
Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010, 59–67 59

ISSN 1335-8243 © 2010 FEI TUKE

PATOOL – A TOOL FOR DESIGN AND ANALYSIS OF DISCRETE SYSTEMS USING
PROCESS ALGEBRAS WITH FDT INTEGRATION SUPPORT

Slavomír ŠIMOŇÁK, Ivan PEŤKO
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4220,
e-mail: slavomir.simonak@tuke.sk; ivan.petko@toryconsulting.sk

ABSTRACT
This paper deals with PATool – a process algebra tool with FDT integration support. We discuss main features, used formats,

principles of conversions and cooperation with other tools in order to provide a platform for the design and analysis of systems using
process algebras. PATool is based on former work in the FDT integration area, which formed the basic idea and requirements to the
tool. As a result, PATool currently offers a simple interface for FDT integration tools and process algebra specifications with
corresponding interchange formats transformations. A typical use is demonstrated by examples.

Keywords: process algebras, ACP, APC, CSP, Petri nets, formal methods

1. INTRODUCTION

One of the many available definitions states that
formal description techniques (FDT or simply formal
methods) are formally sound (mathematically-based)
techniques for the specification, development and
verification of software and hardware systems. The
principal aim of FDT usage is to enable designers to
construct real-life size systems that work correctly with
respect to requirements.

Process algebras [2], [3], [14], [15] are very
significant part of FDT offering algebraic methods for
description and analysis of discrete systems. Many tools
were developed to support work with process algebras [5]
and the majority of them support the specific process
algebra only. In order to integrate process algebras and
other FDT a number of FDT integration techniques and
tools were developed (e.g., integration of process algebras
and Petri nets [6]). Reasons mentioned above led us to the
idea to develop a tool, with a support for various process
algebras and some additional formal methods as well.

In this paper, we introduce the PATool – a tool for
process algebras including also some FDT integration
tools support. Since many significant tools exist already
there, each of them supporting one specific process
algebra, it’s not necessary to develop similar tool. Instead,
a different approach is used in PATool development.
Starting from FDT integration tools supported
(ACP2PETRI [9] and PETRI2APC [8]) it is not hard to
see that there is a need for support of process algebras
ACP (Algebra of Communicating Processes) [2] and APC
(Algebra of Process Components) [4].

The main contribution of PATool to a process of
system description and analysis is its ability to convert
formats used by external tools. PATool thus represents an
interface to multiple process algebra notations.
Considering a built-in interface between ACP/APC and
CSP (Communicating Sequential Processes) [3], very
interesting analysis techniques implemented in external
tools (e.g., CWB-NC [5]) are available now for analysis of
ACP and APC specifications. By this means, PATool
takes the advantage of great intellectual work and years of
active research devoted to development of such tools.

2. PATOOL OVERVIEW

PATool (Process Algebras Tool) principles were
firstly proposed in [1] in order to give a formal
background for the tool supporting process algebras and
FDT integration. The primary motivation was the absence
of a tool which supports multiple process algebras and
formats of existing FDT integration tools. There are many
tools developed to this day, each supporting the only one
specific formalism (for instance CWB/CCS (Calculus of
Communicating Systems) [10], FDR2/CSP [11], PSF
Toolkit/ACP [12], PEPA Tools/PEPA (Performance
Evaluation Process Algebra) [13], etc.) so PATool has not
an ambition to offer similar properties for more process
algebras. Instead of it, PATool cooperates with existing
FDT integration tools by means of conversions of their
formats, offers process algebras transformations in order
to use significant properties of professional external tools,
provides an interface between their representations and
integrates formalisms used by means of format
conversions and thus allows the user to use specifications
written in any of supported notations.

Currently PATool provides standard text editing
functionalities, (i.e., load, save, new, cut, copy…) and
format conversions, supporting the following file formats:

• CSP format – textual representation of the CSP
algebra, used by CWB-NC [5],

• ACP textual and PAML (Process Algebras
Markup Language) format – textual and PAML
representation of ACP specifications,

• APC textual and PAML format – textual and
PAML representation of APC specifications.

Cooperating independent FDT integration and external
analysis tools mentioned above, PATool interacts with,
are ACP2PETRI [9], PETRI2APC [8] and CWB-NC [5].
PATool also provides a direct execution of external tools
with converted specifications. It also provides a GUI
functionality to originally non-GUI tools with a built-in
specification syntax check. To provide the interface
between cooperating tools and user specifications, there
are four types of conversions available:

60 PATool – A Tool for Design and Analysis of Discrete Systems Using Process Algebras with FDT Integration Support

ISSN 1335-8243 © 2010 FEI TUKE

• ACP in textual format to ACP in PAML format
• ACP in PAML (an input of ACP2PETRI) format

to ACP in textual format
• APC in PAML (an output of PETRI2APC)

format to APC in textual format
• ACP and APC textual and PAML formats to CSP

format.

