
30 Acta Electrotechnica et Informatica, Vol. 9, No. 4, 2009, 30–36

ISSN 1335-8243 © 2009 FEI TUKE

MUSICAL REAL TIME APPLICATION ARCHITECTURE

TARGET PLATFORM

USER INTERFACE

REAL-TIME COMMANDS
ON-THE-FLY MODELLING

INFORMATION FEEDBACK

ENVIRONMENT SOURCE

SOUND PLAYERS
MUSICAL INSTRUMENTS

MICROPHONES

SENSORS
AND

ACTUATORS

CONVERTERS
AND

ACTUATORS

USER APPLICATION

BEHAVIORS ON INPUTS
AND OUTPUTS

DEFINED ON-THE-FLY

DSP BASED
EMBEDDED

SYSTEM

MDA APPROACH IN EMBEDDED SYSTEMS WITH STRICT REAL-TIME RESPONSE
AND ON-THE-FLY MODELLING REQUIREMENTS

Otto ŽELEZNÍK, Zdeněk HAVLICE
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 4220, e-mail: o.zeleznik@gmail.com, zdenek.havlice@tuke.sk

ABSTRACT
The paper presents a proposal of a method for MDA based “on-the-fly” modelling of Musical Real Time Applications. The

method is based on use of the Executable and Translatable UML approach (xtUML) with regards to implementation on embedded
systems. Since the goal is to implement a real-time application requiring certain real-time Quality of Service (QoS) properties, the
real-time response requirement influence on modelling is discussed as well. To provide a solution for the main user requirement,
which is a possibility for an application model modification in real-time (during execution), we discuss a method, which splits the
application into two parts. The first part is the implementation environment – the programmer/provider system, which will provide
for the runtime environment of the second part, the user model itself, modelled using xtUML on-the-fly. The advantage of such
separation results in an increased modelling easiness and reasonable real-time performance on user modelling as well as low signal
processing latency.

Keywords: MDA, software architecture modelling, embedded systems, real-time response, information system, xtUML

1. INTRODUCTION

The modern era brings among us an evolution of our
lives in every aspect. This is particularly true in the area of
applying new methods in software architectures design
especially focused on embedded systems used for sound
and signal processing, broadcast applications, musical
production and musical real-time applications. The last
mentioned applications can be considered as specific
software-hardware “musical instruments” as they provide
the user/artist for creating or altering the musical piece in
real time – while the artist is performing his show. We can
consider this application kind as a special embedded
information system since it processes information in form
of sound and its properties.

The Musical Real-Time Applications usually consists
of a combination of a specific signal processing software,
which is implemented on a viable hardware platform
whereas each part has specific properties and requirements
(QoS, good real-time response). Since the fundamental
purpose of these applications is sound effects execution
based on a command query from the user, the
implementation platform is usually based on a well
designed embedded system. A powerful Digital Signal
Processor (DSP) is usually a core of such system
cooperating with various peripherals, sensors, actuators
and converters. The converters perform environment
signal conversion (input and output sound in our case) into
the digital domain and vice versa, the mentioned DSP
processor then realises a signal alteration following the
user commands and settings using various signal
processing methods [1]. Sensors and actuators on the other
hand gather and scatter the controlling user input
commands and output feedback providing user with
various status information necessary to generate a correct
input commands within the application. The figure 1
depicts an example overall architecture of such Musical
Real-Time Application defined in the above paragraph.

Mentioned application kind covers for various
embedded systems devices, such as sound effectors with

real-time control [2], musical samples generators, variable
digital filters, etc.

Fig. 1 Typical architecture of a Musical Real-Time Application

2. STANDARD MODELLING APPROACH AND
REQUIREMENTS

Since the user – artist expects to achieve the best
possible performance, when using such tools, there are
two major and most important properties of these
applications. One of them is a very good real-time
response on user commands including as low sound
processing latency as possible, the other one is the ability
to configure the sound alteration scheme (algorithms) as
freely as possible, e.g. the ability to model what the
system has to do with the sound in real time.

