
16 Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 16–23

ISSN 1335-8243 © 2009 FEI TUKE

MODULARIZING SCIENTIFIC LIBRARIES WITH ASPECT-ORIENTED
AND GENERATIVE PROGRAMMING TECHNIQUES

Suman ROYCHOUDHURY*, Jeff GRAY**, Jing ZHANG***, Purushotham BANGALORE**,
Anthony SKJELLUM**

*School of Information Technology, International University in Germany,
Bruchsal 76646, Germany, Email: Suman.Roychoudhury@i-u.de

** Department of Computer and Information Sciences, University of Alabama at Birmingham,
115A Campbell Hall, 1300 University Boulevard, Birmingham, AL, USA, 35295-1170,

tel. (+1) 205 934 2213, E-mail: { gray, puri, tony}@cis.uab.edu
*** Software and Middleware Research, Motorola Applied Research and Technology Center

1295 E. Algonquin Road, Schaumburg, IL, USA 60196 E-mail: j.zhang@motorola.com

ABSTRACT
Scientific computing libraries represent complex software that are often difficult to understand, evolve, and maintain. As systems

become larger and more complex with additional requirements, they are subject to decay over a period of time, making it
increasingly difficult to address changing stakeholder requirements. New approaches for software engineering and programming
language design, such as aspect-oriented software development and generative programming, have been investigated recently as
effective techniques for improving modularization of software. In particular, aspects have the potential to interact with many
different kinds of language constructs in order to modularize crosscutting concerns. This paper presents an analysis of Blitz++,
which is a well-known C++ class library for scientific computing. The analysis demonstrates through various examples how aspect-
oriented and generative programming techniques can be applied in modularizing crosscutting concerns that have been identified in
Blitz++. This improves software maintainability by reducing code size and de-coupling crosscutting concerns to enable easier
change evolution.

Keywords: aspect-oriented programming, generative programming, scientific computing, software engineering.

1. INTRODUCTION

To support software adaptation and evolution, new
approaches, such as Aspect-Oriented Software
Development (AOSD) [1], have shown initial promise in
assisting a developer in isolating points of variation and
configurability. It has been recognized within the past
decade that software modularization constructs available
in traditional object-oriented programming languages are
inadequate for capturing certain behaviors in a software
system that are crosscutting [1, 4]. Although objects can
separate certain kinds of concerns (e.g., data or behavior),
they fail to encapsulate concerns that overlap, interact
with, and cut across the dominant modules in a system.
Such concerns are said to be crosscutting and their
representation is scattered and tangled among the
description of numerous other concerns.

Crosscutting concerns are treated as second class
citizens in most languages as there is no explicit
representation for their modularization. For example, the
common example of logging the method entry and exit
points in a very large system may lead to scattering of the
logging concern across other useful features present in the
code base. This may introduce unnecessary cohesion in
the system resulting in poor modularization. In addition to
logging, examples of other crosscutting concerns that are
difficult to modularize using traditional object-oriented
languages are security checks, transaction management,
pre-fetching and disk quota operations [3]. It is often
desirable to have a way to create a single separate module
that describes all of the functionality of a crosscutting
concern.

Aspect-oriented techniques provide new language
constructs to cleanly separate concerns that crosscut the

modularization boundaries of an implementation. In a
fundamentally new way, aspects permit a software
developer to quantify, from a single location, the effect of
a concern across a body of code, thus improving the
modularization of crosscutting concerns. Some of the
constructs typical in Aspect-Oriented Programming
(AOP) approaches, such as AspectJ [4], include the
following:

Join Point: Specific execution point of a program,
such as a method invocation or a particular exception
being thrown.

Pointcut: Means of identifying a set of join points
through a predicate expression.

Advice: Defines actions to be performed at associated
join points.

Aspect: A modularization of a concern for which the
implementation might otherwise cut across multiple
boundaries; generally defined by pointcuts and advice.

An aspect weaver is a translator that is responsible for
merging the separated aspects with the base code. AspectJ
[4] is an aspect weaver for Java. As an example, Listing 1
shows a simple logging aspect in AspectJ. The pointcut
log captures all join points that correspond to calls on
FooObject methods (the * represents a wildcard). The
before and the after advice binds the pointcut to
specific actions to be performed just before and after each
join point is reached (i.e., before and after
FooObject’s method call invocation).

