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ABSTRACT 
The synthesis algorithms of modern control theory and fuzzy logic have been studied to upgrade the performances of SMC. In 

this paper, Fuzzy sliding mode control, which takes the features of both SMC and FLC to overcome the disadvantage of chattering 
and enhancing the robustness of the controller, is presented. The fuzzy sliding mode controller is designed for a class of non linear 
dynamic systems to tackle the problems with model uncertainties, parameter fluctuations and external disturbances. By this design, 
the bounds of the uncertainties are not required to be known in advance, and the robust stability of closed loop system is analysed in 
the Lyapunov sense. A numerical example is simulated with the proposed algorithm, witch consists to control the synchronous motor 
speed. The simulation results show the effectiveness of the proposed control strategy with desired tracking accuracy and robustness. 
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1. INTRODUCTION 
 

Variable structure control (VSC) with sliding mode or 
sliding mode Control (SMC), is one of the effective non 
linear robust control approaches since it provides system 
dynamics with an invariance property to uncertainties 
once the system dynamics reach the sliding surface [1, 2, 
3]. The main disadvantage of this approach is the high 
switching frequency of the control action or chattering 
that VSC system exhibit. Chattering is undesirable since it 
can excite the unmodeled high frequency dynamics in the 
non linear system control. Introducing a boundary layer 
(BL) is one of the most common techniques used, with the 
cost of an important degradation in tracking performance.  

Fuzzy control has been an active research topic, since 
the work of Mamdani proposed in 1974 [4]. The concept 
of FLC is to utilize the qualitative knowledge of a system 
to design a practical controller; it is generally applicable to 
plants that are ill-modelled, but qualitative knowledge of 
experienced operators available for design. It is 
particularly suitable for those systems with uncertain or 
complex dynamics. In general, a fuzzy control algorithm 
consists of a set of heuristic decision rules and can be 
regarded as a nonmathematical control algorithm, in 
contrast to a conventional feedback control algorithm [5]. 

In recent years, some results of the fuzzy sliding mode 
control (FSMC) have been reported [5, 6]. To decrease the 
number of rules in the rule base, several authors have 
suggested using the way of a composite state to obtain a 
fuzzy sliding mode controller described in the previous 
work. The advantage of such controllers is that the 
number of rules required is reduced. Obviously, the 
FSMC is one of the reducible fuzzy rules methods. In 
general, since the FSMC combines both fuzzy control and 
sliding mode control principles, the performance of 
closed-loop system is superior to that using only one 
control theory. 

In this study, a robust controller is derived through 
variable structure control (VSC). Al though the method of 
variable structure control can solve the above mentioned 
system, the drawback of the variable structure control is

their chattering owing to the sliding control law that has to 
be discontinuous across the sliding surface. Chattering is 
undesirable because it involves high control activity and 
may excite high-frequency dynamics. So we apply the 
fuzzy control principle to overcome the drawback. Herein, 
what we want to demonstrate is that the FSMC can handle 
this chattering problem effectively by adjusting the control 
input near the sliding hyperplane. Mostly, the FSMC 
method is applied in tracking control of a non linear 
system. 

The organization of this paper is as follows. In section 
2, the system under study is stated, the modified SMC is 
described and its stability is guaranteed by Lyapunov 
theory. In section 3, the proposed fuzzy sliding mode 
controller is developed. In section 4, the vector control 
principle for synchronous motor drive is presented. In 
section 5, the proposed controller is used to control the 
synchronous motor speed, simulation results are given to 
show the effectiveness of this controller. Conclusion is 
summarized in the last section. 
 
2. SLIDING MODE CONTROL 
 

Consider a nonlinear system which can be represented 
by the following state space model in a canonical form 
[2, 7]: 

 
( ) ( ) ( )( ) ( )

( ) )(
,),()(

txty
tduttxgttxftx n

=
++=                       (1) 

where ( ) ( ) ( )[ ]Tn txtxtxx )1(... −=  is the state vector, 
( )( )ttxf ,  and ( )( )ttxg ,  are nonlinear functions, u is the 

control input, ( )td  is the external disturbances.  
The objective of the control is to determine a control 

law u(t) to force the system output y(t) in (1) to follow a 
given bounded reference signal yd(t), that is, the tracking 
error ( ) ( ) ( )tytyte d −=  and its forward shifted values, 
defined as  
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should be small. 

