
54 Acta Electrotechnica et Informatica, Vol. 9, No. 3, 2009, 54–63

LAYOUT PRESERVING PARSER FOR REFACTORING IN ERLANG
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ABSTRACT
This paper describes preprocessor and whitespace-aware tools for parsing and transforming Erlang source code. The presented

tools are part of RefactorErl, a refactoring tool for Erlang programs. RefactorErl represents programs as a ”semantic graph” that
extends the AST with semantic nodes and edges for efficient information retrieval. The paper focuses on describing the construction of
the AST and syntax based transformations of the semantic graph.
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1. INTRODUCTION

Refactoring is a computer-aided technology for im-
proving code design by programmer-guided, semantics-
preserving source code transformations [1,2]. Tool support
for refactoring is available for many imperative program-
ming languages, and also for some functional ones. We are
developing a refactoring tool, RefactorErl [3], for the Er-
lang language [4–6].

Developing a refactorer for Erlang programs is a chal-
lenge as some properties of this language make refactor-
ing cumbersome, and sometimes even either unsound or
unproductive [7]. One such property is that certain lan-
guage concepts (such as scopes and visibility) are very hard
to capture properly in a static semantics description [8].
Another property, an issue addressed in this paper, is the
presence of a preprocessing facility (e.g. file inclusion and
macros), which makes source code manipulation rather dif-
ficult. Further problematic properties include the support
for reflective function calls, inter-process communication
and dynamic typing.

Erlang has a standard scanner and parser, used by the de
facto standard compiler [9]. However, refactoring Erlang
programs requires more advanced tools for at least three
reasons. Firstly, the standard tools can handle preprocessor
constructs by modifying the token stream that the scanner
produces, but in this process they discard the original to-
kens and consequently the connections between the origi-
nal and preprocessed tokens as well. Secondly, they lose
whitespace information. Finally, they ignore the concrete
syntax and produce an abstract syntax tree directly. For ex-
ample, the expression (A+B)-C will be represented in the
same way as the expression A+B-C. Removing the parenthe-
ses does not change the meaning of the program, but it may
upset the programmer who inserted the seemingly superflu-
ous punctuation for his own purposes. All of these factors
make it impossible to retain lexical information necessary
to do refactoring in such a way that pleases the user of the
refactoring tool – who expects that refactoring transforma-
tions preserve the formatting of the source code as much
as possible. Experiments with earlier (v0.1 to v0.2, 2007)
releases of RefactorErl – which were based on the standard
Erlang scanner/parser – proved that preserving source code
layout is a major issue for the practical acceptance of the
tool.

This paper describes our preprocessor and whitespace-
aware tools for parsing and transforming Erlang source
code. These tools are applied in the first three of the
static analysis phases performed by RefactorErl v0.6 (lex-
ical analysis, preprocessing, syntactic analysis and seman-
tic analysis), and also in the implementation of refactoring
transformations. The tools presented in the paper address
the following goals.

• Represent program text in such a way that informa-
tion about the source code both before and after pre-
processing is available.

• Preserve code layout (whitespace, redundant paren-
theses, comments, number formatting) during scan-
ning and parsing.

• Support the programmatic construction of syntax
subtrees.

• Facilitate the insertion of subtrees into, and deletion
from, the syntax tree.

• Preserve code layout during the manipulation of the
syntax tree.

The rest of the paper is structured as follows. Section 2
gives an overview of the representation of source code used
in the tool. In particular, section 2.3 describes how pre-
processor constructs, which can cross-cut the syntax, can
be handled. Section 3 describes how the original AST can
be recovered, and also how syntax based changes can be
applied to the tree. Section 4 describes related work and
section 5 draws the conclusions and points out future direc-
tions of research.