3. PATOOL PRINCIPLES

In the following, PATool principles are considered
briefly in order to provide main ideas behind the tool.
Since the tool is based on some of the results obtained in
FDT integration area, we refer to [1], [4], [6], [8] and [9]
for a formal background. In [1] format definitions and
conversions are described in details (PAML formats are
defined by DTD specifications and textual formats are
defined by formal grammars).

3.1. Interfaces

The main interface which PATool provides is an
interface between the user and specifications in ACP
(textual or PAML), APC (textual or PAML) and CSP
(textual) - note that CSP specifications can be obtained
from those written in ACP or APC (both textual or PAML
form). This interface can also be viewed as three separate
sub-interfaces (Fig. 1).

Fig. 1 PATool interface

Since the ACP2PETRI input format is an ACP PAML

(XML-based) specification, PATool allows to define the
specification in much simpler (textual) mode, i.e., it
provides the conversion from ACP textual format to ACP
PAML format and vice versa. User may interactively
specify and modify the specification, run ACP2PETRI
directly from PATool and evaluate its output.

Fig. 2 PATool/ACP2PETRI interface

Note that the output of ACP2PETRI is the PNML
(Petri Net Markup Language) specification of
corresponding Petri Net. PATool displays the tool output,
so the user can see the ACP2PETRI messages generated
during the processing.

Unlike the ACP2PETRI tool, PETRI2APC takes the
PNML specification as an input and generates the APC
specification in PAML format. This is quite complicated
to read and therefore PATool converts the specification

generated to APC textual format, which is much simpler
to understand. It is possible to run the PETRI2APC
directly from PATool, (PETRI2APC generated messages
are displayed), automatically load the APC PAML output
and convert it to textual form. Thus, the whole activity can
be done again from the PATool environment.

Fig. 3 PATool/PETRI2APC interface

Once the user has obtained or created ACP or APC
specification in PAML or textual format (as an output of
PETRI2APC or written by the user in order to analyze it),
or has written the CSP specification directly, he is able to
analyze it by an external tool using the conversion into the
CWB-NC’s CSP notation (or, essentially, by any tool
which supports the CWB-NC’s general syntax for CSP
algebra). Every ACP or APC specification in both textual
and PAML format can be converted into the
corresponding CSP specification (with some restrictions
given in [1]) using PATool and thus analysis of a
specification in any of the formats supported is possible.

Fig. 4 PATool/CWB-NC interface (analysis)

3.2. Used formats

Each file format PATool supports has its own
predefined structure depending on the specific type.
Basically formats supported can be subdivided into two
types – textual and XML-based. Predefined PATool file
formats [1] are acp (file with a textual representation of
ACP specification), apc (file with a textual representation
of APC specification), paml (XML file with respect to
given DTD specification with representation of ACP or
APC algebra).

The textual format of ACP algebra [1] was defined by
the formal grammar [7] in order to provide a simple
mechanism for creating (writing) ACP specifications. A
syntax checking feature is also provided to support writing
ACP specifications. Such a specification can be stored in a
file with any extension, although .acp is preferred.

Similarly, the APC textual representation is also
defined by the formal grammar to simplify readability of
APC specifications. The ACP and APC PAML formats
[1] given by the particular DTD specifications allow to
store specifications equivalent to those in textual form, but
more suitable for machine processing.

The used formats are defined as follows.
Def.: Let GACP be a context-free grammar

GACP = (NACP, TACP, PACP, start), where

Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010 61

ISSN 1335-8243 © 2010 FEI TUKE

NACP = {start, gamma, encset, acpequation, act, var,
apcterm, acpeq, A, B, C, D, actions, encaps, actionSet,
actt, id} is a set of non-terminal symbols, where start is a
starting non-terminal symbol.

TACP = {'gamma', '(', ')', ',' ,'=', 'encset', 'encaps', '[', ']',
'+', '||', '.', 'delta', 'epsilon' } is a set of terminal symbols.

PACP is a set of grammar rules in form Α → β (written in
extended Backus-Naur form), where A is a non-terminal
symbol and β is a regular expression over the set of
terminal and non-terminal symbols, defined as:

PACP:
start → gamma encset acpequation
gamma → ['gamma' '(' act ',' act ')' '=' act gamma]
encset → ['encset' '[' id ']' '(' actionSet ')' encset]
acpequation → var '=' acpterm acpeq
acpeq → [acpequation]
acpterm → A
A → B['+' A]
B → C['||' B]
C → D['.' C]
D → encaps | '(' A ')' | act | var
act → (a| .. |z)+(0| … |9)*(a| .. |z|A| …|Z|_)* | 'delta' |
'epsilon'
actionSet → [act actions]
actions → [',' actt]
actt → act actions
var → (A| .. |Z)+(0| … |9)*(a| .. |z|A| …|Z|_)*
encaps → 'encaps' '[' id ']' '(' acpterm ')'
id → act | var

Notice that the non-terminals act and var are defined
by regular expressions [7]. The rules in the set PACP
preserve the following precedence convention:

Def.: Let p: O → N be a precedence function, where
O is a set of ACP operators and N is a set of natural
numbers. For ACP algebra we have

O = {+, ., ||, ∂H(), ()},

where + is alternative composition, . is sequential
composition, || is parallel composition, ∂H() is
encapsulation and () stands for bracketing. Then

p(+) < p(||) < p(.) < p(()) = p(∂H())

In our grammar, +, . and || are identical to their

syntactic equivalents in ACP, encset[id] is a definition of
encapsulation set, i.e., encaps[id] stands for ∂id(), gamma
represents a binary communication function γ.