The design of SMC involves two tasks. The first one is 
to select the switching hyperplane ( )txs , to prescribe the 
desired dynamic characteristics of the controlled system. 
The second one is to design the discontinuous control such 
that the system enters the sliding mode ( ) 0, =txs and 
remains in it forever. 

In this paper, we use the sliding surface proposed par 
J.J. Slotine, as mentioned in appendix A-2, 
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in which  ( ) ( )txtxe d −= , λ is a positive coefficient, and n 
is the system order.   

It remains to be shown that the control law can be 
constructed so that the sliding surface will be reached. 
Then, a sliding hyperplane S can be represented as 
( ) 0, =txs .  

The scalar ( )txs , is defined as the distance to the 
sliding hyperplane S. 

 
Consider a Lyapunov function: 
 

2

2
1 sV =                                                      (4) 

 
From Lyapunov theorem we know that if V  is 

negative definite, the system trajectory will be driven and 
attracted toward the sliding surface and remain sliding on 
it until the origin is reached asymptotically [8, 9]: 
 

ssV =                                                        (5) 
 
The simplified 1st order problem of keeping the scalar 

( )txs , at zero can be achieved by choosing the control law 
u(t). A sufficient condition for the stability of the system 
is  
 

ss
t

η−≤
∂
∂ 2

2
1                                                     (6) 

 
where η  is a positive constant. 

(6) is called reaching condition or sliding condition. 
s(t) verifying (6) is referred to as sliding surface, and the 
system’s behaviour once on the surface is called sliding 
mode. 

If the control input is so designed that the inequality 
(6) is satisfied, together with the properly chosen sliding 
hyperplan, the state will be driven toward the origin of the 
state space along the sliding hyperplane from any given 
initial state. This is the way of the SMC that guarantees 
asymptotic stability of the systems. 

 The process of sliding mode control can be divided in 
two phases, that is, the approaching phase and the sliding 
phase. The sliding mode control law u(t) consists of two 
terms, equivalent term ueq(t), and switching term us(t). 

In the sliding phase, where ( ) 0, =txs and  ( ) 0, =txs , 
the equivalent term ueq(t) is designed to keep the system 
on the sliding surface. In the approaching phase, where 
( ) 0, ≠txs , the switching term us(t) is designed to satisfy 

the reaching condition (6). 
While in sliding phase we have: 
 

( ) 0, =txs               (7)  
 
By solving the above equation formally for the control 

input, we obtain an expression for u called the equivalent 
control ueq, which can be interpreted as the continuous 
control law that would maintain ( ) 0, =txs  if the 
dynamics were exactly known. 

 In order to satisfy sliding conditions (6) and to despite 
uncertainties on the dynamic of the system, we add a 
discontinuous term across the surface ( ) 0, =txs , so the 
sliding mode control law u(t) has the following form:  
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where fK is the control gain.         

 
For a defined functionϕ : 
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The controller described by the equation (8) presents 

high robustness, insensitive to parameter fluctuations and 
disturbances [1, 2, 3, 7, 10], but it will have high-
frequency switching (chattering phenomena) near the 
sliding surface due to sgn function involved. These drastic 
changes of input can be avoided by introducing a 
boundary layer with width ε  [2, 3, 11, 12]. Thus 
replacing ( )( )tssgn  by ( )( )ε/tssat  in (8), we have 

 
( )( )ε/, txssatKuu feq −=                                   (10) 
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( ) ( )
.

1
1sgn

,0

⎪⎩

⎪
⎨
⎧

<
≥

=

>

ϕϕ
ϕϕ

ϕ

ε

if
if

sat
                        

 
3. FUZZY SLIDING MODE CONTROL 
 

Sliding mode control (SMC) systems or variable 
structure control systems have been studied extensively to 
tackle problems of the nonlinear dynamic control systems. 
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A sliding mode control law is formulated using a 
Lyapunov approach to guarantee that the system state first 
reaches the prescribed sliding mode in finite time from 
any initial state, and then remains on it thereafter by a 
discontinuous control. However, since a discontinuous 
control action is involved, chattering due to the high gain 
and high speed switching control will take place and the 
steady-state performance will be degraded. The 
undesirable chattering may excite previously unmodelled 
system dynamics and damage actuators, resulting in 
unpredictable instability. Smoothing techniques such as 
the boundary layer approach have been employed to 
reduce its effects at the cost of giving concession from 
performance. In this paper, we will use the discontinuous 
component u of the sliding control law to develop the 
fuzzy logic control. We propose a design methodology of 
FLC based on SMC with fast self-tuning the dead zone 
parameters (boundary layer thickness) under parameter 
variations in the control object. This design is called fuzzy 
sliding mode control (FSMC). The FSMC takes the 
features of both SMC and FLC to overcome the 
disadvantage of chattering and enhance the robustness of 
the controllers. With this scheme, the stability and the 
robustness of the proposed fuzzy logic control algorithm 
are proved and ensured by the sliding mode control law. 
Then, the stability of the FSMC is guaranteed by 
Lyapunov theory.  