2.1. Real-time response requirement influence on
modelling

Today’s embedded applications are designed
exclusively in digital domain using modern DSP
processors. The critical requirements in Musical
Real Time Applications are a minimal input-output signal
latency and very good overall real-time response of the
system. The first specification exists due to the nature of

Acta Electrotechnica et Informatica, Vol. 9, No. 4, 2009 31

ISSN 1335-8243 © 2009 FEI TUKE

human hearing and sound perception [3], the second is a
result of necessity to process signals with various
feedback control signals e.g. user interface input. All of
these requirements strongly affect choice of software
architecture in the end. Recent research in the domain of
embedded systems has demonstrated rather strong link
between hardware and software architecture. The
application modelling therefore must be measured from
various viewpoints considering the resources of the target
hardware architecture such as computational power of the
core processor, various specific properties of memory
types, memory sizes, communication channels between
peripherals, language types and evaluation of mixed or
hand-optimised programming need for critical parts of the
system (OS scheduler, peripheral drivers, etc).

When considering for example a common PC platform
where properties like memory size and/or CPU power are
insignificant, these can accommodate very extensive and
even complex software architectures and very large data
structures with nearly no limitation however with a trade-
off for response performance. Embedded systems on the
other hand are mostly designed on smaller processors and
less powerful hardware platforms where specific
architectural factors are due. One of these factors is small
available memory and specific memory model within
existing CPU. Also memory model must strictly be
questioned before the design is due since embedded
hardware architectures [4] usually support only two access
memory types of unequally partitioned sizes:

• Fast Layer 1 memories for execution critical code
and data storage (available only in several
kBytes),

• Slower Layer 2 memories for execution non-
critical code and data storage (depending on CPU
available up to max. few Mbytes).

There is also a cache support, but with limited
performance, especially when executing critical code.
Layer 1 memories are usually 3-10times faster than Layer
2 memories and full CPU performance is obtained only
when executing code from Layer 1 memories. Adhering to
the above facts, programmer or software architecture
designed must carefully evaluate which data structure will
be stored and operated from Layer 1 memory and which
will be stored and operated from Layer 2 memory. The
same applies for code separation as well. Available
memory size also affects the way, how data and
information is handled in the embedded system. Proper
algorithm design helps reducing size of temporary data
structures used for data processing. Using rather one
common variable/buffer for data storage and processing in
all processing algorithms is one way how to use memory
properly. Moving less critical data buffers into Layer 2
memory and more critical data buffers into Layer 1
memory improves performance as well.

Choice or rather a necessity of using a certain
programming language in embedded systems defines
another group of constrains in software architecture
selection possibilities. Real-time embedded systems
require very optimised and dense code since it may
enhance execution performance. This is achievable
usually by designing assembly written routines and so

avoiding use of any higher-level compiler available for
embedded systems design. Programming and design
experience indicates that even the best-of-the-class
compilers are unable to achieve performance of well-
optimised hand-written assembly code. Gain in
performance is about 5 to 25 per cent in favour of hand-
optimised code. It is up to programmer to decide
carefully, which part of application requires such a high
performance (routines running most of execution time)
and which part of application can be designed using
higher level programming languages like C and running
least of execution time but with high software architecture
complexity. Real-time embedded systems usually work
fine with assembly language used for audio processing
routines. These usually require very basic data structure
types (circular buffers, simple variables) use with nearly
no abstract models and only Layer 1 fast memory
partitioning. On the other hand C language is mostly used
for control algorithms, which are of higher software
complexity. Data structures become also more complex
with use of dynamic memory allocation and management.
They are however strictly located in Layer 2 memory
region only. This complexity gain also gives a possibility
to employ more complex and perhaps more useful
software architecture components and interconnection in-
between them.