Similarly we define the APC textual form.

Def.: Let GAPC be a context-free grammar

GAPC = (NAPC, TAPC, PAPC, start), where

NAPC = {start, pidef, apcequation, componentList, process,
var, proc, componentStart, componentEnd, apcterm,
comp, eqcomponent, eq, apceq, A, B, C, D, act, id} is a

set of non-terminal symbols, and start is a starting non-
terminal symbol.

TAPC = {'pi', '(', ')', ',','=', '[', ']', '+', '||', '.', 'delta', 'epsilon',
'#', '{', '}'} is a set of terminal symbols.

PAPC:
start → pidef apcequation
pidef → ['pi' '(' componentList ')' '=' process pidef]
process → proc | var '=' proc
proc → apcterm
componentList → componentStart apcterm componentEnd
',' componentStart apcterm componentEnd comp
comp → [',' componentStart apcterm componentEnd
comp]
apcequation → eqcomponent apceq | eq apceq
eq → var '=' apcterm
eqcomponent → componentStart eq componentEnd
apceq → [apcequation]
apcterm → A
A → B['+' A]
B → C['||' B]
C→ D['.' C]
D → '(' A ')' | act | var | componentStart A componentEnd
componentStart → '#' '[' id ']' '{'
componentEnd → '}'
act → (a| .. |z)+(0| … |9)*(a| .. |z|A| …|Z|_)*| 'delta' |
'epsilon'
var → (A| .. |Z)+(0| … |9)*(a| .. |z|A| …|Z|_)*
id → act|var

The APC precedence function is defined such that

p(+) < p(||) < p(.) < p(())

Notice, that the ACP and APC grammars are very
simple deterministic context-free grammars of type LL(1).

In order to support PAML specifications, the
following DTD definitions representing XML tree
structures are defined:

ACP PAML format:

<!-- ACP DTD for process specifications -->
<!ELEMENT ACPSPEC

(GAMMA*,ENCSET*,ACPEQUATION+)>
<!ELEMENT ACPEQUATION (VAR,ACPTERM)>
<!ATTLIST ACPEQUATION INIT CDATA #REQUIRED>
<!ELEMENT ACPTERM

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)>
<!ELEMENT ALTCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+>
<!ELEMENT SEQCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+>
<!ELEMENT PARCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+>
<!ELEMENT ENCAPS

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)>
<!ATTLIST ENCAPS ENCID CDATA #REQUIRED>
<!ELEMENT ACTION EMPTY>
<!ATTLIST ACTION NAME CDATA #REQUIRED>
<!ELEMENT VAR EMPTY>
<!ATTLIST VAR NAME CDATA #REQUIRED>
<!ELEMENT GAMMA EMPTY>
<!ATTLIST GAMMA ACT1 CDATA #REQUIRED ACT2

CDATA #REQUIRED RES CDATA #REQUIRED>
<!ELEMENT ENCSET (ACTION*)>
<!ATTLIST ENCSET ENCID CDATA #REQUIRED>

62 PATool – A Tool for Design and Analysis of Discrete Systems Using Process Algebras with FDT Integration Support

ISSN 1335-8243 © 2010 FEI TUKE

APC PAML format:
<!-- APC DTD for process specifications -->
<!ELEMENT APCSPEC

(PIDEFINITION*,APCEQUATION+)>
<!ELEMENT APCEQUATION (VAR,APCTERM)>
<!ATTLIST APCEQUATION INIT CDATA #REQUIRED

PROC CDATA #IMPLIED >
<!ELEMENT APCTERM

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)>
<!ATTLIST APCTERM PROC CDATA #IMPLIED >
<!ELEMENT ALTCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+>
<!ATTLIST ALTCMP PROC CDATA #IMPLIED >
<!ELEMENT SEQCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+>
<!ATTLIST SEQCMP PROC CDATA #IMPLIED >
<!ELEMENT PARCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR)+>
<!ATTLIST PARCMP PROC CDATA #IMPLIED >
<!ELEMENT ACTION EMPTY>
<!ATTLIST ACTION NAME CDATA #REQUIRED PROC

CDATA #IMPLIED>
<!ELEMENT VAR EMPTY>
<!ATTLIST VAR NAME CDATA #REQUIRED PROC CDATA

#IMPLIED>
<!ELEMENT PIDEFINITION

(COMPONENT,COMPONENT+,RESULT) >
<!ATTLIST PIDEFINITION ID CDATA #REQUIRED >
<!ELEMENT COMPONENT (APCEQUATION|APCTERM) >

<!ELEMENT RESULT (APCEQUATION|APCTERM) >

Since the definitions are intuitive and we suppose
that the reader is familiar with DTD and XML concepts,
we consider them as clear enough. Notice that process and
action names and other syntactical information are
determined by attributes of the specifications.

