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ABSTRACT 
Due to the fast increase in wind power production there is a need for detailed studies of integration problems. Integration 

problems arise from the characteristics of wind power and various technologies used in wind energy industry. In this paper, a case 
study of doubly fed induction generators connected with classical HVDC line commutated converter - thyristor bridge is 
investigated. Operation strategies and corresponding controllers with and without STATCOM are proposed, dynamic models in 
Matlab/Simulink are developed, and simulation results are presented.  

Keywords:  Classical HVDC Link, Control Method, DFIG, Thyristor Bridge 

 

1. INTRODUCTION 
 
Wind power installation increases very fast through 

out the world in recent years. The offshore wind power 
draws special attention. The average wind speed offshore 
is higher than onshore which means larger energy 
production, the turbulence and wind shear effect is lower 
offshore than onshore which implies higher power quality. 
These benefits initialize the plans of developing large 
offshore wind farms in many countries. Unlike the 
onshore wind turbines which are often dispersed in the 
distribution grid, the offshore wind turbines will be 
connected to the transmission grid as large wind farms. 
The connections between offshore wind farm and power 
grid can be high voltage ac (HVAC) or high voltage dc 
(HVDC) with classical HVDC LCC (line commutated 
converter) using thyristor bridge, or HVDC VSC (voltage 
source converter) using IGBTs. HVDC VSC has better 
dynamic behaviors than HVDC CSC, but they are 
expensive and have larger power loss. The three 
integration methods are compared in [5], [11], [12], and 
[14]. It is concluded that HVAC can be used for medium 
wind farm, 200MW for example, and short transmission 
distance, 50km for example. For large power capacities 
and long transmission distances, HVDC transmissions are 
more favorable. Considering the cost and efficiency, 
HVDC using thyristor bridges can be used for extremely 
large wind farm, 600 MW for example, which is 
connected with strong ac grid. HVDC using IGBTs can be 
integrated with relatively weak grid for its capability to 
provide dynamic reactive power. 

Doubly fed induction generator (DFIG) dominates 
today’s wind energy market because it is excited from the 
rotor VSC, and doesn’t need to absorb reactive power 
from the grid. It will not have transient voltage stability 
problem during grid fault and thus has better low voltage 
ride through (LVRT) capability than full size induction 
generator (FSIG). Compared with permanent magnet 
generator (PMG) with full scale VSC on the stator, the 
DFIG is more economical as the scale of VSC on the rotor 
is only about 30% of the full power, depends on the 
allowable variable speed range.  

Based on the above discussions, the configuration of 
DFIG with HVDC LCC is studied because it may have the 
best compromise between dynamical and economical 
performances. In this paper, two operation strategies with 
or without central static compensator (STATCOM) unit 
are discussed. New controller of DFIG is designed when 
no STATCOM is installed in the wind farm. The reason is 
that the traditional grid voltage oriented controller can’t 
work when the DFIG is not connected to strong power 
grid. Dynamic models are built and controllers are 
developed in Matlab/Simulink [15]. Simulation results 
show that both strategies seem to work well, though 
further investigations under grid faults are required. 

 
2. SYSTEM OF DFIGS WITH CLASSICAL HVDC 

CONNECTION 

The studied wind park is composed of two DFIG, 
which is necessary to study the possible interaction 
between wind turbines inside the wind park. Reactive 
power compensation is installed with HVDC LCC, in 
order to minimize reactive power absorbed from the grid 
and keep the ac voltage constant. One choice of reactive 
power compensation is to use STATCOM, which can 
provide dynamic reactive power compensation and also 
works as an energy buffer. Another choice is to use shunt 
capacitor to balance the steady state reactive power 
consumed by HVDC thyristor bridge rectifier. The DFIG 
is controlled to provide dynamic reactive power 
compensation. Unlike the normal power grid, it is not 
necessary to keep the voltage level inside wind farm 
constant. The voltage of wind farm can be varied to 
change the power transferred through the HVDC LCC. 
The topology is shown in the Fig. 1 and the operation 
strategies of both cases are discussed in the following 
sections. 

2.1. Operation strategy when STATCOM installed 

At the wind farm side, STATCOM is installed to 
provide dynamic reactive power compensation for the 
HVDC thyristor rectifier. More importantly its dc 
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Fig. 1  Topology of DFIG with classical HVDC LCC integration 
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Fig. 2  Operation of DFIG with classical HVDC LCC integration and STATCOM 
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Fig. 3  Simulink Model of DFIG with classical HVDC LCC integration and STATCOM   
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capacitance is used as transient energy storage buffer. It is 
used to balance the power produced by wind turbine and 
transmitted through HVDC LCC. The wind speed is not 
constant, so the power produced by DFIG is also varying. 
It is difficult to predict the total power produced by the 
whole wind farm very accurately. The imbalance between 
total power produced by DFIGs and power transferred 
through HVDC CSC is temporaly accumulated on the dc 
capacitance, and cause dc voltage variations. Thus the dc 
voltage of STATCOM can be used to control the fire 
angle of thyristor rectifier, which controls the active 
power transmitted through HVDC LCC. 