2. OVERVIEW OF REFACTORERL

RefactorErl is based on an AST that is constructed using
tools partly generated from an XML grammar description.
This section describes the grammar description, the syntax
tree constructed using the generated tools and the prepro-
cessing that has to handle the source code before parsing
can begin.
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2.1. Semantic graph

RefactorErl represents Erlang source code as a semantic
graph. The skeleton of the semantic graph is a customized
abstract syntax tree built using our scanner, preprocessor
and parser.

A semantic graph consists of

• nodes representing various linguistic entities of an
Erlang system,

• directed, labeled edges between nodes representing
relations between entities and

• a total ordering on the outgoing edges of nodes; this
is further elaborated in section 3.2.

A subset of these nodes and edges form the customized
AST, other nodes and edges carry lexical and semantic in-
formation. The total order describes the order of subtrees
of a node in the syntax tree.

Nodes are classified based on the kind of entity they rep-
resent: variable, expression, function and file are examples
of classes. Nodes also have a set of attributes based on their
class – for example, variables have a name attribute, and
files have a path attribute. The graph has a unique root
node, the single occurrence of the root class, from which
all other nodes are accessible.

Edges have an associated tag (label) based on the kind
of relation they represent. The set of tags used in the graph
is fixed, and they are used consistently with respect to node
classes. For example, each edge tagged funref connects an
expression node to a function node – the meaning of the
edge is that the expression explicitly refers to the function.

By the time the scanner, preprocessor and parser did
their jobs, the customized AST and, additionally, some se-
mantic nodes and edges are already available in the seman-
tic graph. The tokens of the AST also preserve the whites-
pace and comments around them. Currently all whitetext
is joined to the token after it; this will change to a more
sophisticated handling scheme in the future. After the se-
mantic graph has been prepared, it is further enriched with
semantical information (e.g. the binding structure of vari-
ables, scope and visibility information, function call graph)
by different, independent analyzer modules. These modules
extend the semantic graph with nodes and edges that repre-
sent language concepts not covered by the AST, but which
are considered relevant for computing side conditions that
may invalidate refactorings or require additional compen-
sations, and the effect of refactoring transformations. The
modular structure of the semantic analysis helps the repre-
sentation of linguistic information to evolve as novel refac-
toring transformations are introduced.

Fig. 1 shows the AST built atop Y=G(F(F(1)). This
code fragment is revisited in section 3.3.
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Fig. 1 The representation of a match expression in Erlang.

ISSN 1335-8243 c© 2009 FEI TUKE



56 Layout Preserving Parser for Refactoring in Erlang

<ruleset head="Pattern_clause">
<rule>
<attrib name="kind" value="pattern"/>
<symbol name="Expr" link="pattern"/>
<optional>
<token type="when"/>
<symbol name="Guard" link="guard"/>

</optional>
<token type="arrow"/>
<repeat symbol="Expr" link="body" separator="comma"/>

</rule>
</ruleset>

Fig. 2 XML grammar example
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Fig. 3 Part of the graph representation of macro definition -define(A(X),X+).

2.2. Grammar description

The lexical and syntactical rules of Erlang are described
in an XML document, which also contains annotations that
are used for creating the internal graph representation of
programs.

A large part of our tools is automatically generated
from this high-level grammar description. The XML for-
mat was chosen because it is easy to maintain, should the
language definition change. It occasionally does: specifica-
tions [10] were introduced recently. Furthermore, XML can
be handled easily with XMErl [11], a standard Erlang tool
for traversing XML documents, and it can be easily trans-
formed with existing tools, e.g. XSLT. The grammar rules
are described in the XML document as regular expressions
and a slightly modified BNF syntax.

The selection of the grammar description in Fig. 2
shows a pattern clause; for example, case expressions may
have several pattern clauses. The attrib element describes
the kind of the graph node, which distinguishes it from
other node classes. The attrib element also provides
space for further expansion, as a rule may contain more

than one such element. The rest of the contents describe
the structure of the node in a manner similar to a BNF. The
elements token, symbol and optional should be evident;
repeat designates a sequence of symbols separated by a
given token type.