3.3. Format conversion principles

Since the ACP and APC textual representations are
given by the formal grammars [7], the conversion to their
PAML equivalent is trivial with respect to the formal
translation theory. As noticed above, the ACP and APC
grammars are very simple deterministic context-free
grammars of type LL(1), i.e. a top-down parser reading an
input from left using the only one symbol to determine the
next grammar rule to use may be implemented. In fact,
PATool translation algorithms implement the SDTS
(Syntax Directed Translation Scheme) concept [7], which
is one of possible translation principles of the translation
theory, i.e. for each input terminal symbol there exists an
output terminal symbol. In the real implementation each
non-terminal symbol is represented by a method and each
terminal symbol is represented by the call of lexical
analyzer procedure returning the terminal. When a
particular input terminal symbol is read from the source, a
corresponding output symbol is written to the output. This
leads to the SDTS. After having a look at the relevant
grammars for ACP or APC, it is not hard to imagine the
conversion principle (the rules of relevant grammar are
rewritten into the source code by the principles of
translation theory – as described above). In our approach
each terminal is „packed up” to the corresponding PAML
element (i.e. the PAML elements are output symbols of a
translation grammar extending the GAPC/ACP grammar with
a set of output symbols and translation rules of the same
form as the GAPC/ACP ones provided that for each terminal
symbol the rules are extended with corresponding PAML
symbols as an output), before entering a method for a

given non-terminal symbol the starting element is written
and at the moment of returning from the method the
ending element is written to the output (that is why
„syntax directed”). Let us illustrate the principle on a
small example. The ACP rule

encaps → 'encaps' '[' id ']' '(' acpterm ')'

is rewritten into the code:

 private String encaps(){

 String start, end, encaps;
 start = end = encaps = "";

 symbol = getSymbol();
 if (!checkSymbol(symbol,
ACPTxtSymbol.SYMBOL_ENCAPS)) syntaxError(...);

 symbol = getSymbol();
 if (!checkSymbol(symbol,
ACPTxtSymbol.SYMBOL_LPAR_ID)) syntaxError(...);

 String id = id();

 //write the corresponding PAML tag,
//i.e., write the corresponding output symbol
 start = writeStartPAMLTag(..., id, ...);

 symbol = getSymbol();
 if (!checkSymbol(symbol,
ACPTxtSymbol.SYMBOL_PPAR_ID))syntaxError(...);
 symbol = this.acpTxtSymbol.getSymbol();
 if (!checkSymbol(symbol,
ACPTxtSymbol.SYMBOL_LPAR)) syntaxError(...);

 encaps = acpterm();

 symbol = getSymbol();
 if (!checkSymbol(symbol,
ACPTxtSymbol.SYMBOL_PPAR))syntaxError(...);

 //write the corresponding PAML tag
 end = writeEndPAMLTag(...);

 return start + encaps + end;
 }

When converting from PAML format to its textual
representation, PATool at first gets the tree structure of
the source (remark that PAML is a special case of XML
given by the DTD specification) and from this structure it
is very easy to obtain relevant textual symbols by
processing nodes of the structure. As in the previous case,
for each PAML element there exists a terminal symbol of
a textual representation and it is clear that each node
represents some expression (given by sub-nodes).

In both PAML to text and text to PAML conversion,
there must be the operator precedence respected by the
translation. SDTS respects this implicitly due to the
operator precedence given by grammar rules. Processing
the PAML tree structure must take care of the operator
precedence using the other way. For operator nodes,
action nodes and variables nodes, if the sub-node
represents the node with higher precedence as the „parent”
node, there is no conflict. If the precedence of sub-node is
lower than the precedence of parent node, the expression
represented by the whole sub-node must be put into the
parenthesis to make sure that the precedence will be
preserved also in the textual equivalent of PAML being
translated. There is an example of the tree structure of a
PAML specification depicted in Fig. 5. In such a tree

Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010 63

ISSN 1335-8243 © 2010 FEI TUKE

structure, internal nodes represent operators and control
elements, whereas leaves are variables and actions.