 
2.2. Operation strategy without STATCOM 

 
Unlike the normal power grid, the ac voltage at wind 

farm side is not necessarily to be constant as long as it is 
not too high to damage the insulation. The thyristor bridge 
can be looked as a constant impedance load when its fire 
angle is constant. Thus by changing the ac voltage 
magnitude, the active power transferred by the HVDC is 
changed. Based on the above reason, it is possible to 
design operation strategy when DFIGs are directly 
connected with HVDC LCC. 

In this configuration, the fire angles of both rectifier 
and inverter are kept as constant. The active power 
transferred through HVDC LCC is changed by varying the 
ac voltage magnitude at wind farm side. Shunt capacitor 
bank is used to provide steady state reactive power 
compensation. The DFIGs provides dynamic reactive 
power compensation for the HVDC thyristor rectifier.  

 
3. CONTROLLERS OF DFIGS WITH CLASSICAL 

HVDC CONNECTION 

 Based on the previously discussed operation 
strategies, controllers of DFIGs and HVDC CSC are 
designed and they are simulated in Matlab/Simulink. 

3.1. Dynamic models 
 
Dynamic models using Park’s transformation are 

developed in Matlab/Simulink [15]. All the electric 
models are developed in dq synchronously rotating 
reference frame, including generator, transformer, 
transmission line and etc. For the generator model, the 
advantage of using the Park transformation is the 
elimination of changes of coupling inductors in three 
phase windings. For the grid components, such as 
transformer and transmission line, the advantage is that 
voltages and currents under steady state and balanced 
three phase system after Park transformation are dc 
values. Large simulation time steps can be used, and thus 
the simulation speed is greatly improved. The models 
include generator, transformer, transmission line and 
voltage source converter. Unlike the voltage source 
converters using IGBTs which can be modeled by 
switching functions, the thyristor bridge model is difficult 
to be modeled because of its uncontrollable switch-off 
characteristics. Five models are developed in 
Matlab/Simulink in this paper. They are compromises 
between simulation purposes and simulation speed. For 

electromechanical simulation purpose, the quasi-steady 
state model is accurate enough, while for electromagnetic 
simulations purpose, the instantaneous model is required. 

Table 1  Models of thyristor bridge 

Model 1 Symmetrical quasi-steady model 

Model 2 
Unsymmetrical quasi-steady model 

using Fourier analysis Quasi-steady 
state models 

Model 3 
Unsymmetrical quasi-steady model 

using partial symmetric 

Model 4 Instantaneous model without 
commutation effects 

Instantaneous 
models 

Model 5 Instantaneous model with 
commutation effects 

 
These thyristor bridge models are compared with 

power system blockset in Matlab/Simulink and the results 
prove that these models are fast and accurate [15]. 

In this paper, the symmetrical quasi-steady state model 
is used, as the simulation purpose is to investigate the 
electromechanical interactions between DFIGs and HVDC 
CSC. 

 
3.2. Controllers When STATCOM installed 

 
When a STATCOM is installed, the DFIGs and 

HVDC CSC can be assumed in connection with strong 
power grid. ac voltage at the point of common coupling 
between wind farm and HVDC link is constant. Thus, the 
traditional grid voltage oriented controller of DFIG can be 
used. The grid voltage oriented control is explained in 
many literatures [16], [17]. The generator’s voltages and 
currents are transformed to the synchronous rotating 
reference frame, which is in the direction of the grid 
voltage vector. The generator’s stator and rotor equations 
in this reference frame are: 

 (1) 

 

 (2) 

 

 (3) 

 

 (4) 

By aligning the reference frame in the direction of grid 
voltage vector, omitting the stator resistance and assuming 
a steady state operation, those equations are simplified to: 

 (5) 
 

 (6) 
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 (7) 
 

 (8) 

The rotor voltage can be used to control rotor currents, 
and the rotor currents control the stator currents. And the 
generator’s active and reactive powers are thus controlled 
by the rotor voltages as equations (9) and  (10). 

 (9) 

 

 (10) 

Fig. 3 shows the Simulink model of DFIG with HVDC 
LCC and a STATCOM. 

The controller of HVDC LCC is similar to the 
traditional controller. The inverter is in constant fire angle 
mode, and the rectifier is used to control the active power 
flow through the HVDC LCC. The power order or current 
order for the rectifier controller is determined by the dc 
voltage of the STATCOM. Here a simple droop controller 
is used shown as Fig. 4 and equation (11). 

  

α∑ orderα

 

Fig. 4  Fire angle droop controller of HVDC’s rectifier. 

 

 (11) 

Where  are the desired fire angle and nominal fire 
angle of the thyristor rectifier, respectively;  
are the actual and nominal dc voltage, respectively;  is 
the droop ratio which is a negative value. 