Besides the lexical and syntactical rules of Erlang,
the XML code contains annotations providing information
about how the semantic graph representation of programs
should be built. For example, symbol contains a link an-
notation (an XML attribute of the symbol XML tag), which
is the tag to the appropriate child, or in the case of repeats,
all symbol children. In this case, the edges from the parent
pattern clause node to the symbol children will be tagged
body. The separator shows the type of the tokens in-
serted between the symbols.

2.3. Support for preprocessor constructs

In Erlang, preprocessor constructs are macros, include
files and directives for conditional compilation. Of these,
the first two are supported in RefactorErl, while the last is
currently a work in progress and not described here.
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The preprocessor analyzer, which runs after the scan-
ner has already tokenized the source code, has three tasks
in order to handle preprocessor constructs. Firstly, it has to
store every original (pre-preprocessing) token that the con-
struct contains in the semantic graph in order to enable the
reconstruction of the original source later. Secondly, it per-
forms macro expansion and file inclusion, and produces the
processed (post-preprocessing) tokens. The processed to-
kens are also placed in the graph, and constitute the input
of the parser. Thirdly, it makes additional semantic nodes
and edges in the graph, which facilitate identifying and han-
dling the constructs.

Handling include files. Erlang source files consist of
forms, most of which describe functions, and some with
special purposes. File inclusion and macro definition are
described by such special forms. In fact, there are two dis-
tinct types of file inclusion forms, which differ in the paths
where the included file is searched for, but the inclusion
mechanism is the same for both. The preprocessor creates
a form node for the inclusion form, and stores the tokens of
the inclusion form below it. The preprocessor also creates
a file node, which is linked from both the file node of the
including file and the including form node. The contents of
the include file are tokenized and passed on to the parser.

Handling macros. Macro definition forms, just like the
include forms, are stored in the semantic graph along with
all of their tokens. The macro may have arguments; all of
its arguments and the rest of the macro body are marked
by specific edges, see Fig. 3. Note that in this figure,
some edges and some tags have been removed for clarity,
and only selected children of the macro definition node are
shown.

When a macro application is encountered, a macro sub-
stitution node is created in the semantic graph and linked
to the macro definition node. This is shown in Fig. 4 as
the rhombus subst node. The original tokens of the macro
application are stored; the arguments are marked in order
to facilitate access upon macro expansion. Virtual token
nodes are created, and these are passed on to the parser.
Such virtual token nodes are displayed as rhombus token
nodes connected to the AST in Fig. 4.

3. AST CONSTRUCTION AND MANIPULATION

The purpose of using a semantic graph is to make infor-
mation retrieval and modifications possible and convenient.
Naturally, it should also be possible to recover the original
source code stored in the graph. This section describes how
these tasks are done in our tool and what choices we made.

3.1. Contractions in the skeleton of the semantic graph

Typically, ASTs are created by compilers during compi-
lation. Such syntax trees are discarded after they have been
used, and they are not subject to complex traversals. There
are, however, applications in which the role of ASTs are
augmented. In refactoring, for example, tree traversals are
extensively used, because a lot of information is required
that has to be acquired from different locations.

Syntax trees inherently involve parts that are unneces-
sary for information collection, or are structured so that
they make it more tedious. One obvious case is that of chain
rules: the code for their traversal has to be different for each
node that occurs on the way, yet they contain no semantic
information that could not be expressed using a single node.

Another case can be described by their functionality:
nodes that contain similar information should be put in the
same node group, and edges that describe similar connec-
tions should have the same tag. To give a concrete example,
clauses in Erlang have parameters, guard expressions and a
body, and there are associated tokens: parentheses and an
arrow (for the grammar description of a node, see Fig. 2).
Yet the actual appearance of the clauses can be vastly dif-
ferent, see Fig. 5 and 6 for other specific types of clauses.

The “if” clauses and the function clauses of Erlang both
should have the same tags for the edges of their respec-
tive parameters (sub), guard expressions (guard), bodies
(body), and tokens (clex, for ’lexical node of a clause’).

