a potential to 
improve its results. Firstly we are going to study the 
effects in the changes of the data preprocessing, especially 
of the process of fuzzification of quantitative values. 
Some other algorithm different from [8] or/and the 
assistance of medical experts may help so that we can 
define more accurate membership functions for primary 
linguistic terms. It can lead to reducing information loss 
during fuzzification. Secondly, for more than 10 years our 
otoneurological data has been collected with respect to 
crisp classification where only one disease is considered 
fully possible and all the others are considered fully 
impossible, which does not always correspond to reality. 
For example, a doctor can think that Meniere’s disease is 
possible with 0.5, sudden deafness with 0.8 and traumatic 
vertigo with 0.2 for a patient. Since our method allows us 
to model this situation, further investigation into our data 
collection is being pondered. 
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