
Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010, 59–67 59 

ISSN 1335-8243 © 2010 FEI TUKE 

PATOOL – A TOOL FOR DESIGN AND ANALYSIS OF DISCRETE SYSTEMS USING 
PROCESS ALGEBRAS WITH FDT INTEGRATION SUPPORT 

Slavomír ŠIMOŇÁK, Ivan PEŤKO 
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, 

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4220,  
e-mail: slavomir.simonak@tuke.sk; ivan.petko@toryconsulting.sk 

ABSTRACT 
This paper deals with PATool – a process algebra tool with FDT integration support. We discuss main features, used formats, 

principles of conversions and cooperation with other tools in order to provide a platform for the design and analysis of systems using 
process algebras. PATool is based on former work in the FDT integration area, which formed the basic idea and requirements to the 
tool. As a result, PATool currently offers a simple interface for FDT integration tools and process algebra specifications with 
corresponding interchange formats transformations. A typical use is demonstrated by examples. 
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1. INTRODUCTION 

One of the many available definitions states that 
formal description techniques (FDT or simply formal 
methods) are formally sound (mathematically-based) 
techniques for the specification, development and 
verification of software and hardware systems. The 
principal aim of FDT usage is to enable designers to 
construct real-life size systems that work correctly with 
respect to requirements. 

Process algebras [2], [3], [14], [15] are very 
significant part of FDT offering algebraic methods for 
description and analysis of discrete systems. Many tools 
were developed to support work with process algebras [5] 
and the majority of them support the specific process 
algebra only. In order to integrate process algebras and 
other FDT a number of FDT integration techniques and 
tools were developed (e.g., integration of process algebras 
and Petri nets [6]). Reasons mentioned above led us to the 
idea to develop a tool, with a support for various process 
algebras and some additional formal methods as well. 

In this paper, we introduce the PATool – a tool for 
process algebras including also some FDT integration 
tools support. Since many significant tools exist already 
there, each of them supporting one specific process 
algebra, it’s not necessary to develop similar tool. Instead, 
a different approach is used in PATool development. 
Starting from FDT integration tools supported 
(ACP2PETRI [9] and PETRI2APC [8]) it is not hard to 
see that there is a need for support of process algebras 
ACP (Algebra of Communicating Processes) [2] and APC 
(Algebra of Process Components) [4].  

The main contribution of PATool to a process of 
system description and analysis is its ability to convert 
formats used by external tools. PATool thus represents an 
interface to multiple process algebra notations. 
Considering a built-in interface between ACP/APC and 
CSP (Communicating Sequential Processes) [3], very 
interesting analysis techniques implemented in external 
tools (e.g., CWB-NC [5]) are available now for analysis of 
ACP and APC specifications. By this means, PATool 
takes the advantage of great intellectual work and years of 
active research devoted to development of such tools. 

2. PATOOL OVERVIEW 

PATool (Process Algebras Tool) principles were 
firstly proposed in [1] in order to give a formal 
background for the tool supporting process algebras and 
FDT integration. The primary motivation was the absence 
of a tool which supports multiple process algebras and 
formats of existing FDT integration tools. There are many 
tools developed to this day, each supporting the only one 
specific formalism (for instance CWB/CCS (Calculus of 
Communicating Systems) [10], FDR2/CSP [11], PSF 
Toolkit/ACP [12], PEPA Tools/PEPA (Performance 
Evaluation Process Algebra) [13], etc.) so PATool has not 
an ambition to offer similar properties for more process 
algebras. Instead of it, PATool cooperates with existing 
FDT integration tools by means of conversions of their 
formats, offers process algebras transformations in order 
to use significant properties of professional external tools, 
provides an interface between their representations and 
integrates formalisms used by means of format 
conversions and thus allows the user to use specifications 
written in any of supported notations. 

Currently PATool provides standard text editing 
functionalities, (i.e., load, save, new, cut, copy…) and 
format conversions, supporting the following file formats:  

• CSP format – textual representation of the CSP 
algebra, used by CWB-NC [5], 

• ACP textual and PAML (Process Algebras 
Markup Language) format – textual and PAML 
representation of ACP specifications,  

• APC textual and PAML format – textual and 
PAML representation of APC specifications.  

Cooperating independent FDT integration and external 
analysis tools mentioned above, PATool interacts with, 
are ACP2PETRI [9], PETRI2APC [8] and CWB-NC [5]. 
PATool also provides a direct execution of external tools 
with converted specifications. It also provides a GUI 
functionality to originally non-GUI tools with a built-in 
specification syntax check. To provide the interface 
between cooperating tools and user specifications, there 
are four types of conversions available: 
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• ACP in textual format to ACP in PAML format 
• ACP in PAML (an input of ACP2PETRI) format 

to ACP in textual format 
• APC in PAML (an output of PETRI2APC) 

format to APC in textual format 
• ACP and APC textual and PAML formats to CSP 

format. 