When collecting information, often either all parame-
ters or all guard expressions are required at a time during
a traversal pass, but seldom both at the same time of the
traversal. Therefore, it is natural to partition the edges into
groups depending on their uses. Since the partitions de-
pend on the traversals used, the programmer has to decide
by hand how groups should be made. This way, only a few
groups have to be introduced as needed in a given applica-
tion.

Another way to make the representation more conve-
nient to traverse is to contract sequences. Sequences are
common constructs in programming languages: they are
repeated uses of a rule with inserted tokens as separators.
Instead of having a slanted tree as constructed by a parser,
it is more convenient for traversal purposes to represent se-
quences by a parent node with all of the repeated nodes and
the intermediate tokens as its children.

Carrying out the above contractions has two main ad-
vantages. One is that much fewer cases have to be consid-
ered. In the case of Erlang, the grammar contained 69 non-
terminals, which was reduced to three types of contracted
nodes: form, clause and expr. Similar contractions are
found in other tools as well, for example [12] and [13].

Even though currently there is only one language de-
scription available in our format, the one used for Erlang
refactoring, the format is general enough to describe the
grammars of other languages.

It is important that the approach should be adaptable to
a wide range of grammars, because the choice of contrac-
tion node types, which correspond to the way abstactions
are made over the concrete syntax tree, is different for each
language. Indeed, the same application may employ sev-
eral levels of abstraction with a different way of choosing
contraction node types for each one.

3.2. Reacquiring the AST

When creating an abstract view of a syntax tree, the
question of reproducing the original tree is always present.
Sometimes only a fraction of the original tree is needed:
for the very common task of reprinting the original source
code, only the front of the tree has to be reproduced.
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Fig. 4 Macro application in the expression ?A(1) + 2.

if
X == 1 -> Y = 2;
true -> Y = 3

end

Fig. 5 If clauses in Erlang.

to_list(Text) when is_atom(Text) -> atom_to_list(Text);
to_list(Text) when is_integer(Text) -> integer_to_list(Text);
to_list(Text) when is_float(Text) -> float_to_list(Text);
to_list(Text) when is_list(Text) -> Text.

Fig. 6 Function clauses with guards.

Section 2.1 indicated that the outgoing edges of the
nodes of the syntax tree are totally ordered. However,
for efficiency reasons, the outgoing edges of the semantic
graph are only partially ordered: order is defined only be-
tween edges that have the same tag. Whilst the leaves them-
selves are present in the abstract tree, their recollection is
hindered by this partial ordering: given a total ordering, a
simple walk could collect the leaves. This section discusses
how the partial ordering can be turned into the desired total
ordering.

One solution to this problem would be to store the ac-
tual order of the edges in the parent node. This would incur

some space penalty, as this choice would store twice the
amount of information about the order of the edges. Also,
this information would have to be updated when modifying
the tree, and the modifications would require considerations
similar to the one presented below.

Another choice is to explicitly connect the leaves of the
tree to each other in order. Enumerating them in such a
way makes it trivial to collect them (provided that the first
one is linked from the file node), but the task of updating
them upon changes to the tree becomes unwieldy. Practi-
cally, changes in the syntax tree would have to be done at
the level of the actual manipulation and at the leaf level in
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parallel. Our experiments have shown that this is not man-
ageable, partly because of the high amount of code needed.

Our current approach walks the tree by locally restor-
ing the total order in the reached nodes. In addition to the
partially ordered edges in the graph, the node structure de-
scribed in the grammar is also needed. The simple BNF-
like structure guarantees that these two can be merged, and
together they produce the original order of the children of
the node. Walking them in order gives us the leaves of the
original syntax tree, or if it is needed, the tree itself. Strictly
speaking, the tree is recovered only if the contractions (col-
lapsed chain rules and the repeat shorthand) are expanded.