The entire crosscutting concern is captured in a single
aspect called Logger. The different constructs
introduced in this example illustrate the benefit of AOP in
modularizing systems that exhibit such crosscutting. Thus,
instead of a scattered representation of the logging

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 17

ISSN 1335-8243 © 2009 FEI TUKE

concern which may spread throughout the code base,
aspects help to modularize concerns that are crosscutting
in nature. This directly improves software maintainability
by reducing the code size and improving the
comprehensibility. Separation of crosscutting concerns
makes the system easier to change and evolve. As an
indirect effect, reduced code may lead to a smaller
memory footprint that can increase the performance of
scientific computing software.

1. aspect Logger {
2. pointcut log():
3. call(public * FooObject.*(..));
4. before(): log() {
5. System.out.println("before " +
6. "calling FooObject methods");
7. }
8. after(): log() {
9. System.out.println("after " +
10. "calling FooObject methods");
11. }
12. }

Listing 1 AspectJ specification to capture logging in FooObject
Methods

As a complementary approach to AOP, generative
programming is a software engineering technique that is
used to automatically synthesize end-products from a set
of primitive reusable components that can be
appropriately configured from high-level specifications
[2]. Generative programming utilizes automated source
code creation through meta-programming, generic classes,
templates, aspects, and code generators to improve
programmer productivity.

Scientific computing was an initial application domain
for the early examples of AOP [5]. However, aside from
an application of AspectJ [4] to an implementation of
JavaMPI [6], AOP has not been applied or investigated
deeply within the area of scientific computing. This is
primarily due to the fact that such applications are
typically written in FORTRAN, C, or C++, but the center
of AOP research has largely remained focused on Java-
based implementations. Nevertheless, there is a strong
potential for impact if aspects can be used to improve the
modularization of scientific computing applications
written in languages other than Java.

In this paper, we focus on C++ template libraries that
are tailored for scientific computing applications. Such
libraries typically rely heavily on parametric
polymorphism to specialize mathematical operations on
vectors, arrays, and matrices [7, 8]. To demonstrate the
benefits of applying aspect-oriented and generative
programming techniques to applications written in C++
templates, this paper presents an investigation of applying
AOP to a well-known scientific computing library called
Blitz++ [8]. The paper illustrates several examples of
crosscutting concerns in Blitz++ and explains how they
can be encapsulated using aspects. In addition to AOP
related examples, we also show how generative
programming techniques can be applied to generate large
code blocks that represent several arithmetic operations in
Blitz++.

1.1. Overview of paper contents

The paper is organized as follows. Section 2
introduces Blitz++ for discussing crosscutting concerns
that exist in scientific computing libraries. Section 3
illustrates how generative programming techniques can be
used to synthesize several mathematical functions that are
required by the Blitz++ library. Section 4 presents a
summary of results highlighting the benefits of achieving
improved modularization. A comparison to related work is
covered in Section 5. A conclusion offers summary
remarks and a vision for future work.

2. ASPECTS IN SCIENTIFIC LIBRARIES

This section focuses on the benefits of modularizing
open-source libraries written in the scientific computing
domain. The contribution highlights the crosscutting
features of a template library for scientific computing and
describes improved modularization using aspect-oriented
and generative programming techniques. In particular, this
section illustrates several aspects that are identified in
Blitz++ [8], which is a C++ template library that supports
high performance scientific computing.

2.1. Background: Crosscutting in Blitz++

Optimizing performance, while preserving the benefits
of programming language abstractions, is a major hurdle
faced in scientific computing [7, 9, 10]. Object-Oriented
Programming Languages (OOPLs) have popularized
useful features (e.g., inheritance and polymorphism) in the
development of complex scientific problems. However,
the performance bottleneck associated with OOPLs has
been a major concern among High-Performance
Computing (HPC) researchers. Alternatively, languages
such as FORTRAN have dominated the numerical
computing domain, even though the primitive
programming constructs in such languages make
applications difficult to maintain and evolve.