3. PATOOL PRINCIPLES 

In the following, PATool principles are considered 
briefly in order to provide main ideas behind the tool. 
Since the tool is based on some of the results obtained in 
FDT integration area, we refer to [1], [4], [6], [8] and [9] 
for a formal background. In [1] format definitions and 
conversions are described in details (PAML formats are 
defined by DTD specifications and textual formats are 
defined by formal grammars). 

3.1. Interfaces 

The main interface which PATool provides is an 
interface between the user and specifications in ACP 
(textual or PAML), APC (textual or PAML) and CSP 
(textual) - note that CSP specifications can be obtained 
from those written in ACP or APC (both textual or PAML 
form). This interface can also be viewed as three separate 
sub-interfaces (Fig. 1). 

 

 
 

Fig. 1  PATool interface 
 
Since the ACP2PETRI input format is an ACP PAML 

(XML-based) specification, PATool allows to define the 
specification in much simpler (textual) mode, i.e., it 
provides the conversion from ACP textual format to ACP 
PAML format and vice versa. User may interactively 
specify and modify the specification, run ACP2PETRI 
directly from PATool and evaluate its output. 

 

 
 

Fig. 2  PATool/ACP2PETRI interface 
 

Note that the output of ACP2PETRI is the PNML 
(Petri Net Markup Language) specification of 
corresponding Petri Net. PATool displays the tool output, 
so the user can see the ACP2PETRI messages generated 
during the processing.  

Unlike the ACP2PETRI tool, PETRI2APC takes the 
PNML specification as an input and generates the APC 
specification in PAML format. This is quite complicated 
to read and therefore PATool converts the specification 

generated to APC textual format, which is much simpler 
to understand. It is possible to run the PETRI2APC 
directly from PATool, (PETRI2APC generated messages 
are displayed), automatically load the APC PAML output 
and convert it to textual form. Thus, the whole activity can 
be done again from the PATool environment. 

 

 
 

Fig. 3  PATool/PETRI2APC interface 
 

Once the user has obtained or created ACP or APC 
specification in PAML or textual format (as an output of 
PETRI2APC or written by the user in order to analyze it), 
or has written the CSP specification directly, he is able to 
analyze it by an external tool using the conversion into the 
CWB-NC’s CSP notation (or, essentially, by any tool 
which supports the CWB-NC’s general syntax for CSP 
algebra). Every ACP or APC specification in both textual 
and PAML format can be converted into the 
corresponding CSP specification (with some restrictions 
given in [1]) using PATool and thus analysis of a 
specification in any of the formats supported is possible. 

 

 
 

Fig. 4  PATool/CWB-NC interface (analysis) 

3.2. Used formats 

Each file format PATool supports has its own 
predefined structure depending on the specific type. 
Basically formats supported can be subdivided into two 
types – textual and XML-based. Predefined PATool file 
formats [1] are acp (file with a textual representation of 
ACP specification), apc (file with a textual representation 
of APC specification), paml (XML file with respect to 
given DTD specification with representation of ACP or 
APC algebra). 

The textual format of ACP algebra [1] was defined by 
the formal grammar [7] in order to provide a simple 
mechanism for creating (writing) ACP specifications. A 
syntax checking feature is also provided to support writing 
ACP specifications. Such a specification can be stored in a 
file with any extension, although .acp is preferred.  

Similarly, the APC textual representation is also 
defined by the formal grammar to simplify readability of 
APC specifications. The ACP and APC PAML formats 
[1] given by the particular DTD specifications allow to 
store specifications equivalent to those in textual form, but 
more suitable for machine processing. 

The used formats are defined as follows.  
Def.: Let GACP be a context-free grammar 
 
GACP = (NACP, TACP, PACP, start), where 



Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010 61 

ISSN 1335-8243 © 2010 FEI TUKE 

NACP = {start, gamma, encset, acpequation, act, var, 
apcterm, acpeq, A, B, C, D, actions, encaps, actionSet, 
actt, id} is a set of non-terminal symbols, where start is a 
starting non-terminal symbol. 

TACP = {'gamma', '(', ')', ',' ,'=', 'encset', 'encaps', '[', ']', 
'+', '||', '.', 'delta', 'epsilon' } is a set of terminal symbols. 

