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ABSTRACT
In this paper a potential application of a novel adaptive controller based on robust fixed point transformations of local basin of

attraction in iterative learning is suggested on the basis of numerical simulation results. Its main advantage is its simplicity in com-
parison with the more sophisticated adaptive approaches in nonlinear control that normally are based on the application of Lyapunov
functions. While the Lyapunov function based parameter tuning normally is complicated, is restricted to special models and typically
is sensitive to unknown external disturbances, the here resented method needs only approximate setting of actually only two adaptive
parameters and it efficiently can compensate the effects of the external perturbations. The electrostatic micro-actuators (EµAs) seem to
be typical application area for this control that needs simple and fast calculations on the basis of quite approximate available model.

Keywords: Adaptive Control, Robust Fixed Point Transformations, Iterative Control, Nonlinear Systems’ Control, Geometric Ap-
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1. INTRODUCTION

The present paper was inspired by the work by Vagia,
Nikolakopoulos and Tzes who suggested the application of
a robust switching PID controller coupled to a feed-forward
compensator for controlling an electrostatic micro-actuator
(EµA) in [1]. In their approach the precise non-linear model
of a given EµA was linearized in certain set-points as typ-
ical operating points and the LMI technique was used in
the design phase to stabilize separate PID controllers that
were determined in the vicinity of these set points. Such
kinds of controllers have to switch at the boundaries within
which static PID parameters are set. More precisely “Each
PID controller stabilizes the convex hull formed by the cur-
rent and neighboring linearized subsystems of the electro-
static micro-actuator indexed according to the operating
point.” The design typically was made by minimization
of quadratic cost functions. In the paper simulation results
were presented for responses to step functions as controller-
inputs. In many cases this approach is really more reason-
able than the design of complicated nonlinear model-based
controllers and has significant occurrence in the literature
as e.g. in [2], [3]. In its philosophy it can be related to
hierarchical solutions as e.g. the idea of the situational con-
trol of more complicated systems in which in the practice
typical regimes of operation can be identified [4].

It worths noting that the effects of possible occurrence
of drastic modeling errors and unknown external distur-
bances were not addressed in this approach. Furthermore,
though the model of the (EµA) they took from [3] and [5] is
nonlinear, it does not seem to be too complicated and con-
tains only a few parameters. The switching controller they
proposed contains considerable number of further parame-
ters depending on the number of the intervals of lineariza-
tion. The need for the rejection of external disturbances and
compensating the effects of modeling errors in a simple way
in this case naturally arises.

As is well known the most sophisticated classic model-
based adaptive controllers in robotics and certain mechani-
cal devices are the “Slotine-Li Adaptive Controllers” and

the “Adaptive Inverse Dynamics Controller” [6] that uti-
lize the linear dependence of the equations of motion on the
dynamic parameters of the system to be controlled. Since
these controllers assume that the system under control is
not subjected to external disturbances they can compen-
sate only the effects of the parameter errors of the initial
model they apply [7]. In spite of several improvements as
e.g. in [8], [9] these deficiencies remained significant. It is
worth noting, too, that many factors that can be ignored in
the macro-world play an important role in the micro-world
that have to be taken into account in modeling and con-
trol [10]. One of such factors is friction the identification of
the parameters of various models of which is a complicated
task [11]. It can be noted that apart from the viscous term
these model parameters are not linearly separable that is
needed for the applicability of the above two methods. Con-
sequently the adaptive control of an EµA is a typical task
for which the application of robust fixed point transforma-
tions of local basin of attraction is expedient to be proved.
In the sequel at first the essence of the method is provided,
then the model of the EµA and its appropriateness to this
control approach will be shown. Finally simulation results
and concluding remarks will be provided.