Compiler extensions (e.g., High Performance C++ [11]
and High Performance Java [12]) and scientific libraries
(e.g., POOMA [13], MTL [14], and Blitz++ [8]) have
been developed to extend the benefits of object-oriented
programming to the scientific domain. In particular,
Blitz++ is a popular scientific package that has specific
abstractions (e.g., arrays, matrices, and tensors) that
support parametric polymorphism through C++ templates.
The goal of the Blitz++ project was to develop techniques
that enable C++ to compete or exceed the speed of
FORTRAN for numerical computing. Blitz++ arrays offer
functionality and efficiency, but without any language
extensions. The Blitz++ library is able to parse and
analyze array expressions at compile-time and perform
loop transformations. Blitz++ currently provides dense
vectors and multidimensional arrays, in addition to
matrices, random number generators, and tiny vectors.
The overall size of the Blitz++ library is approximately
115K source lines of code (SLOCs). Moreover, there are
several additional source code directories that serve as
benchmarks and test cases.

Although Blitz++ makes extensive use of templates for
array and vector implementation, the issue addressed in

18 Modularizing Scientific Libraries with Aspect-Oriented and Generative Programming Techniques

ISSN 1335-8243 © 2009 FEI TUKE

this paper is the ability to apply AOP concepts to large
scientific template libraries like Blitz++. This section
contains a description of some of the array and vector
implementation templates in Blitz++, and identifies
several crosscutting features in the current Blitz++
implementation. The general approach could be applied to
other libraries that use parametric polymorphism
implemented in languages such as Ada or Java.

The first example (Section 2.2) represents the common
case of a debugging precondition that appears in array-
impl.h and resize.cc. These files primarily represent arrays
whose dimensions are unknown at compile-time and
require resizing during runtime. In addition, there are
several methods that perform block reduction operations
and conversions to and from matrix and vector.

A second crosscutting feature in array-impl.h is
setupStorage, which is used for initial memory
allocation for arrays and appears in both array-impl.h and
resize.cc.

The third example (Section 2.3) is based on redundant
assertion checks on the lower and upper bounds of an
array during instantiation. It appears 46 times in array-
impl.h and is similar in concept to redundant assertion
checking described by Lippert and Lopes [15].

Section 3 examines AOP combined with generative
programming techniques [2]. In particular, this section
explores the various binary and unary operations on
vectors that use templatized mathematical functions.
These functions crosscut the vector operations. For
example, many mathematical functions (e.g., sin, cos, tan,
abs) appear multiple times in both vecuops.cc and
vecbops.cc. Although Blitz++ currently generates these
templates, an alternative approach is shown that uses
program transformation rules to generate source code.
Using this approach, over 12K SLOCs are generated from
just 60 lines of code in a base template.

2.2. Precondition and setupStorage aspects

The Blitz++ library has a debugging mode that is
enabled by defining the preprocessor directive

BZ_DEBUG. In this mode, an application executes slowly
because Blitz++ performs precondition and bounds
checking on the array index. Under this condition, if an
error or fault is detected by the system, the program halts
and displays an error message. Listing 2 shows a sample
precondition check for an array implementation. The rank
of the vector influences the precondition to be checked.

Another aspect that crosscuts the array implementation
boundaries is setupStorage. The method is called to
allocate memory for any new array. However, any missing
length arguments will have their value taken from the last
argument in the parameter list. For example,
Array<int,3> A(32,64) will create a 32x64x64
array, which is handled by the routine setupStorage.
Both the BZPRECONDITION (lines 7 and 15 of Listing 2)
and setupStorage (lines 9 and 17) can be individually
considered as two different pieces of advice applied to the
same pointcut (the former as before advice and the
latter as after advice).

Listing 3 presents the corresponding aspect
specification for the crosscutting concern identified in
Listing 2. This allows the separation of crosscutting
concerns from the base code (Listing 2) and encapsulates
them as aspects (Listing 3) to be woven using a low-level
translator and weaver.

The BZPRECONDITION statement (line 4 in
Listing 3) and the setupStorage statement (line 7 in
Listing 3) form part of the before and the after
advice. Note that the before and the after advice are
similar to the Logger example shown in Listing 1, but
with a different objective.