PACP is a set of grammar rules in form Α → β (written in 
extended Backus-Naur form), where A is a non-terminal 
symbol and β is a regular expression over the set of 
terminal and non-terminal symbols, defined as: 

PACP: 
start → gamma encset acpequation                           
gamma → ['gamma' '(' act ',' act ')' '=' act gamma]   
encset → ['encset' '[' id ']' '(' actionSet ')' encset] 
acpequation → var '=' acpterm acpeq                        
acpeq → [acpequation]                                            
acpterm → A                                                                       
A → B[ '+' A]                                                                      
B → C[ '||' B]                                                                      
C → D[ '.' C]                                                                      
D → encaps | '(' A ')' | act | var                                        
act → (a| .. |z)+(0| … |9)*(a| .. |z|A| …|Z|_)* | 'delta' | 
'epsilon'                                                                    
actionSet → [act actions]                                          
actions → [',' actt]                                                          
actt → act actions                                                            
var → (A| .. |Z)+(0| … |9)*(a| .. |z|A| …|Z|_)*               
encaps → 'encaps' '[' id ']' '(' acpterm ')'                           
id → act | var            

Notice that the non-terminals act and var are defined 
by regular expressions [7]. The rules in the set PACP 
preserve the following precedence convention: 

Def.: Let p: O → N be a precedence function, where 
O is a set of ACP operators and N is a set of natural 
numbers. For ACP algebra we have  
 
O = {+, ., ||, ∂H(), ( )}, 
 
where + is alternative composition, . is sequential 
composition, || is parallel composition, ∂H() is 
encapsulation and ( ) stands for bracketing. Then 
 
p(+) < p(||) < p(.) < p(( )) = p(∂H()) 

 
In our grammar, +, . and || are identical to their 

syntactic equivalents in ACP, encset[id] is a definition of 
encapsulation set, i.e., encaps[id] stands for ∂id(), gamma 
represents a binary communication function γ. 

 
Similarly we define the APC textual form.  

Def.: Let GAPC be a context-free grammar 
 
GAPC = (NAPC, TAPC, PAPC, start), where 

NAPC = {start, pidef, apcequation, componentList, process, 
var, proc, componentStart, componentEnd, apcterm, 
comp, eqcomponent, eq, apceq, A, B, C, D, act, id}  is a 

set of non-terminal symbols, and start is a starting non-
terminal symbol. 

TAPC = {'pi', '(', ')', ',','=', '[', ']', '+', '||', '.', 'delta', 'epsilon', 
'#', '{', '}'} is a set of terminal symbols. 

PAPC:  
start → pidef apcequation                                             
pidef → ['pi' '(' componentList ')' '=' process pidef]  
process → proc | var '=' proc                                        
proc → apcterm                                                  
componentList → componentStart apcterm componentEnd 
',' componentStart apcterm componentEnd comp        
comp → [ ',' componentStart apcterm componentEnd 
comp]                                                                 
apcequation → eqcomponent apceq | eq apceq                
eq → var '=' apcterm                                          
eqcomponent → componentStart eq componentEnd   
apceq → [apcequation]                                                 
apcterm → A                                                                       
A → B[ '+' A]                                                                      
B → C[ '||' B]                                                                  
C→ D[ '.' C]                                                                       
D → '(' A ')' | act | var | componentStart A componentEnd   
componentStart → '#' '[' id ']' '{'                         
componentEnd → '}'                                                        
act → (a| .. |z)+(0| … |9)*(a| .. |z|A| …|Z|_)*| 'delta' | 
'epsilon'                                                                            
var → (A| .. |Z)+(0| … |9)*(a| .. |z|A| …|Z|_)*                  
id → act|var          

The APC precedence function is defined such that 
 
p(+) < p(||) < p(.) < p(( )) 
 

Notice, that the ACP and APC grammars are very 
simple deterministic context-free grammars of type LL(1).  

In order to support PAML specifications, the 
following DTD definitions representing XML tree 
structures are defined: 
 
ACP PAML format: 

<!-- ACP DTD for process specifications --> 
<!ELEMENT ACPSPEC 

(GAMMA*,ENCSET*,ACPEQUATION+)> 
<!ELEMENT ACPEQUATION (VAR,ACPTERM)> 
<!ATTLIST ACPEQUATION INIT CDATA #REQUIRED> 
<!ELEMENT ACPTERM 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)> 
<!ELEMENT ALTCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+> 
<!ELEMENT SEQCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+> 
<!ELEMENT PARCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+> 
<!ELEMENT ENCAPS 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)> 
<!ATTLIST ENCAPS ENCID CDATA #REQUIRED> 
<!ELEMENT ACTION EMPTY> 
<!ATTLIST ACTION NAME CDATA #REQUIRED> 
<!ELEMENT VAR EMPTY> 
<!ATTLIST VAR NAME CDATA #REQUIRED> 
<!ELEMENT GAMMA EMPTY> 
<!ATTLIST GAMMA ACT1 CDATA #REQUIRED ACT2 