We follow the development established in [6] and 
show that a particular fuzzy controller is an extension of 
an SMC with a boundary layer [3, 13]. We will use the 
discontinuous component us of the sliding control law (8) 
to develop the fuzzy logic control. 
 

feq uuu +=                                                     (11) 
 
where fu is the output of the fuzzy control block. 

 
Fig. 1 shows the general structure of the fuzzy sliding 

mode control (FSMC) where X is the variable of control. 
In this work, X can be the angular speed, s the sliding 
surface defined by equation (3), and the plant the machine 
object of control. 

 

 
Fig. 1  The bloc diagram of the fuzzy sliding mode control 

(FSMC). 
 
 Suppose the fuzzy controller in this article is 

constructed from the following IF-THEN rules: 
Rule 1: if s  is NB, then fu  is  BIGGEST, 

Rule 2: if s  is NM, then fu  is  BIGGER, 

Rule 3: if s  is NS, then fu  is BIG, 

Rule 4: if s  is ZR, then fu  is MEDIUM,  

Rule 5: if s  is PS, then fu  is SMALL,  

Rule 6: if s  is PM, then fu  is SMALLER 

Rule 7: if s  is PB, then fu  is SMALLEST 
Or equivalently  
Rule (i): if s  is i

sF , then fu   is i
u f

F , i =1,…,5. 

Here NB is negative big, NM is negative medium, NS 
is negative small, ZR is zero, PB is positive big, PM is 
positive medium and PS is positive small. NB, NM, NS 
…, SMALLER, SMALLEST are labels of fuzzy sets and 
their corresponding membership functions are depicted in 
Fig. 3 and Fig. 4, respectively.  

 

 
Fig. 2  Membership functions for input s. 

 

 
Fig. 3  Membership functions for output u. 

 
Let X and Y be the input and output space of the fuzzy 

rules. For any arbitrary fuzzy set xF  in X, each rule iR  

can determine a fuzzy set i
xoRF  in Y. Use the sup-min 

compositional rule of inference [14, 15, 16]: 
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It can be further simplified by supposing xF  as a 
fuzzy singleton, i.e., only at its support α=s , ( ) 1=s

xFμ  

otherwise ( ) 0=s
xFμ , then (12) becomes 
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i
X
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and the deduced membership function d
u f

F  of the 

consequences of rules is 
 

( ) ( ) ( )[ ]fRFfRFfF uuu
xx

d
fu

51 ,...,max οο μμμ =           (14) 

 

The crisp output cu  is obtained by the center-of-area 
defuzzifier: 
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                                     (15)  

 
4. SYNCHRONOUS MOTOR 
 
4.1.  Machine equations 
 

The dynamic model of synchronous motor in d-q 
frame can be represented by the following equations [17, 
18]: 
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                                (16) 

 
The mechanical equation of synchronous motor can be 

defined by: 
 

Ω−−=Ω BTT
t

J Led
d                                          (17) 

 
Where the electromagnetic torque is given in d-q frame: 
 

( )dsqsqsdse iipT φφ −=                                        (18) 
 
In which: 

θ
td

d
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θθ pe =                 (22)  

The flux linkage equations are: 
 

dsfdfff

qsqsqs
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φ
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   (23)  

 
where sR  – stator resistance, fR  – field resistance, 

qsds LL ,  – respectively direct and quadrature stator 

inductances, fL  – field leakage inductance, fdM  – 
mutual inductance between inductor and  armature, 

dsφ and qsφ  – respectively direct and quadrature flux, fφ  

– field flux, eT  – electromagnetic torque, LT  – external 
load disturbance, p  – pair number of poles, B  – is the 
damping coefficient, J – is the moment of inertia, ω – 
electrical angular speed of motor. Ω  – Mechanical 
angular speed of motor, θ  – mechanical rotor position, 

eθ  –electrical rotor position.  
 