As mentioned earlier, one of the main real-time
embedded systems requirements is a minimal input-output
signal latency and good overall real-time response. The
good overall real-time response is basically due in case of
algorithms, which are controlled from outside by external
signals (feedback control). Since these need rather
immediate reaction, they are strictly designed using hand-
optimised assembly code and located in Layer 1 memory
to assure safe critical execution. Minimal input-output
signal latency is another area of focus. In order to
understand how these criteria affect software architecture
choice, we need to know how signal is processed within
the hardware architecture itself. One of the main principal
requirements for correct digital signal processing is a
sampling and processing theorem so-called Shannon-
Kotelnikov theorem [1]. It generally requires that any
input signal with a certain bandwidth is being sampled at
double bandwidth sampling frequency FS. If there was an
ideal case with virtual hardware architecture, we could
achieve the latency of the system as good as 1/FS. The
only specification would be the ability of the hardware
architecture to apply the process algorithm on every
sample individually. Real situation is however rather
complicated. First need in the digital signal process chain
is to convert analog form of the sound into the digital
representation (AD) and vice versa (DA). AD and DA
conversion serves for this purpose. Group of converters
used for sampling audio signals due to its principle [1]
unfortunately insert additional 2msec of signal latency
into the digital stream. Tolerable overall signal latency
based on human hearing perception is about 4-7msec
depending on given application [3]. Signal processing
within the embedded hardware architecture is basically
controlled and managed using interrupt service routine.
Each processing routine invocation requires several
system clock cycles (varying from 2 to 10 per cent of all
available cycles on one sampling period, depending on

32 MDA Approach in Embedded Systems with Strict Real-Time Response and On-the-Fly Modelling Requirements

ISSN 1335-8243 © 2009 FEI TUKE

CPU architecture). If invocation is done on every sample
basis, the CPU spends service cycles pretty often, the
overall input-output latency would only be 1/FS however
wasting a lot of computational power of CPU on
mentioned service cycles. A solution to this computational
loss is called a block processing technique [5]. This
improves overall performance of embedded system by 2
to 10 per cent. The input-output latency requirement
forces the embedded system software architecture to be
designed so that it will be able to achieve such a
performance. Most of the time, all of signal processing
routines are designed using assembler hand-optimised
code and executed from Layer 1 memory region for the
highest performance. Only the simple software
architectural components are allowed to use mostly in
conjunction with circular buffers and direct variables.

2.2. Standard component modelling

So far we have been speaking rather of Real-time
embedded system implementation and technical
requirements. While it is crucial to adhere to these
specifications strictly, they result in rather limited options
for choosing real-time embedded system appropriate
software architecture. There is no general software
architecture available fulfilling all mentioned needs.
Embedded systems however typically involve a
combination of one or more partial software architecture
types, which in proper utilization and combination create a
very well performing software system. Basic partial
software architecture types, which adhere to these
specifications, are the following:

• Domain-specific systems: could be described as
“reference” systems for a domain specific area of
application. By specializing the architecture to
the domain it is often possible to create an
improved the descriptive power of structures
used in the architecture. Embedded systems
software architecture is assumed to be a domain-
specific system indeed.

• Process control components: these architectural
components are basically intended to provide
very dynamic control over a signal processing
environment with rather instant real-time
response. In embedded systems, these are
assembler written hand-optimised codes with
very limited data structures focusing strictly on
performance. They usually work with instant
feedback control signals.

• Pipes and filters: are based on a structure of a
black-box in the middle with a set of inputs and
outputs. The black-box is the processing
algorithm itself whereas it processes the inputs
and generates the outputs. Their advantageous
property is they could be interconnected in
between each other in various orders thus
creating possibility of highly configurable system
if processing order on signal does make a
difference in the final result. One of the example
implementation in the real-time embedded
system is any general audio processing algorithm

used on a common circular buffer of audio
samples. The advantage of using pipes-and-filters
architecture here is that the order of process is
easily defined since all algorithms work on the
same data structure here. This gives programmer
and user an easy way to modify the process itself
on-the-fly in dynamic fashion thus achieving
different process behaviours. The pipes-and-
filters architecture is very well implemented in
higher-level languages such as C due to its
descriptive power to abstract structures rather
than in assembly written code, which is more
difficult to approach from the above mentioned
point of view. Fast Layer 1 memories for
execution critical code and data storage
(available only in several kBytes)

• Layered systems: are ones of the most used
software architecture components in embedded
systems. Since a very precise scheduling of tasks
is required in such systems, these are most useful
for the given purpose. Some of the layered
systems may even involve hiding certain outer
layers from inner layers thus creating a sort of
“protected” environment for sharper overall
stability of the whole system. A good example is
a real-time OS driven embedded application
where core and peripheral drivers are the most
inner layer in the system and the user
applications are the most outer layer,
communicating with the core via communication
and scheduler layer. Inner layers usually also
serve as interrupt service routines for sampling
and processing. Since scheduling reliability of
these must be 100 per cent they are usually (with
the OS core when implemented) on the same
layer with highest priority of execution.
Otherwise missing process for input sample
causes strong and audible signal distortion and
degrades system performance significantly.