It is used to control the dc voltage of STATCOM and 
thus minimize the imbalance between the power produced 
by wind farm and transferred through HVDC LCC. From 
(11), it is seen that the fire angle is reverse proportional to 
the dc voltage difference . If the actual dc voltage is 
larger than the reference value, it implies that the active 
power produced by wind turbine is larger than the power 
transmitted through HVDC LCC. Then the fire angle  of 
HVDC thyristor rectifier is decreased. Consequently, the 
dc voltage at the rectifier side is increased, and the active 
power transmitted through HVDC LCC will be increased. 

The simulation results of DFIG wind park with HVDC 
LCC connection and STATCOM are shown from Fig. 5 to 
Fig. 6. The STATCOM works as a transient energy buffer. 
It balances the active power produced by wind turbines 
and transmitted through HVDC LCC. Controlled by the 
droop controller of STATCOM’s dc voltage, the fire angle 
of Thyristor rectifier follows the change of dc voltage and 

all the active power produced by wind farm are 
transmitted through the Thyristor Bridge. Besides, a 
simple feed-forward loop is added on DFIG’s reactive 
power control loop to use DFIG to produce reactive power 
in proportion with its own active power. The reactive 
power reference depends on the power factor of Thyristor 
rectifier and equals to PD F I G ˘ sin ®PD F I G ˘ sin ®, where ®® is the fire 
angle of the Thyristor rectifier. By this way, the reactive 
power consumed by Thyristor rectifier will not only be 
provided by STATCOM, but by all DFIGs instead. 
Additional function loops can be added to prevent 
commutation failure, dc over current and etc. However 
these additional function loops can be found in many 
literatures [8], and are not the study purpose of this paper.  

In all, the STATCOM is only required to balance the 
active power transiently, and to provide part of the 
reactive power consumed by the Thyristor rectifier. Thus 
the required power rating of STATCOM is limited. 
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Fig. 5  DFIG - HVDC LCC with STATCOM, DFIGs’ effective 
wind speed, stator active power, rotor active power, and 

generator’s rotor slip 
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Fig. 6  DFIG - HVDC LCC with STATCOM, thyristor rectifier 
and inverter’s fire angle, dc voltage, active and reactive power. 
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Fig. 7  DFIG - HVDC LCC with STATCOM, STATCOM’s 
active, reactive power, and dc voltage  

3.3. Controllers without STATCOM 
 

Without STATCOM to control the ac voltage, the 
DFIGs and HVDC CSC cannot be assumed in connection 
with stiff power grid. The grid voltage oriented control of 
DFIG cannot be used. More important, it is difficult to 
determine the power that should be transferred through the 
HVDC link, because the varying wind speed makes the 
total power produced by the wind farm in uncertainty. 

When the fire angle of thyristor bridge is kept constant, 
it is the same as a constant impedance load. Thus the 
DFIGs can be looked as in islanded operation with 
impedance load. The ac voltage magnitude can be 
controlled by the DFIGs’ fluxes, and be used to change 
the power transferred by the HVDC link.  In [17] the 
controller of a single DFIG with islanded operation is 
proposed. An energy storage device such as flywheel was 
used to balance the power produced by the DFIG and 
power consumed by load. 

 

Fig. 8  Terminal voltage controller of DFIG for classical HVDC 
connection. 

 

 

Fig. 9  Self stator flux controller of DFIG for classical HVDC 
connection. 

 
In this paper, the flux level or the terminal voltage is 

varied in proportional with the active power, thus no 
energy device is required. Two controllers are designed, 
one is terminal voltage controller and the other is self 
stator flux controller. The topologies of the controllers are 
shown as Fig. 8 and Fig. 9. 

The simulink model is similar as Fig. 3, only where the 
STATCOM is replaced by a shunt capacitor. Simulation 
results of DFIGs - classical HVDC without STATCOM 
are shown as Fig. 10. 

 

Fig. 10  DFIG - HVDC LCC without STATCOM, DFIG’s active 
and reactive power, HVDC rectifier’s active power, reactive 

power, fire angle, and ac voltage 
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Comparing with the situation with STATCOM 
installed in wind farm, in this configuration the reactive 
power has to be supported by the DFIGs. The fire angle of 
rectifier is kept constant, and the ac voltage is varied thus 
to change the total active power transferred by the HVDC 
link. However, because of the interactions between 
different DFIGs, the reactive power flow inside wind farm 
needs further investigation. 

4. CONCLUSIONS AND RECOMMENDATIONS 
 
In this paper, configuration of DFIGs in connection 

with classical HVDC link is studied. Operation strategies 
with and without STATCOM are proposed. Controllers of 
DFIGs and HVDC link are designed and simulated in 
Matlab/Simulink. Simulation results show that both 
concepts seem to work well under normal conditions. 
Further studies of these concepts under grid fault 
conditions are required. 
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