4.2.  Description of the system  
 
The schematic diagram of the speed control system 

under study is shown in Fig. 4. The power circuit consists 
of a continuous voltage supply which can provided by a 
six rectifier thyristors and a three phase GTO thyristors 
inverter whose output is connected to the stator of the 
synchronous machine. The field current fi  of the 
synchronous machine, which determines the field flux 
level is controlled by voltage fv . The parameters of the 
synchronous machine are given in the Appendix A-1.  

The self-control operation of the inverter-fed 
synchronous machine results in a rotor field oriented 
control of the torque and flux in the machine. The 
principle is to maintain the armature flux and the field flux 
in an orthogonal or decoupled axis. The flux in the 
machine is controlled independently by the field winding 
and the torque is affected by the fundamental component 
of armature current qsi . In order to have an optimal 

functioning, the direct current dsi  is maintained equal to 
zero [14, 15].  

Substituting (23) in (18), the electromagnetic torque 
can be rewritten for fi =  constant and 0=dsi  as follow: 

 
( ) ( )titT qse λ=                                                     (24) 

 
where ffd ipM=λ . 

In the same conditions, it appears that the dsv  and qsv  
equations are coupled. We have to introduce a decoupling 
system, by introducing the compensation terms demf  and 

qemf  in which 
 

.
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Fig. 4  System configuration of Field-Oriented Synchronous Motor. 

 
 
Fig. 4 shows the schematic diagram of the speed 

control of synchronous motor using fuzzy sliding mode 
control. 

The blocks FSMRω, PIid et PIiq are régulators, the first 
one is the fuzzy sliding mode controller for speed, the 
second is the proportional integral (PI) regulator for direct 
current and the third is the PI regulator for the quadrature 
current. To avoid the appearance of an inadmissible value 
of current, a saturation bloc is used. 

4.3.  Voltage inverter 
 
The power circuit of a three-phase bridge inverter 

using six switch device is shown in Fig. 5. The dc supply 
is normally obtained from a utility power supply through a 
bridge rectifier and LC filter to establish a stiff dc voltage 
source [14].  

 

 
 

Fig. 5  Voltage inverter. 

 
The switch Tci ( { } { }2,1,3,2,1 ∈∈ ic ) is 

supposed perfect. The simple inverter voltage can be 
presented by logical function connexion in matrix form as 
[7, 19, 20] 

,
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⎢

⎣
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                     (26) 

 
where the logical function connexion Fc1 is defined as: 
Fc1 = 1 if the switch Tc1 is closed, Fc1 = 0 if the switch Tc1 
is opened, cU  is the voltage feed inverter. 
 
5.   SIMULATION AND RESULTS 
 
5.1. Results and comments 
 

To show the fuzzy sliding mode performances we have 
simulated the system described in Fig. 4. The simulation 
of the starting mode without load is done, followed by 
reversing of the reference rad/s100±=refω at t3=2s,  

The load ( LT ) is applied in two periods: 
1. The reference rad/s100+=refω , the load 

( Nm8+=LT ) is applied at t1 = 1 s and eliminated at 
t2 = 1.5 s 

2. The reference rad/s100−=refω , the load 

( Nm8−=LT ) is applied at t4 = 3 s and eliminated at 
t5 = 3.5 s.  

The simulation is realized using the SIMULINK 
software in MATLAB environment.  

Fig. 6 shows the performances of the fuzzy sliding 
mode controller. 

The control presents the best performances, to achieve 
tracking of the desired trajectory and to reject 
disturbances. The current is limited in its maximal 
admissible value by a saturation function. The decoupling 
of torque-flux is maintained in permanent mode. 
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-a- 

 
-b- 

 
Fig. 6  Simulation results of speed control with fuzzy sliding mode control: 

a- performances of the system, b- speed tracking error.  
 
 

5.2. Robustness 
 
In order to test the robustness of the used method we 

have studied the effect of the parameters uncertainties on 
the performances of the speed control. 

To show the effect of the parameters uncertainties, we 
have simulated the system with different values of the 
parameter considered and compared to nominal value (real 
value).  

Three cases are considered: 
1. The moment of inertia ( ±50%).  
2. The stator and rotor resistances (+50%). 
3. The stator and rotor inductances (+20%). 
 

To illustrate the performances of control, we have 
simulated the starting mode of the motor without load, and 
the application of the load ( Nm8+=LT ) at the instance 
t1 = 2 s and it’s elimination at t2 = 3 s; in presence of the 
variation of parameters considered (the moment of inertia, 
the stator and rotor resistances, the stator and rotor 
inductances) with speed step of +100 rad/s.  