2. THE EXPECTED–REALIZED RESPONSE
SCHEME AND FIXED POINT TRANSFORMA-
TIONS

Several control tasks can be formulated by using the
concepts of the appropriate “excitation” Q of the controlled
system to which it is expected to respond by some pre-
scribed or “desired response” rd . The appropriate excita-
tion can be computed by the use of some inverse dynamic
model Q = ϕ(rd). Since normally this inverse model is nei-
ther complete nor exact, the actual response determined by
the system’s dynamics, ψ , results in a realized response rr

that differs from the desired one: rr ≡ ψ(ϕ(rd))≡ f (rd) 6=
rd . It is worth noting that the functions ϕ() and ψ() may
contain various hidden parameters that partly correspond
to the dynamic model of the system, and partly pertain
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to unknown external dynamic forces acting on it. Due to
phenomenological reasons the controller can manipulate or
“deform” the input value from rd so that rr ≡ ψ(rd

∗). The
main idea is that via the introduction of an iterative pro-
cess as rn+1 = Ψ(rn;rd) the solution of the problem can be
found as rn → r∗. If the iteration is convergent and this
convergence is fast enough the solution practically can be
well approximated. For showing that for Single Input –
Single Output (SISO) systems the appropriate deformation
can be defined as some Parametric Fixed Point Transfor-
mation consider the iteration generated by some function as
xn+1 = G(xn|xd). In order to apply iterations let us consider
the set of the real numbers as a linear normed space with the
common addition and multiplication with real numbers, and
with the absolute value | • | as a norm. It is well known that
this space is complete, i.e. it is a Banach Space in which
the Cauchy Sequences are convergent. Due to that, us-
ing the norm–inequality, for a convergent iterative sequence
xn → x∗ it is obtained that

|G(x∗)− x∗| ≤ |G(x∗)− xn|+ |xn− x∗|=
= |G(x∗)−G(xn−1)|+ |xn− x∗|.

(1)

It is evident from (1) that if G is continuous then the de-
sired fixed point is found by this iteration because in the
right hand side of (1) both terms converge to 0 as xn → x∗.
The next question is giving the necessary or at least a sat-
isfactory condition of this convergence. It also is evident
that for this purpose contractivity of G(•), i.e. the property
that |G(a)−G(b)| ≤ K|a− b| with 0 ≤ K < 1 is satisfac-
tory since it leads to a Cauchy Sequence (|xn+L − xn| → 0
∀L ∈ N):

|xn+L− xn|= |G(xn+L−1)−G(xn−1)| ≤ ...
≤ Kn|xL− x0| → 0 as n → ∞

(2)

For the role of function G(x;xd) a novel fixed point transfor-
mation was introduced in [12] that is rather “robust” as far
as the dependence of the resulting function on the behav-
ior of f (•) is concerned (3). This robustness can approxi-
mately be investigated by the use of an affine approximation
of f (x) in the vicinity of x? and it is the consequence of the
strong nonlinear saturation of the sigmoid function tanh(x):

G(x|xd) := (x+K)×[
1+B tanh(A[ f (x)− xd ])

]
−K

if f (x?) = xd then
G(x?|xd) = x?

G(−K|xd) =−K,
G(x?|xd)′ = (x? +K)AB f ′(x?)+1.

(3)

It is evident that the transformation defined in (3) has a
proper (x?) and a false (−K) fixed point, but by properly
manipulating the control parameters A, B, and K the good
fixed point can be located within its basin of attraction, and
the requirement of |G′(x?|xd)|< 1 can be guaranteed. This
means that the iteration can have considerable speed of con-
vergence even nearby x?, and the strongly saturated tanh
function can make it more robust in its vicinity, that is the

properties of f (x) have less influence on the behavior of
G. It is not difficult to show that in the case of Single In-
put – Single Output (SISO) systems the G(x|xd) functions
can realize contractive mapping around x?. Qualitatively it
can be stated that a small value of the parameter A opens
a wide “window” in the vicinity of the realized response,
while parameter K can yield an additional shift to speed up
the tuning. Practically these parameters can be set via sim-
ulations: by the use of a simple PID-type controller one can
observe the order of magnitude of the desired and simulated
responses, and A and K can be set accordingly. It can be
noted that instead of the tanh function any sigmoidal func-
tion with the property of σ(0) = 0, e.g. σ(x) := x/(1+ |x|)
can be similarly applied, too.

It has be noted that within each control cycle only one
step can be executed in the iteration. If the adaptation is
faster than the dynamics of the system to be controlled ap-
propriate result can be expected even in this case, too. This
approach is similar to the application of “Cellular Neu-
ral Networks (CNN)” for image processing. In relation to
the operation of CNNs the concept of “Complete Stability”
can be introduced that means that a static input picture is
mapped to a static output picture following a short dynamic
transition of the physical state of the CNN. If the input pic-
ture is not static but varies “slowly” in comparison with the
“speed” of the CNN’s internal dynamics varying picture is
mapped to varying output [13]. In spite of using a single
step during one control cycle from each point of view the
improvement may be considerable.