The pointcut ArrayConstructor refers to
execution of all Array constructors defined in any
Array type (denoted by the wildcard *). However, if it is
desired to match only arrays of type Array<int>, more
selective pointcuts can be used. The function call
thisJoinPoint.getArgs().length will return
the length of the parameter list in the Array constructor.

1. template<typename T_expr>
2. _bz_explicit Array (_bz_ArrayExpr<T_expr> expr);
3. Array(int length0, int length1,
4. GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>())
5. : storage_(storage)
6. {
7. BZPRECONDITION(N_rank >= 2);
8. // implementation code omitted
9. setupStorage(1);
10. }
11. Array(int length0, int length1, int length2,
12. GeneralArrayStorage<N_rank> storage = GeneralArrayStorage<N_rank>())
13. : storage_(storage)
14. {
15. BZPRECONDITION(N_rank >= 3);
16. // implementation code omitted
17. setupStorage(2);
18. }

Listing 2 Precondition check and setpupStorage in Blitz++ array implementation

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 19

ISSN 1335-8243 © 2009 FEI TUKE

1. aspect InsertBZPreCon_MemAllocation {
2. pointcut ArrayConstructor(): execution(Array<*>::Array(..));

3. before(): ArrayConstructor() {
4. BZPRECONDITION(N_rank >= thisJoinPoint.getArgs().length());
5. }
6. after(): ArrayConstructor() {
7. setupStorage(thisJoinPoint.getArgs().length()-1);
8. }
9. }

Listing 3 Aspect specification for precondition and memory allocation in templates

2.3. Redundant assertion checking

Another crosscutting feature present in Blitz++ is
assertion checking, which is used to evaluate the size or
range of array instances. To detect errors in ranges, each
array allocation makes an implicit call to
assertInRange, which checks the lower and upper
bounds of an array instance.
 This particular assertion is defined in all array template
specifications, according to a general pattern as shown in
Listing 4 (e.g., assertInRange in lines 3 and 7).
However, note that the number of index parameters passed
to the assertInRange routine implicitly depends on
the size of the TinyVector. For example, as presented in
Listing 4, to allocate a TinyVector of size 1 requires only
one parameter (i.e., index[0]) to be passed to
assertInRange. Similarly, for a different allocation
size of N, the range will be checked on index[0],
index[1], ... , index[N-1]. This kind of assertion is
repeated 46 times in array-impl.h and is context-
dependent on the size of each template container.

To avoid the crosscutting assertion checking in every
definition of an array implementation, the aspect
specification (as defined in Listing 5) will weave this
concern into the template code. The operator pointcut
refers to all operator methods in the array implementation
class. The getParamList special construct (line 7 of
Listing 5) returns the list of index parameters for each call
to assertInRange.

2.4. Low-Level Implementation using Program

Transformation

In our approach, the low-level aspect weaving is
achieved using a program transformation engine called the
Design Maintenance System (DMS) [16]. The work is
similar to our previous investigation of aspects with
ObjectPascal [17]. However, the contribution described in
this paper targets a different language domain that is
applied to scientific computing. Figure 1 presents an
overview of the automated process for implementing
aspect weaving for C++ templates.

1. template<int N_rank2> T_numtype operator()
2. (TinyVector<int,1> index) const {
3. assertInRange(index[0]);
4. return data_[index[0] * stride_[0]];
5. }
6. T_numtype operator() (TinyVector<int,2> index) const {
7. assertInRange(index[0], index[1]);
8. return data_[index[0] * stride_[0] + index[1] * stride_[1]];
9. }

Listing 4 Redundant assertion check on base template specification

1. aspect AssertInRange {
2.
3. pointcut operator ():
4. execution(Array<*>::operator()(..));
5.
6. before(): operator() {
7. assertInRange(thisJoinPoint.getParamList());
8. }
9. }

Listing 5 Aspect specification for redundant assertion checking

20 Modularizing Scientific Libraries with Aspect-Oriented and Generative Programming Techniques

ISSN 1335-8243 © 2009 FEI TUKE

Fig. 1 Low-level infrastructure to perform aspect weaving
for C++ template libraries

One of the major processes involved in the

implementation is the translator (bottom of Figure 1),
which parses and translates a high-level aspect language
into low-level transformation rules. These rules are
specific to the underlying transformation system and
perform the actual weaving.