Fig. 5 Tree structure of a PAML specification

Since each node has explicitly defined its acceptable

child nodes (see the DTD specification), the only thing to
do is to write the corresponding output symbol when
processing a particular node (for each node a method is
implemented), e.g., the ALTCMP element definition

<!ELEMENT ALTCMP

(ALTCMP|SEQCMP|PARCMP|ACTION|VAR|ENCAPS)+>

may be rewritten into the following (abstract) source code:

processAltCmp(){
 childNodes = getChildNodes();

 for each childNode in childNodes {
 switch(childNode.type) {
 case ACTION:

 write(childNode.value);
 case VAR:
 write(childNode.value);
 case ALTCMP:
 processAltCmp();
 case SEQCMP:
 processSeqCmp();
 case PARCMP:
 processSeqCmp();
 case ENCAPS:
 processEncaps();

}
 if (childNode.last = FALSE)
 write(„ + “) ;

 } //end of for each cycle
} //end of method implementation

The conversion of APC and APC PAML formats to

CSP format requires the conversion of PAML to textual
format using the principles described above. The
conversion of ACP and APC textual formats to the CSP is
described deeply in [1]. This conversion takes an
advantage of similarity between ACP and CSP algebra,
and (since ACP and APC are closely related) also the
APC and CSP similarity (very similar operational
behavior). To be more exact, ACP and APC specifications
are „simulated” in CSP.

The conversions of ACP and APC specifications to
CSP specification take an advantage of similarities
between operators (in fact their similar operational

behaviour and axioms). Firstly we identified closely
related operators (e.g., CSP external choice ≈ ACP choice,
CSP interleaving and synchronization ≈ ACP parallel
composition) and used mechanisms such as temporal
renaming and synchronization to simulate the effect
desired. In order to preserve the operator precedence we
used the parenthesis (ACP, APC and CSP operator
precedence is different). The conversions are proposed in
a way, where resulting CSP term is written directly in the
CWB-NC-like syntax. This should not be an obstacle for
using a different syntax, since conversion principles are
general enough and after a slight modification only, the
translation can be used for any CSP syntax with the base
CSP operators supported.

The conversion of ACP to CSP is given by the
following formal translation function

T*: TERMACP → TERMCSP

with its subfunctions:

Tact: TERMACP → TERMCSP [action translation]
T+: TERMACP → TERMCSP [choice translation]
T.: TERMACP → TERMCSP [seq. translation]
T(): TERMACP → TERMCSP [parenthesis expr.]
T||,||_: TERMACP → TERMCSP [interleaving trans.]
T|: TERMACP → TERMCSP [communication trans.]
T∂: TERMACP → TERMCSP [encapsulation]

The definitions of the main translation function and its
subfunctions (in the following we suppose that the reader
is familiar with the CSP syntax) are as follows:

Tact[t] = a , ∀a ∈ ACTIONS ∧ a ∉ last(t) ∧ a ∈ t
Tact[t] = a → SKIP, ∀a ∈ ACTIONS ∧ a ∈ last(t),
otherwise a term t could be considered as a deadlocked
one by a CSP analyzer iff a ∈ last(t) and the term does not
end with the SKIP constant
Tact[t] = X, ∀X ∈ VARS ∧ X ∈ t
Tact[δ] = STOP (deadlock)
Tact[ε] = SKIP (no process, but not deadlock)
Tact[t] = t, otherwise

T+[t] = T*[x] [] T*[y], iff t = x + y ([] = external choice,
i.e., a choice influenced by an environment)
T+[t] = t, otherwise

T.[t] = T*[x]; T*[y] , iff t = x.y ∧ (x ∉ ACTIONS ∨ x = δ
∨ x = ε)
T.[t] = x → T*[y] , iff x ∈ ACTIONS ∧ t = x.y ∧ x ≠ ε ∧
x ≠ δ ∧ t = x.y
T.[t] = t, otherwise

T()[t] = (T*[x]) , x ∈ TERMACP ∧ t = (x)
T()[t] = t , otherwise

T||,||_ [t] = (((T*[x]) ||| (T*[y])) [] ((T*[x][[a1 <- c1, b1 <-
c1, … an <- cn, bn <- cn]]) [|{c1, …, cn}|] (T*[y] [[a1 <- c1,
b1 <- c1, … an <- cn, bn <- cn]]))) , iff t = x||y ∧ γ(a1, b1) =
c1, … , γ(an, bn) = cn i.e., communication function γ is
defined for a1, …, an and b1, …, bn (x contains a1, …,
an and y contains b1, …, bn). The parenthesis are used to

64 PATool – A Tool for Design and Analysis of Discrete Systems Using Process Algebras with FDT Integration Support

ISSN 1335-8243 © 2010 FEI TUKE

ensure the correct precedence since it may be different in
ACP and CSP algebras.
T||,||_[t] = ((T*[x]) ||| (T*[y])) , iff t = x||y and γ is not
defined for actions contained in x or y, i.e., a resulting
term is an interleaving.
T||,||_[ε ||_ x] = STOP
T||,||_[t] = first(ax) → (T||,||_ [x||y]) , iff t = a.x||_y ∧ a =
first(a.x) ∈ ACTIONS ∧ x = REMOVE(first(a.x), a.x),
where REMOVE(a, z) removes the first occurrence of a
symbol a from a string z.