3. THE MODEL OF THE EµA

The EµA corresponds to a micro-capacitor whose one
plate is attached to the ground while its other moving plate
is floating in the air as e.g. in [14]. In the present paper
the model considered was taken from [1]. Accordingly, the
equation of motion of the system is given as follows

q̈ =
−b∗ q̇− kq+ εAU2/(2(ηmax−q)2)+Qd

m
(4)

in which b = 1.4×10−5kg · · · is the viscous damping of the
motion of the EµA in air, k = 0.816N/m is a spring con-
stant, A = (400× 10−6m)2 denotes the area of the plate,
m = 7.096× 10−10kg is its mass, ηmax = 4× 10−6m is the
distance between the plates when the spring is relaxed, q
is the displacement of the plates from the relaxed posi-
tion, ε = 9× 10−12C2/(N ·m2) is the dielectric constant,
Qd denotes the external disturbance forces, and U denotes
the control voltage e.g. the physical agent by the help of
which the plate’s displacement can be controlled. It can
be seen that (4) is singular near q = ηmax, therefore for con-
trollability allowable displacements of the micro-capacitors
plate in the vertical axis were q ∈ [0.1,1.3]× 10−6m that
was deemed necessary in order to guarantee the stability of
the linearized open-loop system in [1]. It can be noted that
though the stability of the control of the linearized system
obtained significant attention in the literature in the near
past (e.g. [15], [16], [17]), from our present point of view
linearization is not interesting at all. In our approach the
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realized response of the system is q̈, therefore from purely
kinematical point of view we can prescribe the desired re-
sponse q̈Des. It also is trivial that ∂ q̈

∂U > 0 if U > 0 that is
the derivative of G(x?|xd)′ = (x? + K)AB f ′(x?)+ 1 can be
made flat in (3) for guaranteeing the proper convergence of
the proposed method. In the sequel simulation examples
will be presented for the simple PID and the novel adaptive
version of the control proposed.

4. SIMULATION EXAMPLES

To study the effect of the modeling errors in the simula-
tions the controller assumed the approximate model param-
eters as follows: Â = 0.8A, m̂ = 1.2m, b̂ = 1.2b, k̂ = 1.2k,
η̂max = 0.8 ∗ ηmax, and ε̂ = 0.8ε . External disturbance
forces that may originate e.g. some vibration of the ba-
sis plate on which the EµA is assembled were modeled by
third order spline functions. It can be noted that while the
estimation techniques based on Kalman filters normally as-
sume some restriction regarding the statistical nature of the
disturbances, in our case no such restrictions are needed. To
obtain comparable results with [1] (in its Fig. 8 the response
for the jumping control input needed about 2ms, the pre-
scribed relaxation used the following PID settings: q̈Des =
q̈N + 3Λ2(qN −q)+ 3Λ(q̇N − q̇)+ Λ3 ∫ t

t0(q
N(ξ )−q(ξ ))dξ

with Λ = 104/s in which qN(t) denotes the nominal tra-
jectory. Du to the very fast motion required in the sim-
ulations Euler’s integrating formula was used with con-
stant time-resolution of δ t = 10−5s. In the simulations
with fixed time-step length the above function was used
as follows: q̈Req

n+1 = G(q̈Req
n , q̈n|q̈Des

n+1) = (q̈Req
n + Kctrl)(1 +

Bctrlσ(Actrl(q̈n− q̈Des
n+1)))−Kctrl in which the “deformed in-

put” is referred to as the “required” value. Representative
results are given in Fig. 1.
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Fig. 1 The response of the non-adaptive PID controller for step
input: the displacement q vs. time, the phase trajectory of the dis-
placement, the control voltage U and the control force (according
to the exact model parameters), the external disturbance forces,
and the trajectory tracking error