However, as these rules are synthesized by the
translator, their existence is oblivious to end-users who
can specify their intention using the high-level aspect
language. The heart of the weaving process is the DMS
transformation engine, which takes the source C++
template and translated rule as input and generates the
adapted C++ file as output. In our work, aspect mining
and removal of the original crosscutting concern was
performed manually, although the actual weaving is
automated using the high-level aspect specification and
the low-level transformation infrastructure shown in
Figure 1.

3. CROSSCUTTING GENERIC FUNCTIONS

This section discusses the combination of AOP with
other generative programming techniques [2]. In Blitz++,
templates such as binary and unary operations for arrays
and vectors are synthesized from a code generator
implemented in several C++ routines. For consideration in
this section, attention is focused on a specific set of unary
vector (mathematical) operations in a template
specification, which are generated to the vecuops.cc
source file in the Blitz++ library containing approximately
12K SLOCs. Most of these mathematical operations (e.g.,

log, sqrt, sin, floor, fmod) have the same syntactic
structure and can be specified concisely in the form of a
pattern. An analysis of the generation process revealed
that the entire template specification is essentially a cross-
product between the set of defined mathematical
operations (λ) and a base template (β) that represents the
general pattern structure. As observed, the set of
mathematical functions crosscut the entire unary vector
general pattern.

If λ1,λ2,...λn represent the set of mathematical
operations (e.g., log, sin, sqrt) that crosscut the partial
base template structure β (whole of Listing 6), then the
code generated as the cross-product of λ and β can be
represented as λ1β + λ2β +... + λnβ. The partial string
identifier OPERATION (highlighted in bold in Listing 6)
identifies the locations in the partial base template
structure where the mathematical operations must be
woven to generate the whole template structure (i.e., ∑ λ x
β = 12k SLOCs). The concept here is somewhat different
than standard AOP practice and more analogous to
generative programming, but the idea of a cross-product
between a set of mathematical operations and a base
pattern is germane to the overall process of template
weaving. Although this example is based on vector
operations using mathematical functions, similar
situations (e.g., operations on Blitz++ arrays) exist in
several other generated template specifications in the
Blitz++ library.

The transformation rule describing the weaving of the
mathematical functions with the base pattern is shown in
Listing 7. The first line of the rule identifies the
programming language (base domain) of the transformed
source, which is C++ in Blitz++. Lines 3-10 use patterns
for matching a syntax tree with a specified structure. The
rule as shown in Line 13 describes a directed pair of
corresponding syntax trees.

Such rules are typically provided as a rewrite
specification that maps from a left side (source) syntax
tree expression to a right side (target) syntax tree
expression. The right side of the rule specification uses an
external function (i.e., generate_template_code in
Line 17) to generate code. The first parameter to this
external function is a template definition (β). The second
and third parameters are the two annotated markers in the
base tree that need to be replaced with the enumerated
mathematical operations.

1. template<class P_numtype1>
2. inline _bz_VecExpr <_bz_VecExprUnaryOp <VectorIterConst<P_numtype1>,
3. _bz_OPERATION<P_numtype1>>>
4.
5. OPERATION(Vector<P_numtype1>& d1)
6. {
7. typedef bz_VecExprUnaryOp <VectorIterConst<P_numtype1>,
8. _bz_OPERATION<P_numtype1>> T_expr;
9. return _bz_VecExpr <T_expr> (T_expr (d1.begin()));
10. }

Listing 6 Subset of base pattern used to generate the vector operation template

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 21

ISSN 1335-8243 © 2009 FEI TUKE

1 default base domain Cpp.
2
3 pattern aspect_op():
4 identifier = "OPERATION".
5 pattern aspect_bz_op():
6 identifier = "_bz_OPERATION".
7
8 pattern op1(): identifier = "log".
9 pattern op2(): identifier = "sin".
10 pattern op3(): identifier = "sqrt".
11 ...
12
13 rule generate_vec_template
14 (td:template_declaration):
15 declaration_seq -> declaration_seq
16 = td ->
17 generate_template_code(
18 td, aspect_op(), aspect_bz_op(),
19 op1(), op2(), op3(),...
20)

Listing 7 Rules used to generate mathematical operations using
a base template definition

The fourth and subsequent parameters are the set of

generic mathematical operations (e.g., log, sin, sqrt) to be
woven into the base pattern during code generation. Using
the above rule specification and the base pattern as shown
in Listing 6, nearly 12K source lines of code are generated
which resembles the entire set of unary mathematical
operations present in the Blitz++ library.