The front of the tree contains the token nodes in their
original order. Since all whitespace information is con-
tained in the tokens, and no punctuation tokens are omitted,
the whole original file can be reprinted. Determining the
token at a given position of the file can be done by doing a
linear search on the original tokens in order.

The preprocessor layer between the scanner and the
parser handles include files and macros (even ones that
cross-cut the syntax), see section 2.3. During reconstruc-
tion, finding a node that originates from such a construct
does not pose a challenge, as the preprocessor directly
stores all of the relevant tokens of these constructs and links
them to the appropriate skeleton nodes. A curious case is
a macro that contains only whitespace and comments, as it
does not naturally connect to the syntax tree; this can be
treated as a special comment.

3.3. Subtree construction

Refactorings often have to create new syntax subtrees in
their transformation phase. One possible solution for con-
structing such subtrees would be to use the parser itself by
providing the source code that corresponds to that of the
desired subtree. This approach would require that all the
punctuation be manually filled in the refactoring tool, and
would require separate grammars for each nonterminal to
be generated. Another possibility is to do all the AST con-
struction by hand, which is tedious and error-prone.

It would be a viable option to use code text and already
present nodes in the construction, that is, start the parser
with a sentential form as its input. This is a possible ap-
proach, but it would require extensive modification to the
parser generator; practically, the generator would have to
be rewritten. Since we are currently using an existing parser
generator (yecc), and node creation is satisfactorily easy us-
ing our current method, we are not planning to implement
this approach in the near future.

The rest of this section describes our proposal, which
has been implemented in RefactorErl. Subtree construction
is described along with an example, the ”extract function”
transformation of RefactorErl [14]. The transformation ex-
tracts a sequence of expressions, or in this case, the single
expression F(F(1)) to a new function. The transformation
creates a new function definition, and replaces the selection
with a function application. The variables which are used
inside but bound outside the selection become the formal
parameters of the new function (see Fig. 8).

Fig. 1 shows the AST of the match expression, part of
whose right hand side is selected and is about to be ex-
tracted. Fig. 9 shows the match expression after the se-
lection has been replaced by a function application. The
function application contains a function name, opening
and closing parentheses and the parameters with separating
commas.

Fig. 10 shows the function definition to be created. The
function definition contains opening and closing parenthe-
ses, an arrow and a stop token as punctuation, and the func-
tion name, the parameters of the function and the expres-
sions of the body of the function. Also, if multiple param-
eters or body expressions were present, the function defini-
tion would contain additional separating comma tokens.

Most of the newly appearing tokens function as syntac-
tic delimiters and can be automatically generated. Insert-
ing the function definition into the AST requires only the
function name, parameter names and the body expressions;
inserting the function application into the AST requires the
function name and the actual parameters. The syntactical
and lexical representation of the body of the extracted func-
tion are available from the selection, but the other parts have
to be constructed.

Subtrees are created by repeated use of a node creation
algorithm. When constructing a new node, previously cre-
ated nodes are used as well as nodes that were already
present in the graph.

The refactoring tool has to supply two pieces of infor-
mation for the node creation algorithm. One is the type
of the newly created node. The type of the node identi-
fies the relevant rule in the grammar, which determines its
structure. The other required piece of information is a de-
scription of the desired contents of the node. Since key-
words and separator tokens can be automatically generated,
and the grammar description determines the structure of the
nodes, these tokens are not included in the description. All
other tokens (e.g. variable names or function names) and
all symbols have to be listed in order. The algorithm pro-
cesses the rule description and the content description. If
the rule prescribes an automatically created token, it is cre-
ated; otherwise, one or more elements supplied by the tool
are consumed when creating the next symbol or construct
from the rule description.

For example, when creating the function definition
(node 2 in Fig. 10), the type of the node about to be created
is a function definition. According to the grammar, func-
tion definitions consist of clauses that are similar to pattern
clauses (see Fig. 2), the difference being that all function
definition clauses begin with an expression, the name of
the function, and that they have formal parameters. In the
case of the extract function transformation, the name of the
function is supplied by the user and the transformation de-
termines the names of the formal parameters (F). The func-
tion name and the parameters are turned into expressions 21
and 22 by calling the node creation algorithm; as these con-
struction steps involve only one node each, only the respec-
tive names are required in the content descriptions. Now
the transformation can call the node creation algorithm for
the function definition with expressions 21, 22 and 15, the
latter removed from its previous position in the tree.