CDATA #REQUIRED RES CDATA #REQUIRED> 
<!ELEMENT ENCSET (ACTION*)> 
<!ATTLIST ENCSET ENCID CDATA #REQUIRED> 
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APC PAML format: 
<!-- APC DTD for process specifications --> 
<!ELEMENT APCSPEC 

(PIDEFINITION*,APCEQUATION+)> 
<!ELEMENT APCEQUATION (VAR,APCTERM)> 
<!ATTLIST APCEQUATION INIT CDATA #REQUIRED 

PROC CDATA #IMPLIED > 
<!ELEMENT APCTERM 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)> 
<!ATTLIST APCTERM PROC CDATA #IMPLIED > 
<!ELEMENT ALTCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+> 
<!ATTLIST ALTCMP PROC CDATA #IMPLIED > 
<!ELEMENT SEQCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+> 
<!ATTLIST SEQCMP PROC CDATA #IMPLIED > 
<!ELEMENT PARCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+> 
<!ATTLIST PARCMP PROC CDATA #IMPLIED > 
<!ELEMENT ACTION EMPTY> 
<!ATTLIST ACTION NAME CDATA #REQUIRED PROC 

CDATA #IMPLIED> 
<!ELEMENT VAR EMPTY> 
<!ATTLIST VAR NAME CDATA #REQUIRED PROC CDATA 

#IMPLIED> 
<!ELEMENT PIDEFINITION 

(COMPONENT,COMPONENT+,RESULT) > 
<!ATTLIST PIDEFINITION ID CDATA #REQUIRED > 
<!ELEMENT COMPONENT (APCEQUATION|APCTERM) > 

<!ELEMENT RESULT (APCEQUATION|APCTERM) > 

Since the definitions are intuitive and we suppose 
that the reader is familiar with DTD and XML concepts, 
we consider them as clear enough. Notice that process and 
action names and other syntactical information are 
determined by attributes of the specifications. 

  
3.3. Format conversion principles 

Since the ACP and APC textual representations are 
given by the formal grammars [7], the conversion to their 
PAML equivalent is trivial with respect to the formal 
translation theory. As noticed above, the ACP and APC 
grammars are very simple deterministic context-free 
grammars of type LL(1), i.e. a top-down parser reading an 
input from left using the only one symbol to determine the 
next grammar rule to use may be implemented. In fact, 
PATool translation algorithms implement the SDTS 
(Syntax Directed Translation Scheme) concept [7], which 
is one of possible translation principles of the translation 
theory, i.e. for each input terminal symbol there exists an 
output terminal symbol. In the real implementation each 
non-terminal symbol is represented by a method and each 
terminal symbol is represented by the call of lexical 
analyzer procedure returning the terminal. When a 
particular input terminal symbol is read from the source, a 
corresponding output symbol is written to the output. This 
leads to the SDTS. After having a look at the relevant 
grammars for ACP or APC, it is not hard to imagine the 
conversion principle (the rules of relevant grammar are 
rewritten into the source code by the principles of 
translation theory – as described above). In our approach 
each terminal is „packed up” to the corresponding PAML 
element (i.e. the PAML elements are output symbols of a 
translation grammar extending the GAPC/ACP grammar with 
a set of output symbols and translation rules of the same 
form as the GAPC/ACP ones provided that for each terminal 
symbol the rules are extended with corresponding PAML 
symbols as an output), before entering a method for a 

given non-terminal symbol the starting element is written 
and at the moment of returning from the method the 
ending element is written to the output (that is why 
„syntax directed”). Let us illustrate the principle on a 
small example. The ACP rule  

 
encaps → 'encaps' '[' id ']' '(' acpterm ')'                            

 
is rewritten into the code: 
  
    private String encaps(){ 
 
        String start, end, encaps; 
        start = end = encaps = ""; 
 

 symbol = getSymbol(); 
        if (!checkSymbol(symbol, 
ACPTxtSymbol.SYMBOL_ENCAPS)) syntaxError(...); 
         

 symbol = getSymbol(); 
        if (!checkSymbol(symbol, 
ACPTxtSymbol.SYMBOL_LPAR_ID)) syntaxError(...); 
 
        String id = id(); 
 