• Event-based invocation: is a specific software
architecture component, which is useful for
controlling user input and implementing user
interface. The advantage of this architecture
component is in how algorithms can be layered
by their priority and still be able to communicate-
invocate themselves in event-based fashion with
very good real-time response. One good example
for system of this kind is a simple volume
regulator. The sound processing part of algorithm
is running at very high priority applying gain
constant which is read from the control
component volume, while there is another
software component on the outer layer priority
which does not need such sharp timing and can
run much slower (difference in schedule intervals
is more than thousand times). The algorithm
there serves reading the control component
volume and storing appropriate gain value into
the common gain variable used by both
components. Another useful example is
generating events on button components when
these are pressed-released. Each given button has

Acta Electrotechnica et Informatica, Vol. 9, No. 4, 2009 33

ISSN 1335-8243 © 2009 FEI TUKE

assigned its own software component, which is
always invoked only when an event occurs on the
button itself.

To achieve a well performing overall system, standard
modelling approach suggests careful evaluation of various
partial software component architectures resulting in their
balanced combination taking into account a strong
software-hardware relation. Such approach guarantees
very good real-time application performance however
trading off easiness of software design, modelling and
maintenance.

2.3. On-the-fly modelling requirement

We have already reviewed a real-time response
requirement influence on modelling approach. There is
however still a second user’s requirement - ability to
change sound processing model on-the-fly e.g. in real-
time. Both mentioned qualifications of such Musical Real-
Time Applications are nowadays solved rather in
contradictory and limited fashion. Since the
implementation and design (based usually on embedded
systems) are rather time and programmer’s resources
consuming, the usual up-to-date solutions only offer a
very limited range of configurability of applicable signal
processing algorithms and meet only minimal ability for
modification in real time.

The main reason of such limitations in standard
implementations is a need for laborious hand-manner
approach when designing embedded systems with focus
on very good real time response. Such systems require
careful evaluation of all requested parameters of the
application as well as evaluation of the abilities of the
target platform. Special care must be taken on the
viewpoint of the Platform Model (PM) / Platform Specific
Model (PSM) so to meet all Quality of Service (QoS)
requirements requested by the Application as well as
given by the Target Platform.

The application modelling must be measured from
various viewpoints considering the resources of the target
hardware architecture such as computational power of the
core processor, various specific properties of memory
types, memory sizes, communication channels between
peripherals, language types and evaluation of mixed or
hand-optimised programming need for critical parts of the
system (OS scheduler, peripheral drivers, etc). Such
design methods perform good in achieving very good real
time response of the system, they also however causes
nearly unsolvable difficulties when trying to implement
the user’s ability to modify user parts of application in real
time - on-the-fly, all this without a need for
programmer/architect or even recompiling whole project.

One of the ways how to deal with cases where
modifiability on-the-fly is essential is to approach
modelling using MDA and Executable and Translatable
UML (xtUML).

3. MDA XT-UML APPROACH TO OUR

APPLICATION TYPE MODELLING

MDA is defined by the OMG group [7], [8], [9] as
modelling technique particularly focused on separating
concerns while designing applications and systems. It

basically defines three distinctive models used for various
aspects description: PIM (Platform Independent Model),
PM (Platform Model) and PSM (Platform Specific
Model). Each mentioned model describes system through
a specific viewpoint such as it separates concerns of the
platform and the application from each other. The first
mentioned model (PIM) characterises functioning and
structure of the system with complete abstraction from the
platform where the application suppose to be
implemented. By employing such approach we can
achieve complete separation of concerns and as a result
the user – architect gains much better portability of the
application between various platforms and architectures
while meeting all requested properties, contents of the
application and its behaviour as well. PIM model together
with the PM model then server as base for transformation
into PSM model, which includes all implementation
specifications of the given hardware platform where the
application has to be executed.

Such modelling technique is very beneficial for our
application kind and it brings us several advantages.
Sound and signal processing technologies are nowadays
constantly evolving also in common PC computers. There
is a superior trend in using Musical Real Time Application
among artistic world as well. The MDA approach in the
mentioned applications seems therefore a very
spontaneous and valid modelling direction. Such approach
assures a very good ability to implement the same model
on various platforms – embedded systems as well as the
platforms based on PC with operating systems while
meeting all requested properties, contents and behaviour
defined by models.