4. SUMMARY OF RESULTS

In this section, we briefly summarize the results of
modularizing Blitz++. The first example (Section 2.2)
showed how a “precondition check” on array indices
could be encapsulated into a single aspect, which
otherwise appeared 25 times in array-impl.h and in 57
places in resize.cc.

The second crosscutting example described in that
section was setupStorage, which was scattered
throughout the implementation details of array-impl.h and
resize.cc in over 23 separate locations in each file.
Although memory allocation for arrays is an altogether
different concern, coupling it with array implementation
deeply reduces the chances of the system to evolve over
time. For example, if memory allocation for arrays tends
to be different for a particular platform, the call to
setupStorage needs to be updated 23 times in both
template classes.

The third example (Section 2.3) illustrated how
assertion checks on the lower and upper bounds of an
array could be modularized using aspect-oriented
techniques. Note that it was redundantly called 46 times in
array-impl.h, but AOP techniques assisted in isolating this
concern into one single module that captured the same
functionality.

Section 3 demonstrated the benefits of generative
programming. As shown in that section, over 12K SLOCs
resembling several unary mathematical operations on
vectors were generated from a base pattern and a
transformation rule which together represented just 60
lines of code and transformation rules. The above

techniques not only helped to reduce the code size for
better maintainability and improved modularization, but
also offered an indirect effect of reducing the memory
footprint of the Blitz++ library.

In addition to the examples described in this paper,
there are several other bottlenecks in Blitz++ that can
benefit from AOP and generative programming. For
example, another crosscutting concern represents a
mapping of array indices. The helper class used to
implement this mapping is specialized for ranks 1, 2, 3, ...,
11. However, instead of redundantly writing the
specialization code for each individual rank, the
specialization code is itself captured in a single aspect and
applied universally over all array ranks. Likewise, in
addition to unary mathematical operations on vectors,
binary operations could be similarly generated in a
manner described in Section 3.

5. RELATED WORK

A discussion of templates and aspects in AspectC++
within the context of generative programming is discussed
in [18]. The focus of the AspectC++ work is on the
interesting notion of incorporating parametric
polymorphism into the bodies of advice. In contrast, the
focus of our contribution is a discussion of the
complimentary idea of weaving crosscutting features into
the implementation of scientific template libraries.

Within the scientific computing domain, ROSE
provides optimizations using source-to-source
transformation of ASTs for C++ applications [10]. The
transformations are expressed using a domain-specific
language [19]. The type of transformations performed by
ROSE are focused solely on optimization issues of
scientific libraries and are not applicable to the kinds of
transformations we advocate in this paper to improve the
modularization of crosscutting concerns in scientific code
bases.

AspectJ provides support for generics and
parameterized types in pointcuts and intertype
declarations for Java [22]. In order to restrict matching of
patterns within given parameter types (for methods and
constructors), return types (for methods) and field types,
an appropriate parameterized type pattern is specified in
the signature pattern of a pointcut expression. However,
since AspectJ is bound to the Java programming language,
it does not support scientific libraries written in non-Java
based applications.

6. CONCLUSION

The crosscutting concerns present in Blitz++ and
introduced in Section 2 highlight the benefits that aspect-
orientation can bring to scientific computing libraries.
Because our weaver is based on source-to-source
translation at pre-compile-time, there was no impact on
the performance of the Blitz++ library as a result of aspect
weaving. Given the historical tendency of languages to
evolve by adopting new paradigms, it is reasonable to
assume that aspect-oriented and generative programming
concepts will be integrated into many more applications of
scientific computing.