ISSN 1335-8243 c© 2009 FEI TUKE



60 Layout Preserving Parser for Refactoring in Erlang

Expr

Expr

1
Rest

Token

comma

Expr

2
Rest

Token

comma

Expr

3

(a) AST.

expr

Token

comma

elex/1

Token

comma

elex/2

expr

1

sub/1

expr

2

sub/2

expr

3

sub/3

(b) Contracted AST.

Fig. 7 Sequence in the head of the list expression [1,2,3|ListTail].

Code before extraction
compose_2_1(F, G) ->

Y = G(F(F(1))).
→

Result after extraction
compose_2_1(F, G) ->

Y = G(twice(F)).

twice(F) ->
F(F(1)).

Fig. 8 Extracting expression F(F(1)) into function twice.

Node creation is quite convenient in practice as well,
requiring only a few function calls to the node creation al-
gorithm. The addition of this feature made it possible to
implement 15 refactorings in less than three months.

3.4. Subtree replacement or insertion

Node replacement is done in a similar way to that of
node construction. As parameters, the new nodes to be in-
serted and the place of insertion or replacement has to be
specified. One of the following can be given.

• Replacement of all (or part of) nodes of the same
type.

• Replacement of a range of nodes.

• Insertion before or after a node.

The insertion-replacement algorithm scans the node de-
scription generated from the grammar, the user-supplied de-
scription of desired structure and the actual node present in
the graph representation. It determines the affected part in
the syntax tree, makes the change and controls whether the
resulting structure conforms to the grammar description.

All of the algorithms described above use an automati-
cally generated scanner to check whether the tokens given
in the descriptions are valid.

4. RELATED WORK

The design of the representation was shaped through
years of experimentation and experience with refactor-
ing functional programs [7]. Our previous refactoring
tools [15, 16] used standard ASTs for representing the syn-
tax.

Preprocessor structures such as file includes or macros
are traditionally hard to handle, since they change the struc-
ture of the code in a cross-cutting way.

The easiest strategy to handle them is to use standard
compiler tools. This is not sufficient, because the original
source code is discarded. Also, this approach cannot pre-
serve the original code layout.

Another way is to restrict macros in such a way that
they can be treated as syntactic entities. This excludes some
complex cases, but it makes macros part of the syntax. This
is the approach taken in Xrefactory [17].

YSpec [18] uses macro productions, which are spe-
cialised when a macro application is found. In order to
ensure termination, some restrictions have to be posed.

Macros in Lisp [19] cannot cross-cut the syntax: they
are syntactically well-behaved. This property makes it
possible to make macros a more integral part of the syn-
tax tree in such languages. However, syntactically correct
macros can still cause problems, as they can clash with, or
override, predefined symbols. Hygienic macros present in
Scheme [20], a dialect of Lisp, deal with this problem.
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Fig. 9 The new function application replaces the selection.

Proteus [21] uses a similar representation to ours to
refactor C++ programs. It is based on an extended, layout
preserving AST which uses recorded macro expansion. For
Erlang, no such tool exists yet. Advantages of our approach
also include being able to fine tune the generated graph for a
specific problem because of the extensible grammar defini-
tion and the graph representation that contains all necessary
information in a unified way.

There are already some refactoring tools for other func-
tional languages. A prototype refactoring tool for Clean
[15] uses a database for storing the syntax and semantic in-
formation. Since the database schema is fixed, it is harder
to adapt the tool in case of changes in the language. Since
parsing Clean doesn’t involve macros, no preprocessing
phase is needed.