T||,||_[t] = (first(x) → (T||,||_ [x’||z])) [] (first(y) → ((T||,||_
[y’||z]))) , iff t = (x + y)||_z ∧ x’ = REMOVE(first(x), x)
∧ y’ = REMOVE(first(y), y)

T||,||_[t] = STOP, iff t = ε|x ∨ t=x|ε

T||,||_[t] = t, otherwise (i.e., t does not contain ||_ or ||)

T|[a|b] = (T*[a] [[a <- c]] [|{c}|] (T*[b][[b <- c]])), ∀a,b
∈ ACTIONS, iff γ(a,b) = c
T|[a|b] = STOP, ∀a,b ∈ ACTIONS, iff γ(a,b) is not
defined.
T|[x|y] = (((T*[x] [[A]]) [|{C}|] (T*[y] [[B]]))) , iff t =
x|y, A = B = {a1 <- c1, b1 <- c1, … an <- cn, bn <- cn} and
C = {c1, …, cn} iff γ(a1, b1) = c1, … , γ(an, bn) = cn i.e., γ
communication function is defined for a1, …, an and b1,
…, bn (x contains a1, …, an and y contains b1, …, bn), A = B
= C = ∅ iff γ is not defined for actions contained in x, y.

T|[x|(y + z)] = (T|[x|y]) [] (T|[x|z])
T|[(x + y)|z] = (T|[x|z]) [] (T|[y|z])
T|[t] = t, otherwise

T∂[t] = ((T*(x)) [|αx|] (μ.X(a1→ X [] … [] an→ X)), iff t =
∂H(x) ∧ αx – H = {a1, …, an}, where μ is the CSP
recursion operator and αx is an alphabet of a process x
T∂[t] = STOP, iff t = ∂H(x) ∧ αx – H = ∅
T∂[t] = SKIP, iff t = ∂H(ε)
T∂[t] = t, otherwise

The main function is defined as a composition of the
subfunctions, thus

T*[t] = T()[t] ○ T|[t] ○ T.[t] ○ T||,||_[t] ○ T+[t] ○ Tact[t] ○
T∂[t] = T∂[Tact[T+[T||,||_[T.[T|[T()[t]]]]]]], for t ∈
TERMACP

It is not hard to see that the ACP communication is
simulated by synchronization of actions (with temporal
renaming in corresponding terms in order to allow the
actions to be synchronized). Notice that the subfunctions
of the translation function are also defined explicitly for
some special terms (e.g., a.x||_y, x|(y + z)…) in order to
preserve their semantics. This respects the operational
behaviour of the terms in ACP being simulated by the
translation to CSP.

The APC to CSP translation takes advantage of
similarity between the ACP and APC definition. Let us
define the translation function

TAPC*: TERMAPC → TERMCSP

with subfunctions

Tact, T+, T., T(), T||,||_, T|||: TERMAPC → TERMCSP

where Tact, T+, T., T() are defined similarly like in the ACP
case with respect to the domain of APC terms (which in
fact is the same as in the case of ACP, except of process
components).

If process components are not included in APC
specification, then T||,||_ is defined as follows:

T||,||_[t] = ((T*[x]) ||| (T*[y])), iff t = x||y
T||,||_[t] = first(x) → ((T*[x’]) ||| (T*[y])), iff t = x||_y ∧
|first(x)| = 1 ∧ x’ = REMOVE(first(x), x)
T||,||_[t] = (first(x1) → ((T*[x1’]) ||| (T*[y])) [] … []
first(xn) → ((T*[xn’]) ||| (T*[y]))), iff t = x||_y ∧ |first(x)|
= n, where first(x) = {first(x1), …, first(xn)} ∧ xi’ =
REMOVE(first(xi), xi), i.e., x = (x1 + … + xn)
T||,||_[t] = t, otherwise, i.e., t does not contain || nor ||_
and process components.

If process components are included in APC
specification, then T||,||_ is slightly modified in order to
ensure the „non-executability“ of process components
involved by their definition (it follows from the APC
definition that process components are „executable“ if and
only if they are joined together with respect to the π
composition function and the join defines a full process,
i.e., π(c1, c2, ..., cn) = p ∧ ci ∈ PC ∧ p ∈ P, where PC is
a set of process components and P is a set of processes).
The translation of process components exploits the fact,
that their form is the same as the form of a process defined
by π composition. Remark that if ||| is used in APC terms
below, then ||| represents π composition, if ||| is used in
CSP terms, the meaning is interleaving (as in CSP terms
above).