22 Modularizing Scientific Libraries with Aspect-Oriented and Generative Programming Techniques

ISSN 1335-8243 © 2009 FEI TUKE

The work described in this paper primarily focussed on
modularizing libraries written in C++ templates, which
has received the least amount of attention from the
software engineering community. Furthermore, it is our
belief that the concepts and examples described here apply
to scientific computing libraries other than Blitz++, as
well as libraries written in other languages that support
parametric polymorphism (e.g., Java and Ada). Future
directions will involve extending the focus to other
scientific libraries that are implemented in C++ (e.g.,
POOMA [13], MTL [14]). An interesting notion of
crosscutting concern that may apply within the scientific
computing domain is to identify parallelism within blocks
of sequential code. In [20], Chalabine and Kessler have
suggested seven different forms of interdependent
concerns that are necessary to introduce parallelism within
sequential programs. Future work will explore this idea in
other scientific libraries.

Another interesting topic serving as future work is
library-independent aspects that may exist within a
specific domain, such as scientific computing, but
applicable to several different libraries. In particular, the
research will focus on modularizing High Performance
Linpack (HPL) libraries designed for benchmarking high
performance distributed memory computers [21].

ACKNOWLEDGEMENT

This work is sponsored in part by NSF grant CCF-
0350463.

REFERENCES

[1] Robert Filman, Tzilla Elrad, Siobhan Clarke, and

Mehmet Aksit, Aspect-Oriented Software
Development, Addison-Wesley, 2004.

[2] Krzysztof Czarnecki and Ulrich Eisenecker,
Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[3] Yvonne Coady and Gregor Kiczales, “Back to the
Future: A Retroactive Study of Aspect Evolution in
Operating System Code”, International Conference
on Aspect-Oriented Software Development (AOSD),
Boston, MA, March 2003, pp. 50-59.

[4] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold,
“Getting Started with AspectJ,” Communications of
the ACM, October 2001, pp. 59-65.

[5] John Irwin, Jean-Marc Loingtier, John Gilbert,
Gregor Kiczales, John Lamping, Anurag Mendhekar,
and Tatiana Shpeisman, “Aspect-Oriented
Programming of Sparse Matrix Code,” International
Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE), Springer-Verlag LNCS
1343, Marina del Ray, CA, December 1997, pp. 249-
256.

[6] Bruno Harbulot and John Gurd, “Using AspectJ to
Seperate Concerns in a Parallel Scientific Java

Code,” International Conference on Aspect-Oriented
Software Development (AOSD), Lancaster, UK,
March 2004, pp. 122-131.

[7] Anthony Skjellum, Purushotham Bangalore, Jeff
Gray, and Barrett Bryant, “Reinventing Explicit
Parallel Programming for Improved Engineering of
High Performance Computing Software,” ICSE 2004
Workshop: International Workshop on Software
Engineering for High Performance Computing
System (HPCS) Applications, Edinburgh, Scotland,
May 2004.

[8] Todd Veldhuizen, “Arrays in Blitz++,” 2nd
International Scientific Computing in Object-
Oriented Parallel Environments (ISCOPE), Springer-
Verlag LNCS 1505, Santa Fe, NM, December 1998,
pp. 223-230.

[9] Daniel Quinlan, Markus Schordan, Brian Miller, and
Markus Kowarschik, “Parallel Object-Oriented
Framework Optimization,” Concurrency: Practice
and Experience, February-March 2004, pp. 293-302.

[10] Todd Veldhuizen and Dennis Gannon, “Active
Libraries: Rethinking the Roles of Compilers and
Libraries,” SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and
Engineering Computing, Yorktown Heights, NY,
October 1998.

[11] Elizabeth Johnson and Dennis Gannon, “HPC++:
Experiments with the Parallel Standard Template
Library,” International Conference on Super-
computing, Vienna, Austria, July 1997, pp. 124-131.

[12] Vladimir Getov, Susan Flynn Hummel, and Sava
Mintchev, “High-performance Parallel Programming
in Java: Exploiting Native Libraries,” Concurrency:
Practice and Experience, September-November
1998, pp. 863-872.