Overbey and Johnson [12] propose an annotated AST
generator framework. There are direct correspondences be-
tween their work and ours, e.g. the field distinguishing an-
notations and the edge labels, and how they add whitetext
in front of, or after, the tokens. The main difference be-
tween RefactorErl and their tool Ludwig is how they repre-
sent data. Ludwig generates Java classes whose interfaces
describe the edges of the AST while the private parts con-
tain whitetext information. RefactorErl stores a complete
semantic graph in a database, which enables it to collect
and then efficiently query static semantic information.

Spinellis [22] describes the tool CScout that can inspect
and refactor C programs. CScout tags the identifiers found
in the source code with their location and then unifies them;
in RefactorErl, this task is relegated to the semantic anal-
yser modules not discussed in this paper. In CScout, metic-
ulous attention was given to the preprocessor facilities of
the language. In particular, conditional compilation is bet-

ter supported than in the current version of RefactorErl.
This is due to the fact that conditional compilation is much
more frequently used in C than in Erlang.

Wrangler [23], another refactoring tool for Erlang also
uses an annotated AST for its inner representation of pro-
grams. It transforms the tree by walking it, fusing infor-
mation collection and refactoring. We are currently inves-
tigating whether this approach or using our semantic graph
queries yield better performance for large bodies of code.

SableCC [13] uses semantic annotations to transform a
concrete syntax tree into an abstract one. Apart from where
the AST transformation is done (in the case of RefactorErl,
the transformations are syntactic, in SableCC, the annotated
semantic routines are executed), they are quite similar: the
most common AST abstractions in SableCC seem to be rule
contractions.

The Java language tools srcML [24], JavaML [25] and
JaML [26] use XML to model Java source code. XML doc-
uments can be equipped with schema information against
which they can be checked. If the schema is formulated in
XML itself, subtree construction algorithms similar to the
one presented in this paper can be devised.

NetBeans and Eclipse are two popular IDEs that sup-
port refactoring. While NetBeans supports development in
Java only, Eclipse has plugins for many other languages.
While the transformations they offer are sound, they are
not complete: they do not support all language features,
e.g. they have problems with refactoring and syntax high-
lighting identifiers that contain Unicode characters. Also,
NetBeans and the C++ utilities of Eclipse reformat the in-
dentation of moved code parts, which is not appealing to
the user; the Java refactorer of Eclipse handles this case
nicely.
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clause 2

fundef

expr 21

twice

name/1

(
pattern 22

F

pattern/1

) ->
expr 15

application

body/1

atom 29

twice

variable 31

F

expr 11

F

sub/1

(
expr 14

application

sub/2

)

expr 12

F

sub/1

(
expr 13

1

sub/2

)

variable 24

F

integer 26

1

Fig. 10 The representation of the newly created function definition.

HaRe [27] represents the informations it needs in an
AST with an additional token stream. This choice allows
them to preserve the layout, but since the token stream and
the AST are not in direct connection to one another, the tool
spends many resources keeping them synchronised.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have described an approach to rep-
resent program code in such a way that makes refactoring
convenient. The representation is based on the AST, how-
ever, unlike other existing systems that add annotations to
the tree, this representation extends it to a semantic graph.
The current implementation of the tool, RefactorErl v0.6,
is available from [3]. The tool has been tested on millions
of lines of industrial Erlang source code, and it also turned
out to be very adaptable and useful for purposes other than
refactoring, e.g. reorganizing the module structure, testing
and visualization.

The representation is suitable for reproducing the orig-
inal program code with punctuation, whitespace, macros
and file inclusion intact. It can even load all published en-
tries of the obfuscated Erlang competitions in 2005, 2006
and 2007 [28]. On the other hand, when performing syntac-
tic transformations, whitespace on the beginning and end of
changed parts and the indentation of the changed code is far
from ideal yet. This is one area that we plan to improve in
the future.

The tool also contains preliminary support for another
kind of preprocessor construct, conditional compilation.
This feature is expected to appear in future versions of
RefactorErl.
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