  //write the corresponding PAML tag, 
//i.e., write the corresponding output symbol 
        start = writeStartPAMLTag(..., id, ... ); 
 
        symbol = getSymbol(); 
        if (!checkSymbol(symbol, 
ACPTxtSymbol.SYMBOL_PPAR_ID))syntaxError(...); 
        symbol = this.acpTxtSymbol.getSymbol(); 
        if (!checkSymbol(symbol, 
ACPTxtSymbol.SYMBOL_LPAR)) syntaxError(...); 
 
        encaps = acpterm(); 

 symbol = getSymbol(); 
        if (!checkSymbol(symbol, 
ACPTxtSymbol.SYMBOL_PPAR))syntaxError(...); 
 
  //write the corresponding PAML tag 
        end = writeEndPAMLTag(...); 
 
        return start + encaps + end; 
    } 
 

When converting from PAML format to its textual 
representation, PATool at first gets the tree structure of 
the source (remark that PAML is a special case of XML 
given by the DTD specification) and from this structure it 
is very easy to obtain relevant textual symbols by 
processing nodes of the structure. As in the previous case, 
for each PAML element there exists a terminal symbol of 
a textual representation and it is clear that each node 
represents some expression (given by sub-nodes). 

In both PAML to text and text to PAML conversion, 
there must be the operator precedence respected by the 
translation. SDTS respects this implicitly due to the 
operator precedence given by grammar rules. Processing 
the PAML tree structure must take care of the operator 
precedence using the other way. For operator nodes, 
action nodes and variables nodes, if the sub-node 
represents the node with higher precedence as the „parent” 
node, there is no conflict. If the precedence of sub-node is 
lower than the precedence of parent node, the expression 
represented by the whole sub-node must be put into the 
parenthesis to make sure that the precedence will be 
preserved also in the textual equivalent of PAML being 
translated. There is an example of the tree structure of a 
PAML specification depicted in Fig. 5. In such a tree 
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structure, internal nodes represent operators and control 
elements, whereas leaves are variables and actions.  
 

 
 

Fig. 5  Tree structure of a PAML specification 
 
Since each node has explicitly defined its acceptable 

child nodes (see the DTD specification), the only thing to 
do is to write the corresponding output symbol when 
processing a particular node (for each node a method is 
implemented), e.g., the ALTCMP element definition 

 
<!ELEMENT ALTCMP 

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+> 
 
may be rewritten into the following (abstract) source code: 

 
processAltCmp(){ 
 childNodes = getChildNodes(); 
 
 for each childNode in childNodes { 
      switch(childNode.type) { 
  case ACTION:    

   write(childNode.value); 
  case VAR: 
   write(childNode.value); 
  case ALTCMP: 
   processAltCmp(); 
  case SEQCMP: 
   processSeqCmp(); 
  case PARCMP: 
   processSeqCmp(); 
  case ENCAPS: 
   processEncaps();  

} 
  if (childNode.last = FALSE) 
   write( „ + “) ; 
 
 } //end of for each cycle 
} //end of method implementation 
 
The conversion of APC and APC PAML formats to 

CSP format requires the conversion of PAML to textual 
format using the principles described above. The 
conversion of ACP and APC textual formats to the CSP is 
described deeply in [1]. This conversion takes an 
advantage of similarity between ACP and CSP algebra, 
and (since ACP and APC are closely related) also the 
APC and CSP similarity (very similar operational 
behavior). To be more exact, ACP and APC specifications 
are „simulated” in CSP.  

The conversions of ACP and APC specifications to 
CSP specification take an advantage of similarities 
between operators (in fact their similar operational 

behaviour and axioms). Firstly we identified closely 
related operators (e.g., CSP external choice ≈ ACP choice, 
CSP interleaving and synchronization ≈ ACP parallel 
composition) and used mechanisms such as temporal 
renaming and synchronization to simulate the effect 
desired. In order to preserve the operator precedence we 
used the parenthesis (ACP, APC and CSP operator 
precedence is different). The conversions are proposed in 
a way, where resulting CSP term is written directly in the 
CWB-NC-like syntax. This should not be an obstacle for 
using a different syntax, since conversion principles are 
general enough and after a slight modification only, the 
translation can be used for any CSP syntax with the base 
CSP operators supported. 