To use just the MDA for achieving all of the requested
properties in case of our application kind will however be
hardly satisfactory. One of the main required properties is
the on-the-fly modifiability of the PIM user model. To
implement such system only within the MDA prospects
would be rather awkward especially due to unrealistic
recompiling of the whole system in real time. We
therefore propose a method which uses Executable and
Translatable UML as the in-between layer within the PIM
model. The resulting transformed PIM model is executed
via xtUML specification within already defined
architecture through the PM and PSM models, which are
designed to execute the xtUML PIM model in real time
with a very good real time response.

The xtUML standard [11], [12] is defined so that it can
design comprehensible model for an application without
any knowledge about how the internal structure of the
software is made. This fact makes the xtUML a well
abstract tool, which elegantly solves also our application
kind modelling. Not to mention there is a possibility to
implement such xtUML model on various already existing
platforms also for verification purposes. This part includes
the data on the measuring method and instruments as well
as experimental results.

The figure 2 presents a proposal of modelling
technique of our application kind using the MDA
approach with xtUML models. Due to the need of
modifiable user PIM model in real time, a middle layer is
embedded in between the user PIM and the resulting
xtUML PIM which provides for a transformation of the
user PIM model into the xtUML specification. The user

34 MDA Approach in Embedded Systems with Strict Real-Time Response and On-the-Fly Modelling Requirements

ISSN 1335-8243 © 2009 FEI TUKE

TARGET PLATFORM USER PIM MODELLER - AGENT 1

USER PIM MODELLER - AGENT n

PC PLATFORM WITH OS
PROVIDING EASY

MODELLING ENVIRONMENT
OF THE USER PIM MODEL

EMBEDDED SYSTEM
WHICH WILL

PROVIDE FOR AN
EXECUTION OF xtUML

PIM MODELS FROM
USER PIM

MODELLER AGENTS.

SYSTEM CONTAINS
ARTIFICIAL INTELLIGENCE
INFORMATION ANALYSIS
AND FEEDBACK TO PIM

MODELLING
ENVIRONMENT.

. .
 .

ENVIRONMENT

SOUND SIGNAL
PC PLATFORM WITH OS

PROVIDING EASY
MODELLING ENVIRONMENT

OF THE USER PIM MODEL

MDA with xtUML based model of MUSICAL APPLICATIONS

TARGET PLATFORM

PSM MODEL

APPLICATION
 IMPLEMENTATION
WITH PLATFORM

CONSIDERATIONS

PM MODEL

HW PLATFORM
SPECIFICATION

(Embedded system,
PC with OS)

xtUML PIM

IMPLEMENTATION
AND

EXECUTION
OF RESULTING
xtUML MODEL

IN APPLICATION
ENVIRONMENT

PIM MODEL

USER PIM

USER
ON-THE-FLY

MODEL
MODIFIED

IN REAL-TIME
IN EASY

MODELING
ENVIRONMENT

ON-THE-FLY
MODEL-

TO-
MODEL

TRANSLATION
OF

USER PIM
 INTO xtUML

TRANSLATOR

PIM model is rather specified in a so-called Easy
Modelling Environment. The resulting xtUML model is
directly executed on a target platform.

Such transformation “middle-man” allows the user –
artist skip unnecessary learning of the xtUML standard
and at the same time allows achieve more important
aspect of modelling the user PIM model - using very
straightforward and easily understandable modelling
environment (for example graphically specified). Such
environment is to be especially designed with focus on
Musical Real Time Applications specifications with high
focus on ergonomics and time-savings while designing the
model. The mentioned transformation middle-man as well
as other parts of the proposed modelling method is subject
for further research included in my ongoing PhD thesis.

The advantages arising from the above-mentioned
transformation are multiple. One of them is the ability to
simulate and verify [10] resulting xtUML model due its
execution with addition of error feedback to the user about
correctness of his model.