Via observing the order of magnitude of the occur-
ring accelerations the following adaptive control parame-
ters were set: Kctrl = −10× 50m/s2, Bctrl = 1m/s2, and
Actrl = 1.5× 10−3s2/m. The adaptive counterpart of the
previously considered motion is given in Fig. 2.
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Fig. 2 The response of the adaptive PID controller for step input:
the displacement q vs. time, the phase trajectory of the displace-
ment and its zoomed details, the control voltage U and the control
force (according to the exact model parameters), and the trajectory
tracking error (the external disturbance forces were the same as in
Fig. 1)
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Fig. 3 The response of the non-adaptive PID controller for sinu-
soidal input: the displacement q vs. time, the phase trajectory
of the displacement, the control voltage U and the control force
(according to the exact model parameters), the trajectory track-
ing error, and the acceleration tracking (the external disturbance
forces were the same as in Fig. 1)
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The improvement by adaptivity is evident.
It is rather interesting to see the tracking properties of

the controllers for continuously varying nominal trajectory,
e.g. for a sinusoidal nominal motion (Fig. 3). The adaptive
counterpart of the results displayed in Fig. 3 are given in
Fig. 4
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Fig. 4 The response of the adaptive PID controller for sinusoidal
input: the displacement q vs. time, the phase trajectory of the dis-
placement, the control voltage U and the control force (according
to the exact model parameters), the trajectory tracking error, and
the acceleration tracking (the external disturbance forces were the
same as in Fig. 1)
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Fig. 5 The response of the non-adaptive PID controller for “ir-
regular” input: the displacement q vs. time, the phase trajectory
of the displacement, the control voltage U and the control force
(according to the exact model parameters), the trajectory track-
ing error, and the acceleration tracking (the external disturbance
forces were the same as in Fig. 1)

For investigating the operation of the controllers less
“canonical” nominal trajectories third order spline func-
tions were made to generate nominal trajectories.
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Fig. 6 The response of the adaptive PID controller for “irregular”
input: the displacement q vs. time, the phase trajectory of the dis-
placement, the control voltage U and the control force (according
to the exact model parameters), the trajectory tracking error, and
the acceleration tracking (the external disturbance forces were the
same as in Fig. 6)

The non-adaptive controller’s operation is described by
Fig. 5. The adaptive counterpart of Fig. 5 is Fig. 6. The
improvement by adaptivity is evident.

It is worthy of note that in spite of the disturbance forces
the system smoothly approximates the acceleration of the
nominal trajectory, that is a great advantage in comparison
with the also simple and very witty idea of the robust “Vari-
able Structure/Sliding Mode Controller” (e.g. [18], [19],
[20]) in which the approximation of the phase trajectories
may be questionable (this is the essence of the phenomenon
called “chattering”). We note that the here suggested adap-
tive control was successfully used for softening the sharp
parameters of the original VS/SM controller in [21], too.
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Fig. 7 The “desired” (solid line), the “required” (densely dashed
line) and the “realized” (dashed line) accelerations
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To better reveal the essence of the operation of the pro-
posed controller the “desired”, “required” and “realized”
accelerations are described in Fig. 7. It is evident that fol-
lowing a short initially converging stage the “realized” val-
ues closely approximate the “desired” ones that consider-
ably differ from the “required” acceleration. This latter dif-
ference well illustrates the deformation of the input caused
by function G that is the essence of the adaptivity and the
“iterative learning” feature of such controllers. In this man-
ner the relaxation of the tracking error purely kinematically
prescribed by the PID controller is precisely realized in
spite of the modeling errors and the external disturbances.

5. CONCLUSIONS

In this paper a simple, robust fixed point transforma-
tion based iterative, adaptive controller was suggested for
controlling a particular model of EµA. It was shown that
the present approach needs far less number of parameters
than the switching controllers based problem tackling in [1]
in which the model is linearized around several working
points, and the controller has to memorize that points and
the appropriate PID parameters belonging to the appropri-
ate intervals. Since normally the parameter Bctrl can be
chosen to be equal to 1, appropriate setting of only two
ones, Actrl and Kctrl is satisfactory, plus the setting of a
single parameter for the PID controller, Λ is required. It
was shown that the here presented controller can compen-
sate the effects of quite considerable modeling errors (about
20% in each model parameter) and that of the external dis-
turbances, too. These issues were not addressed in [1].

It must be noted that the here proposed approach needs
the estimation of the acceleration of the plate while the sim-
ple PID based method and the switching controller needs
information only on the position and the velocity for the
feedback. Furthermore, it works with an iterative sequence
of local basin of attraction, therefore in the case of extreme
disturbances and parameter errors the algorithm can quit
this basin of attraction. On this reason it is expedient to
make preliminary simulation investigations to properly set
its control parameters and to investigate the range of con-
vergence.
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