T||,||_[t] = (((TAPC*[x]) [|{C ∪ Z}|]
(TAPC*[y]))[[*_componentAction<-*,
C_componentAction<-C]]), iff t = x||y ∨ t = x ||| y ∧ c =
π(c1, c2) ∧ Z = set of actions of the components c1, c2
(renamed from the from act_componentAction to act) ∧ x
contains c1 and y contains c2. By *_componentAction<-*
we mean renaming of all actions of components c1 and c2
(removing the „_componentAction“ suffix). C is a set of
all actions, which are included in both x and y and
renamed from the form act_componentAction to act. This
renaming is given by C_componentAction<-C. The
translation may be extended to the case of more
components contained in x and y in a very intuitive way
T||,||_[t] = ((TAPC*[x]) [|{}|] (TAPC*[y])), iff t = x||y ∨ t = x
||| y ∧ π is not defined or x and y do not contain the
components, for which π is defined.
T||,||_[t] = first(x) → (TAPC*[x’||y]), iff |first(x)| = 1, t =
x||_y ∧ x’ = REMOVE(first(x), x)
T||,||_[t] = (first(x1) → (TAPC*[x1’||y]) [] … [] first(xn) →
(TAPC*[xn’||y])), iff t = x||_y ∧ |first(x)| = n, where first(x)
= {first(x1), …, first(xn)} ∧ xi’ = REMOVE(first(xi), xi),
i.e., x = (x1 + … + xn)
T||,||_[t] = t, otherwise, i.e., t does not contain || or ||_

T|||[x|||y] = T||,||_[x ||| y] ∀x,y ∈ TERMAPC
T|||[t] = t, other (i.e., t does not contain |||)

Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010 65

ISSN 1335-8243 © 2010 FEI TUKE

The main function is defined as a composition of the
subfunctions, thus:

TAPC*[t] = T()[t] ○ T|||[t] ○ T.[t] ○ T||,||_[t] ○ T+[t] ○ Tact[t]
= Tact[T+[T||,||_[T.[T||| [T()[t]]]]]], for t ∈ TERMAPC

Since CSP does not contain a concept of non-
executing actions and the only valid actions are those,
which do not have to be combined together to execute (in
contrast to actions of process components in ACP), there
is no way to simulate this behaviour at the syntactical
level. This justifies the approach chosen to denote such
actions with the „_componentAction” suffix to signal that
such an action is not executable itself. At the semantic
level it is possible to define logical expressions to
recognize actions with the suffix as deadlocked ones for
CSP analyzer.

4. EXAMPLE

In this section we briefly demonstrate some of the
PATool abilities of format conversions which allow the
FDT integration and specification analysis. Suppose we
have created the ACP specification (Fig. 6) of a simple
protocol. In order to analyze the specification we have two
possible ways how to use the PATool – either translate it
into a Petri net (PN) and take advantages of PN analysis or
translate it into a CSP specification and exploit a CSP
analyzer for an algebraic analysis. PN or CSP
specifications are the outputs of PATool and these
specifications may be subsequently analyzed using a
convenient external tool, e.g. the CWB-NC tool integrated
with PATool.

Fig. 6 ACP textual specification

Let us firstly convert the specification into a Petri net -

to this end we convert the specification (Fig. 7) to a PN
using its corresponding PAML format (Fig. 8) as an
intermediate step, which is used by the ACP2PETRI tool
(note the simplicity of original specification compared to
the equivalent PAML specification).

PATool provides the file to file or the editor content to
file conversion. This functionality is allowed due to user’s
possible modifications to the file originally loaded. When

converting to PAML, the top-down parsing is used, since
the specification is given by the deterministic grammar
GACP of type LL(1) and each input terminal symbol is
wrapped into its corresponding PAML element (Fig. 8).

Fig. 7 Conversion of ACP textual to PAML format

Fig. 8 Resulting specification in the PAML format

After the conversion, the ACP2PETRI tool can be
started directly from the PATool environment (Fig. 9),
with the PAML specification supplied (Fig. 8) as an input
producing a PN semantically corresponding to the original
ACP specification.

After the ACP2PETRI tool processing has been
performed (Fig. 9), the output is a PN in the PNML format
(the output file generated by the ACP2PETRI tool)
corresponding to the original ACP textual specification
and thus we are able to analyse the specification with
some of available Petri net tools. If an analysis by
algebraic means is preferred (the second way of analysis

66 PATool – A Tool for Design and Analysis of Discrete Systems Using Process Algebras with FDT Integration Support

ISSN 1335-8243 © 2010 FEI TUKE

of the original ACP specification), PATool allows to
transform the specification (in textual or PAML format)
into its corresponding CSP notation (Fig. 11) using the
formal translation function T*[] and use an external tool
subsequently (integrated CWB-NC or any other tool
supporting the CWB-NC-like syntax of CSP
specifications).

Fig. 9 ACP2PETRI tool processing

Fig. 10 Conversion of ACP specification to CSP

Fig. 11 Resulting CSP specification

5. CONCLUSIONS

In this paper we described the PATool (a process
algebra tool with FDT integration support) briefly. The
main contribution of the tool to system modeling and

formal analysis is the multiple process algebras support
allowing the user for writing specifications and
cooperating with other FDT integration tools, converting
these specifications to appropriate formats and providing
it by one unifying interface. We also briefly discussed
tool’s main functionalities by describing its user
interfaces, supported format conversions and principles of
integration. The typical usage of the tool is demonstrated
by examples. We did not discuss some relevant topics
related to PATool – such as cooperating tools and their
principles. These may be found in [5, 8, 9].