Fig. 2 A proposed MDA with xtUML based model for Musical

Real Time Applications Common notes

4. CASE STUDY

To help understand and evaluate the needs and
properties of the Easy Modelling Environment as well as
the specifications of the model-to-model transformation
into xtUML we propose to further study a real application
case. The modelling environment for digital effector
application with real time modelling ability is to be
designed. The application should also implement the
artificial intelligence methods, which should help improve
ergonomics and easiness of the user PIM modelling
process. The information such as musical genre, beats-per-
minute, gathered from the musical material are to be used
in mentioned AI methods as basis for modelling process
optimization. As for the target platform we suggest to use
a combination of two complementary platforms. An
embedded system will provide for sound alteration
algorithms execution as well as musical properties
information analysis. The PC platforms based on standard
operating systems will provide for the Easy Modelling
Environment of the user PIM models and will even allow
using multiple parallel-executed environments at the same
time. This would allow more users - artists to perform at
the same time thus creating more complex performance
advancing creativity possibilities in Musical Real Time

Applications. The scheme on figure 3 briefly describes
such architecture example.

Fig. 3 A proposed case study platform for Musical Real Time
Applications

4.1. Current experiment results

Due to the fact that the work on subject and described
methods is ongoing, there are currently available
experimental results of some subsystems only. These are
briefly presented in the below text. Up to date a design of
the implementation embedded system hardware platform
was carried out together with the design and performance
evaluation of basic core software parts of the embedded
system as well as some sound processing components
providing the user with the required sound effects.

A Blackfin digital signal processor [4] from Analog
Devices was used as a basic core hardware component,
since it includes rich set of multimedia instructions as well
as all peripherals necessary to accommodate such sound
processing system. Peripherals were necessary for analog-
to-digital and digital-to-analog audio converters
interconnection, additional peripherals were necessary for
interconnection of the embedded system platform and PC
platform via Ethernet interface which should provide
transfer of model data in real-time. Due to already
mentioned requirement of fast real-time response of user
intervention and configuration while creating and
interpreting the resulting user model, it was necessary to
design the component/task scheduling core of the
embedded system to meet the specified requirements. The
designing methods of such system with focus on task
scheduling and implementation are described in more
depth in [13, 14]. Finally, the experimental embedded
system software architecture core was designed where a
simple interrupt-driver dynamic task priority scheduler
was used for component scheduling. Time-critical core
components such as audio drivers or communication
drivers were implemented as direct interrupt service
routines and are executed by a direct hardware-driven
invocation depending on requests from various peripherals
(converters, Ethernet port, memory, etc.). Due to eligible
core processor hardware architecture choice, the interrupts
have nesting possibility which provides for optimizing
time-critical components execution by direct hardware
means. Mentioned architectural advantage results in
achieving reaction and configuration response times of all
sound processing components in range of ones to tens of
miliseconds which well meets the overall real-time
response specifications.

Acta Electrotechnica et Informatica, Vol. 9, No. 4, 2009 35

ISSN 1335-8243 © 2009 FEI TUKE

Due to demonstration and study purposes only few
basic sound processing components were designed and
verified on the embedded system. These include the
following:

• Filter component,
• Flanger component,
• Phaser component,
• Delay component,
• BPM meter component,
• Mixing component.

All of the mentioned components reaction and
configuration response times were measured using logic
analyzer. With dynamic execution and configuration
applied, the maximum response times were obtained in
range up to 15msec, depending on execution of other
supplementary component functions within the embedded
system. The measured response time can eventually
degrade in some per cent due to necessity of PC platform
and embedded system platform communication execution
which is not yet done.

Further research work is planned on designing and
implementing the Easy modelling environment for the PC
platform as well as implementing the PC and embedded
system Ethernet communication as a transformation layer
between the user PIM model and the implementation
itself. There is also a need to refine specification of the
sound processing component models with their modelling
properties on the PC platform as well as putting the
artificial intelligence methods to work at optimizing
modelling process with its properties.

5. CONCLUSIONS

This paper presents a MDA approach with use of the
Executable and Translatable UML for modelling Musical
Real Time Applications with special focus on the
modifiability of the user PIM model on-the-fly. The core
idea of the proposed method is to separate user PIM
model from the implementation PIM model of the rest of
the application and a method is suggested for modelling
the user PIM model using a specific Easy Modelling
Environment with high focus on ergonomics and easiness
of the model design. Such modelling environment should
facilitate time-saving while modelling as well as be very
understandable in the definition to the user – artist.
Resulting xtUML PIM model is achieved by
transformation of such user PIM model and is afterwards
executed on the target platform.