The conversion of ACP to CSP is given by the 
following formal translation function  

T*: TERMACP → TERMCSP 

with its subfunctions: 

Tact: TERMACP → TERMCSP [action translation]  
T+: TERMACP → TERMCSP   [choice translation]                      
T.: TERMACP → TERMCSP   [seq. translation]      
T(): TERMACP → TERMCSP  [parenthesis expr.] 
T||,||_: TERMACP → TERMCSP [interleaving trans.]  
T|: TERMACP → TERMCSP  [communication trans.] 
T∂: TERMACP → TERMCSP   [encapsulation] 

The definitions of the main translation function and its 
subfunctions (in the following we suppose that the reader 
is familiar with the CSP syntax) are as follows: 

Tact[t] = a , ∀a ∈ ACTIONS ∧  a ∉ last(t) ∧ a ∈ t                         
Tact[t] = a → SKIP, ∀a ∈ ACTIONS ∧ a ∈ last(t),  
otherwise a term t could be considered as a deadlocked 
one by a CSP analyzer iff a ∈ last(t) and the term does not 
end with the SKIP constant 
Tact[t] = X, ∀X ∈ VARS ∧  X ∈ t                                    
Tact[δ] = STOP (deadlock)                                                            
Tact[ε] = SKIP (no process, but not deadlock)                                       
Tact[t] = t, otherwise 

T+[t] = T*[x] [] T*[y], iff t = x + y ( [] = external choice, 
i.e., a choice influenced by an environment)                               
T+[t] = t, otherwise 

T.[t] = T*[x]; T*[y] , iff  t = x.y ∧ ( x ∉ ACTIONS ∨  x = δ 
∨  x = ε)                                                                                   
T.[t] =  x → T*[y] , iff x ∈ ACTIONS ∧  t = x.y ∧ x ≠ ε ∧  
x ≠ δ ∧ t = x.y                                                                                     
T.[t] = t, otherwise 

T()[t] = (T*[x]) ,  x ∈ TERMACP ∧  t = (x)                                             
T()[t] = t , otherwise 

T||,||_ [t] = (((T*[x]) ||| (T*[y])) [] ((T*[x][[a1 <- c1, b1 <- 
c1, … an <- cn, bn <- cn ]]) [|{c1, …, cn}|] (T*[y] [[a1 <- c1, 
b1 <- c1, … an <- cn, bn <- cn]]))) , iff t = x||y ∧ γ(a1, b1) = 
c1, … , γ(an, bn) = cn  i.e., communication function γ is 
defined for a1, …, an and b1, …, bn (x contains a1, …, 
an and y contains b1, …, bn). The parenthesis are used to 
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ensure the correct precedence since it may be different in 
ACP and CSP algebras. 
T||,||_[t] = ((T*[x]) ||| (T*[y])) , iff t = x||y and γ is not 
defined for actions contained in x or y, i.e., a resulting 
term is an interleaving. 
T||,||_[ε ||_ x] = STOP 
T||,||_[t] = first(ax) →  (T||,||_ [x||y]) , iff t = a.x||_y ∧ a = 
first(a.x) ∈ ACTIONS ∧  x = REMOVE(first(a.x), a.x), 
where REMOVE(a, z) removes the first occurrence of a 
symbol a from a string z. 

T||,||_[t] = (first(x) →  (T||,||_ [x’||z])) [] (first(y) → ((T||,||_ 
[y’||z]))) , iff t = (x + y)||_z ∧  x’ = REMOVE(first(x), x) 
∧ y’ = REMOVE(first(y), y)          

T||,||_[t] = STOP, iff  t = ε|x ∨ t=x|ε 

T||,||_[t] = t, otherwise (i.e., t does not contain ||_ or ||) 

T|[a|b] = (T*[a] [[a <- c]] [|{c}|] (T*[b][[b <- c]])), ∀a,b 
∈ ACTIONS, iff γ(a,b) = c                                     
T|[a|b] = STOP, ∀a,b ∈ ACTIONS, iff γ(a,b) is not 
defined.                                                                        
T|[x|y]  = (((T*[x] [[A]]) [|{C}|]  (T*[y] [[B]]))) , iff t = 
x|y, A = B = {a1 <- c1, b1 <- c1, … an <- cn, bn <- cn} and 
C = {c1, …, cn} iff γ(a1, b1) = c1, … , γ(an, bn) = cn  i.e., γ 
communication function is defined for a1, …, an and b1, 
…, bn (x contains a1, …, an and y contains b1, …, bn), A = B 
= C = ∅ iff γ is not defined for actions contained in x, y. 