[13] John V. W. Reynders, Paul J. Hinker, Julian C.
Cummings, Susan R. Atlas, Subhankar Banerjee,
William F. Humphrey, Steve R. Karmesin,
Katarzyna Keahey, Marikani Srikant, and Mary Dell
Tholburn, “POOMA: A Framework for Scientific
Simulations of Paralllel Architectures,” in Gregory
V. Wilson and Paul Lu, ed., Parallel Programming
Using C++, MIT Press, 1996.

[14] Jeremy Siek and Andrew Lumsdaine, “The Matrix
Template Library: A Generic Programming
Approach to High Performance Numerical Linear
Algebra,” Computing in Object-Oriented Parallel
Environments (ISCOPE), Springer-Verlag LNCS
1505, Santa Fe, NM, December 1998, pp. 59-70.

[15] Martin Lippert and Cristina Lopes, “A Study on
Exception Detection and Handling Using Aspect-
Oriented Programming,” International Conference of
Software Engineering (ICSE), Limmerick, Ireland,
June 2000, pp. 418-427.

[16] Ira Baxter, Christopher Pidgeon, and Michael
Mehlich, “DMS: Program Transformation for

Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009 23

ISSN 1335-8243 © 2009 FEI TUKE

Practical Scalable Software Evolution,” International
Conference on Software Engineering (ICSE),
Edinburgh, Scotland, May 2004, pp. 625-634.

[17] Jeff Gray and Suman Roychoudhury, “A Technique
for Constructing Aspect Weavers Using a Program
Transformation System,” International Conference
on Aspect-Oriented Software Development (AOSD),
Lancaster, UK, March 2004, pp. 36-45.

[18] Daniel Lohmann, Georg Blaschke, and Olaf
Spinczyk, “Generic Advice: On the Combination of
AOP with Generative Programming in AspectC++,”
Generative Programming and Component
Engineering (GPCE), Springer-Verlag LNCS 3286,
Vancouver, BC, October 2004, pp. 55-74.

[19] Markus Schordan and Daniel Quinlan, “A Source-
To-Source Architecture for User-Defined
Optimizations,” Joint Modular Languages
Conference (JMLC), Springer-Verlag LNCS 2789,
Klagenfurt, Austria, August 2003, pp. 214-223.

[20] Mikhail Chalabine and Christoph Kessler,
“Crosscutting Concerns in Parallelization by
Invasive Software Composition and Aspect
Weaving,” 39th Hawaii International Conference on
System Sciences (HICSS-39), Kauai, HI, January
2006.

[21] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary,
“HPL - A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-
Memory Computers,” Version 1.0a
http://www.netlib.org/benchmark/hpl.

[22] AspectJ Project, http://www.eclipse.org/aspectj.

Received December 14, 2008, accepted August 1, 2009

BIOGRAPHIES

Dr. Suman Roychoudhury is a Research Associate in the
School of Information Technology, International
Univerity in Germany. He received his Ph.D. from the
University of Alabama at Birmingham (UAB). His
research interests are energy-aware embedded systems,
aspect-oriented software development, service-oriented
architecture and model-driven engineering.

Dr. Jeff Gray is an Associate Professor in the Computer
and Information Sciences Department (CIS) at UAB,
where he co-directs research in the Software Composition
and Modeling (SoftCom) Laboratory. His research
interests include model-driven engineering, aspect-
orientation, and generative programming.

Dr. Jing Zhang is a research scientist at Motorola
Applied Research and Technology Center, where she is
responsible for conducting research on policy-based
management system. She received her Ph.D. from the CIS
Department at UAB. Her Ph.D. research was focused on
techniques that combine model transformation and
program transformation in order to assist in evolving large
software systems.

Dr. Purushotham Bangalore is an Associate Professor in
the CIS Department at UAB. He has a Ph.D. in
Computational Engineering from Mississippi State
University. As Director of the Collaborative Computing
Laboratory, Dr. Bangalore undertakes research in the area
of Grid Computing Programming Environments.

Dr. Anthony Skjellum is Professor and Chair of the CIS
Department at UAB. He received his Ph.D. in Chemical
Engineering from the California Institute of Technology.
He specializes in reusable, scalable mathematical
software, and message passing middleware for scalable,
real-time, and fault-tolerant systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