Such method also guarantees various advantages over
standard modelling methods and approaches. One of the
advantages is easy portability over various platforms
enabling to use the embedded systems as well as common
PC platforms for execution. The major advantage is
however the ability to modify the user PIM model on-the-
fly in real time.

ACKNOWLEDGMENTS

This work was supported by VEGA Grant No.
1/0350/08 Knowledge-Based Software Life Cycle and
Architectures.

REFERENCES

[1] Lathi, B. P.: Signal Processing & Linear Systems,
Oxford University Press, New York (1998).

[2] Pioneer Pro DJ, EFX-1000 performance effector,
available at http://www.pioneerprodj.com/dj-
equipment/effects/efx-1000.asp, 2006.

[3] Gold, B., Morgan N.: Speech and Audio Signal
Processing: Processing and Perception of Speech and
Music, Hardcover, August 1999.

[4] Analog Devices: ADSP-BF533 Blackfin Processor
Hardware Reference, Analog Devices One
Technology Way, USA 2003.

[5] Ko, M., Shen, Ch., Bhattacharaya, S..: Memory-
constrained Block Processing Optimization for
Synthesis of DSP Software, International Conference
on Embedded Computer Systems, Samos Greece
2006.

[6] Garlan, D., Shaw, M..: An Introduction to Software
Architecture, CMU Software Engineering Institute
Technical Report, CMU/SEI-94-TR-21, ESC-TR-94-
21.

[7] OMG, Model driven architecture guide v1.0.1.
http://www.omg.org/mda, 2003.

[8] OMG, UML 2.0 OCL specification.
http://www.omg.org/ocl, 2003.

[9] OMG, UML profile for modelling QoS and fault
tolerant characteristics and mechanisms. OMG
adopted specification, 2004.

[10] DeAntoni, J., Babau, J.P.: A MDA-based approach
for real time embedded systems simulation, Ninth
IEEE International Symposium on Distributed
Simulations and Real-Time Applications, 2005.

[11] Mellor, S.J., Balcer, M.J.: Executable UML: A
Foundation for Model-Driven Architecture,
Addison-Wesley Professional, 2002.

[12] Mellor, S.J.: Executable and Translatable UML,
available on April-2008 at Embedded Systems
Design
http://www.embedded.com/story/OEG20030115S00
43, 2003.

[13] Železník Otto, Havlice Zdeněk: Software
Architectures for Real-Time Embedded Applications
for broadcasting, Information Systems and Formal
Models, 10th International Conference on
Information System Implementation and Modeling
ISIM'07, 2nd International Workshop on Formal
Models WFM'07, Hradec nad Moravici, 23.-
25.4.2007, Opava, Silesian University in Opava,
Faculty of Philosophy and Science, Bezruc Sqr. 13,
74601 Opava, Czech, 2007, pp. 63-70, ISBN 978-80-
7248-006-7.

[14] Železník Otto, Havlice Zdeněk: On-the-fly MDA
application modelling using Executable and
Translatable UML, Model Driven Software

36 Acta Electrotechnica et Informatica, Vol. 9, No. 4, 2009

ISSN 1335-8243 © 2009 FEI TUKE

Engineering Workshop on Transformations and
Tools, MDSE 2008, Berlin, 11.-12.12.2008,
Germany

Received March 2, 2009, accepted September 28, 2009

BIOGRAPHIES

Otto Železník was born on 7.7.1977. In 2000 he
graduated (MSc.) at the department of Computers and
Informatics of the Faculty of Electrical Engineering and
Informatics at Technical University in Košice. He is
currently studying his PhD and his scientific research is

focused on software architectures modelling in embedded
systems.

Zdeněk Havlice was born on 14. 02.1958. In 1982 he
graduated (MSc.) with honors at the Department of
Computers and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University in
Košice. He defended his PhD. in the field of visual
programming and user interface design in 1991; his thesis
title was: "Design of User Interface for Dialogue
Systems". Since 1999 he is working as an associated
professor at the Department of Computers and
Informatics. His scientific research is focusing on the area
of special languages, compilers, CASE systems, software
methodologies, methods and tools.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