T|[x|(y + z)] = (T|[x|y])  [] (T|[x|z])                                                     
T|[(x + y)|z] = (T|[x|z])  [] (T|[y|z])                                                                          
T|[t] = t, otherwise 

T∂[t] = ((T*(x)) [|αx|] (μ.X(a1→ X [] … [] an→ X)), iff t = 
∂H(x)  ∧ αx – H = {a1, …, an}, where μ  is the CSP 
recursion operator and αx is an alphabet of a process x 
T∂[t] = STOP, iff t = ∂H(x)  ∧ αx – H = ∅                    
T∂[t] = SKIP, iff t = ∂H(ε)                                                 
T∂[t] = t, otherwise 

The main function is defined as a composition of the 
subfunctions, thus  

T*[t] = T()[t] ○ T|[t] ○ T.[t] ○ T||,||_[t] ○ T+[t] ○ Tact[t] ○ 
T∂[t] = T∂[Tact[T+[T||,||_[T.[T|[T()[t]]]]]]], for t ∈ 
TERMACP 

It is not hard to see that the ACP communication is 
simulated by synchronization of actions (with temporal 
renaming in corresponding terms in order to allow the 
actions to be synchronized). Notice that the subfunctions 
of the translation function are also defined explicitly for 
some special terms (e.g., a.x||_y, x|(y + z)…) in order to 
preserve their semantics. This respects the operational 
behaviour of the terms in ACP being simulated by the 
translation to CSP. 

The APC to CSP translation takes advantage of 
similarity between the ACP and APC definition. Let us 
define the translation function  

TAPC*: TERMAPC → TERMCSP 

with subfunctions 

Tact, T+, T., T(), T||,||_, T|||: TERMAPC → TERMCSP 

where Tact, T+, T., T() are defined similarly like in the ACP 
case with respect to the domain of APC terms (which in 
fact is the same as in the case of ACP, except of process 
components). 

If process components are not included in APC 
specification, then T||,||_ is defined as follows: 

T||,||_[t] = ((T*[x]) ||| (T*[y])), iff t = x||y                        
T||,||_[t] = first(x) → ((T*[x’]) ||| (T*[y])), iff t = x||_y ∧ 
|first(x)| = 1 ∧ x’ = REMOVE(first(x), x)                     
T||,||_[t] = (first(x1) → ((T*[x1’]) ||| (T*[y])) [] … [] 
first(xn) → ((T*[xn’]) ||| (T*[y]))), iff  t = x||_y ∧ |first(x)| 
= n, where first(x) = {first(x1), …, first(xn)} ∧ xi’ = 
REMOVE(first(xi), xi), i.e.,  x = (x1 + … + xn)              
T||,||_[t] = t, otherwise, i.e.,  t does not contain || nor ||_ 
and process components. 

If process components are included in APC 
specification, then T||,||_ is slightly modified in order to 
ensure the „non-executability“ of process components 
involved by their definition (it follows from the APC 
definition that process components are „executable“ if and 
only if they are joined together with respect to the π 
composition function and the join defines a full process, 
i.e., π(c1, c2, ..., cn) = p ∧ ci ∈ PC  ∧ p ∈ P, where PC is 
a set of process components and P is a set of processes). 
The translation of process components exploits the fact, 
that their form is the same as the form of a process defined 
by π composition. Remark that if ||| is used in APC terms 
below, then  ||| represents π composition, if ||| is used in 
CSP terms, the meaning is interleaving (as in CSP terms 
above).   

T||,||_[t] = (((TAPC*[x]) [|{C ∪ Z}|] 
(TAPC*[y]))[[*_componentAction<-*,  
C_componentAction<-C ]]), iff t = x||y ∨ t = x ||| y ∧ c = 
π(c1, c2) ∧ Z = set of actions of the components c1, c2 
(renamed from the from act_componentAction to act) ∧  x 
contains c1 and y contains c2. By *_componentAction<-*  
we mean renaming of all actions of components c1 and c2 
(removing the „_componentAction“ suffix). C is a set of 
all actions, which are included in both x and y and 
renamed from the form act_componentAction to act. This 
renaming is given by C_componentAction<-C. The 
translation may be extended to the case of more 
components contained in x and y in a very intuitive way       
T||,||_[t] = ((TAPC*[x]) [|{}|] (TAPC*[y])), iff t = x||y ∨ t = x 
||| y ∧ π is not defined or x and y do not contain the 
components, for which π is defined. 
T||,||_[t] = first(x) → (TAPC*[x’||y]),  iff |first(x)| = 1, t = 
x||_y ∧ x’ = REMOVE(first(x), x) 
T||,||_[t] = (first(x1) → (TAPC*[x1’||y]) [] … [] first(xn) → 
(TAPC*[xn’||y])), iff t = x||_y ∧ |first(x)| = n, where first(x) 
= {first(x1), …, first(xn)} ∧ xi’ = REMOVE(first(xi), xi), 
i.e., x = (x1 + … + xn) 
T||,||_[t] = t, otherwise, i.e., t does not contain || or ||_        

T|||[x|||y] = T||,||_[x ||| y]  ∀x,y ∈ TERMAPC                        
T|||[t] = t, other (i.e., t does not contain |||) 
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The main function is defined as a composition of the 
subfunctions, thus: 