Since the tool is under constant development, there are
many ideas for further improvements. Currently, PATool
does not support any of ACP or APC analyzers and
simulators (an issue which is solved partially by
converting such a specification to CSP and using the
external tool). Some minor „aesthetical” improvements
are also proposed, such as dividing the tool’s
functionalities into independent threads or coloring the
keywords of specifications. The PATool has an ambition
to integrate significant process algebras and offer
functionalities, which are not offered by other tools and
provide the unifying interface. There is also an ambition
to support more FDT integration tools (as they are
developed).

REFERENCES

[1] PEŤKO, I.: The environment for design and analysis
of discrete systems based on formal methods,
Diploma thesis, Košice, Technical University of
Košice, Faculty of electrical engineering and
informatics, 2008, 104 pages (in Slovak)

[2] BAETEN, J.C.M. - WEIJLAND, W.P.: Process
Algebra. Cambridge University Press, 1990, 247
pages, ISBN 0521400430

[3] HOARE, C.A.R.: Communicating Sequential
Processes [online], 2004, 238 pages,
http://www.usingcsp.com/cspbook.pdf

[4] ŠIMOŇÁK, S. - HUDÁK, Š. - KOREČKO, Š.: APC
Semantics for Petri Nets, Informatica, Volume 32, 3,
2008, pp. 253-260, ISSN 1854-3871, ISSN 0350-
5596, http://www.informatica.si/

[5] The Concurrency Workbench of New Century
(CWB-NC) [online], Department of Computer
Science, SUNY at Stony Brook, 2000,
http://www.cs.sunysb.edu/~cwb/

[6] ŠIMOŇÁK, S.: FDT integration using
transformation of Petri nets and process algebras,
Dissertation thesis, Košice, Technical University of
Košice, Faculty of Electrical Engineering and
Informatics, 2003, 112 pages (in Slovak)

[7] KOLLÁR, J. - HAVLICE, Z.: Technology of
language systems, Košice, Technical University of
Košice, Faculty of electrical engineering and
informatics, 2004, 183 pages. ISBN 80-89066-12-7
(in Slovak)

[8] ŠIMOŇÁK, S. - HUDÁK, Š. - KOREČKO, Š.:
PETRI2APC: towards unifying Petri nets with other

Acta Electrotechnica et Informatica, Vol. 10, No. 1, 2010 67

ISSN 1335-8243 © 2010 FEI TUKE

formal methods, Proceedings of the Seventh
International Scientific Conference Electronic
Computers and Informatics ECI 2006, Košice -
Herľany, Slovakia, September 20-22, 2006, Vienala
press, 2006, Editors: Štefan Hudák, Ján Kollár, pp.
140-144, ISBN 80-8073-598-0

[9] ŠIMOŇÁK, S. - HUDÁK, Š. - KOREČKO, Š.:
ACP2PETRI: a tool for FDT integration support,
Analele Universitatii din Oradea, Proc. 8th
International Conference on Engineering of Modern
Electric Systems, Felix Spa, 26.-28. 5. 2005,
University of Oradea, Romania, 2005, pp. 122-127,
ISSN 1223-2106

[10] Edinburgh Concurrency Workbench,
http://homepages.inf.ed.ac.uk/perdita/cwb/

[11] Formal Systems (Europe) Ltd, http://www.fsel.com/

[12] PSF - Process Specification Formalism, Universiteit
van Amsterdam, Faculty of Science,
http://staff.science.uva.nl/~psf/

[13] PEPA - Performance Evaluation Process Algebra,
Laboratory for Foundations of Computer Science,
University of Edinburgh,

 http://www.dcs.ed.ac.uk/pepa/

[14] TOMÁŠEK, M.: Controlling Communication and
Mobility by Types with Behavioral Scheme. Acta
Polytechnica Hungarica, Vol. 5, No. 4, ISSN 1785-
8860, pp. 29 – 40, Budapest, 2008

[15] TOMÁŠEK, M.: Behavioral Scheme of Mobile
Processes. Journal of Information Control and
Management Systems, Vol. 5, No. 2, ISSN 1336-
1716, pp. 371 – 382, Žilina, 2007

Received July 6, 2009, accepted January 22, 2010

BIOGRAPHIES

Slavomír Šimoňák was born in 1974. He graduated in
computers and informatics from the Technical University
of Košice in 1998. He received his PhD degree in the field
of computer devices and systems in 2004. At present he is
an assistant professor at Department of Computers and
Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice. His scientific
interests are oriented towards formal methods for design
and analysis of discrete systems and their integration,
problems related to theory of programming and machine-
oriented languages.

Ivan Peťko was born in 1984. He graduated in 2008 with
honours at Technical University of Košice in computers
and informatics. Currently he is a PhD student at the
Department of Computers and Informatics of the Faculty
of Electrical Engineering and Informatics at Technical
University of Košice. His scientific research is focused on
formal description techniques, especially Petri nets and
their de/compositional analysis.