Fig. 7 shows the tests of robustness realized with the 
fuzzy sliding mode control for different values of the 
moment of inertia. Fig. 8 shows the system response 
realized with the fuzzy sliding mode control for different 
values of stator and rotor resistances.  
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Fig. 7  Test of robustness for different values of the moment of 
inertia: 1) – 50%,  2) nominal case,  3) +50%. 

 

 
 

Fig. 8  Test of robustness for different values of stator and rotor 
resistances: 1) nominal case, 2) +50%. 

 
Fig. 9 shows the tests of robustness realized with the 

fuzzy sliding mode control for different values of stator 
and rotor inductances. 

 

 
 

Fig. 9  Test of robustness for different values of stator and rotor 
inductances: 1) nominal case, 2) +20%. 

 
For the robustness of control, a decrease or increase of 

the moment of inertia J, the resistances or the inductances 
doesn’t have any effects on the performances of the 
technique used (Fig. 8 and Fig. 9). An increase of the 

moment of inertia gives best performances, but it presents 
a slow dynamic response (Fig. 7). The fuzzy sliding mode 
control gives to our controller a great place towards the 
control of the system with unknown parameters. 
 
6.  CONCLUSION 
 

The paper describes a new approach to robust speed 
control for synchronous motor. It’s develops a simple 
robust controller to deal with parameters uncertain and 
external disturbances and takes full account of system 
noise, digital implementation and integral control. The 
control strategy is based on SMC and FLC approaches. 
The FSMC has the advantage in handling the chattering 
phenomena and in reducing the number of the fuzzy rules. 

The simulation results show that the proposed 
controller is superior to SMC in eliminating chattering 
phenomena and with higher tracking precision. It appears 
from the response properties that it has a high 
performance in presence of the plant parameters uncertain 
and load disturbances. It is used to control system with 
unknown model. The control of speed by FSMC gives fast 
dynamic response with no overshoot and zero steady-state 
error. The decoupling, stability and convergence to 
equilibrium point are verified.  
 
APPENDIX  
 
A.1 - Three phases SM parameters: 
Rated output power 3HP, Rated phase voltage 60V, Rated 
phase current 14 A, Rated field voltage vf=1.5V, Rated 
field current if =30A, Stator resistance sR =0.325Ω, Field 
resistance fR =0.05Ω, Direct stator inductance Lds =8.4 
mH, Quadrature stator inductance Lqs=3.5 mH, Field 
leakage inductance Lf=8.1 mH, Mutual inductance 
between inductor and  armature Mfd=7.56mH, The 
damping coefficient B =0.005 N.m/s, The moment of 
inertia J =0.05 kg.m2, Pair number of poles p =2. 
 
A.2 - Sliding surface  

 
Let: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] Rtetetetetetee
TnT

n ∈== − )1(
21 ......  (27) 

 
Where: ( ) ( ) ( )txtxte d −=  

For system (1), a sliding surface in the space of the 
tracking error vector  s(x, t) can be defined by 
 

( ) cetxs =,                                                         (28) 
 

where [ ]1... 121 −= ncccc , ci , (i=1,…, (n-1))are 
coefficients of Hurwtizian polynomial. 

The sliding hyperplan S can be represented as  
 
( ) ( ) ( ) ( ) 0..., )1(

21 =+++= − tetectectxs n            (29) 
 
The scalar s(x, t) of (28) is defined as the distance to 

the sliding hyperplan S. 
The dynamic behaviour of (1) without disturbances on 

the sliding surface  (29) will be stable if the coefficient of 
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Hurwitzian polynomial (ci) are chosen  such that the root 
of (29) are in the open left half plane.  

J. J. Slotine proposed a particular surface where the 
surface can be written in following form 
  

( ) ( )te
dt
dtxs

n 1

λ,
−

⎟
⎠
⎞

⎜
⎝
⎛ +=                                       (30) 

 
In which ( ) ( )txtxe d −= , λ is a positive coefficient, and n 
is the system order.   

The dynamic behavior of (1) without disturbances on 
the sliding surface is 

 

( ) ( ) 0λ
1

=⎟
⎠
⎞

⎜
⎝
⎛ +=

−

te
dt
dts

n

                       (31) 

 
and will be stable if the roots of (31) are in the open left-
half plane. 
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