TAPC*[t] = T()[t] ○ T|||[t] ○ T.[t] ○ T||,||_[t] ○ T+[t] ○ Tact[t] 
= Tact[T+[T||,||_[T.[T||| [T()[t]]]]]],  for t ∈ TERMAPC 

Since CSP does not contain a concept of non-
executing actions and the only valid actions are those, 
which do not have to be combined together to execute (in 
contrast to actions of process components in ACP), there 
is no way to simulate this behaviour at the syntactical 
level. This justifies the approach chosen to denote such 
actions with the „_componentAction” suffix to signal that 
such an action is not executable itself. At the semantic 
level it is possible to define logical expressions to 
recognize actions with the suffix as deadlocked ones for 
CSP analyzer. 

4. EXAMPLE 

In this section we briefly demonstrate some of the 
PATool abilities of format conversions which allow the 
FDT integration and specification analysis. Suppose we 
have created the ACP specification (Fig. 6) of a simple 
protocol. In order to analyze the specification we have two 
possible ways how to use the PATool – either translate it 
into a Petri net (PN) and take advantages of PN analysis or 
translate it into a CSP specification and exploit a CSP 
analyzer for an algebraic analysis. PN or CSP 
specifications are the outputs of PATool and these 
specifications may be subsequently analyzed using a 
convenient external tool, e.g. the CWB-NC tool integrated 
with PATool.   

 

 
 

Fig. 6  ACP textual specification 
 
 
Let us firstly convert the specification into a Petri net - 

to this end we convert the specification (Fig. 7) to a PN 
using its corresponding PAML format (Fig. 8) as an 
intermediate step, which is used by the ACP2PETRI tool 
(note the simplicity of original specification compared to 
the equivalent PAML specification). 

PATool provides the file to file or the editor content to 
file conversion. This functionality is allowed due to user’s 
possible modifications to the file originally loaded. When 

converting to PAML, the top-down parsing is used, since 
the specification is given by the deterministic grammar 
GACP of type LL(1) and each input terminal symbol is 
wrapped into its corresponding PAML element (Fig. 8). 

 
 

 
 

Fig. 7  Conversion of ACP textual to PAML format 
 
 

 
 

Fig. 8  Resulting specification in the PAML format 
 
 

After the conversion, the ACP2PETRI tool can be 
started directly from the PATool environment (Fig. 9), 
with the PAML specification supplied (Fig. 8) as an input 
producing a PN semantically corresponding to the original 
ACP specification. 

After the ACP2PETRI tool processing has been 
performed (Fig. 9), the output is a PN in the PNML format 
(the output file generated by the ACP2PETRI tool) 
corresponding to the original ACP textual specification 
and thus we are able to analyse the specification with 
some of available Petri net tools. If an analysis by 
algebraic means is preferred (the second way of analysis 
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of the original ACP specification), PATool allows to 
transform the specification (in textual or PAML format) 
into its corresponding CSP notation (Fig. 11) using the 
formal translation function T*[] and use an external tool 
subsequently (integrated CWB-NC or any other tool 
supporting the CWB-NC-like syntax of CSP 
specifications). 

 

 
 

Fig. 9  ACP2PETRI tool processing 
 
 

 
 

Fig. 10  Conversion of ACP specification to CSP 
 
 

 
 

Fig. 11  Resulting CSP specification 
 

5. CONCLUSIONS 

In this paper we described the PATool (a process 
algebra tool with FDT integration support) briefly. The 
main contribution of the tool to system modeling and 

formal analysis is the multiple process algebras support 
allowing the user for writing specifications and 
cooperating with other FDT integration tools, converting 
these specifications to appropriate formats and providing 
it by one unifying interface. We also briefly discussed 
tool’s main functionalities by describing its user 
interfaces, supported format conversions and principles of 
integration. The typical usage of the tool is demonstrated 
by examples. We did not discuss some relevant topics 
related to PATool – such as cooperating tools and their 
principles. These may be found in [5, 8, 9]. 

Since the tool is under constant development, there are 
many ideas for further improvements. Currently, PATool 
does not support any of ACP or APC analyzers and 
simulators (an issue which is solved partially by 
converting such a specification to CSP and using the 
external tool). Some minor „aesthetical” improvements 
are also proposed, such as dividing the tool’s 
functionalities into independent threads or coloring the 
keywords of specifications. The PATool has an ambition 
to integrate significant process algebras and offer 
functionalities, which are not offered by other tools and 
provide the unifying interface. There is also an ambition 
to support more FDT integration tools (as they are 
developed). 
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