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ABSTRACT 
Application of modern robust control methods using Mathematica are presented in this case-study for blood glucose control of 

Type I diabetic patients under intensive care. The methods are applied on the minimal model of Bergman [1], using computer 
algebra. Two modern robust control methods are exemplified: the disturbance rejection LQ control or minimax control (as an 
extension of the classical LQ control) and the robust H∞ control. It is shown the minimax control has limitations in practice, but 
employing reduced Gröbner basis on rational field, it is possible to approximate the theoretical solution and so getting a better 
solution than LQ does. In case of H∞ control, the graphical method in frequency domain – implemented under Mathematica by [2] – 
is extended with a disturbance rejection constraint and the robustness of the resulted high-order linear controller is demonstrated by 
nonlinear closed loop simulation in state-space, in case of standard meal disturbances. The symbolic and numeric computations 
were carried out with Mathematica 5.2 and with its CSPS Application, as well as with MATLAB 6.5. 
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1. INTRODUCTION 

In many biomedical systems, external controller 
provides the necessary input, because the human body 
could not ensure it. The outer control might be partially or 
fully automated. The self-regulation has several strict 
requirements, but once it has been designed it permits not 
only to facilitate the patient's life suffering from the 
disease, but also to optimize (if necessary) the amount of 
the used dosage. 

Due to the extremely diverse dynamics of the patients, 
the blood-glucose control is one of the most difficult 
control problems to be solved in biomedical engineering. 

It was several times formulated [3], [4], [5] that 
closed-loop glucose regulation requires three steps: a 
glucose sensor, an insulin pump, and a control algorithm 
able to determine (based on the glucose measurements) 
the necessary insulin dosage. 

Regarding the control strategies applied, the palette is 
very wide [6], starting from classical control strategies 
like PID control [7], optimal control [8], to the modern 
control techniques like adaptive control [9], neuro-fuzzy 
algorithms [10], model predictive control [3], [11], [12], 
but also post-modern control strategies, like H∞ control 
[4], [5], H2/H∞ control [13], μ-synthesis [14], Linear 
Parameter Varying (LPV) technique [15]. 

To design an optimal, high quality control, one needs a 
relevant model of the process as well as a proper control 
technique. Classical control is not a benefic solution, if 
high level of performance is desired [3]. 

The article presents modern robust control methods of 
the Bergman minimal model [1] of Type I diabetic 
patients under intensive care using computer algebra 
under Mathematica: the disturbance rejection LQ control 
or minimax control (as extension of the classical LQ 
control) and the robust H∞ control. 

First the minimax control is presented and it is shown 
that it has limitations in practice. However, employing 
reduced Gröbner basis on rational field, it is possible to 
approximate the obtained theoretical solution and so 
getting a better solution than LQ does. 

In case of H∞ control, for the graphical method in 
frequency domain implemented under Mathematica by [2] 
an extension, a disturbance rejection constraint is 
proposed for the requirement envelope. The robustness of 
the resulted high-order linear controller is demonstrated 
by nonlinear closed loop simulation in state-space, in case 
of standard meal disturbances. 

The symbolic and numerical computations were 
carried out with Mathematica 5.2, with its Control System 
Professional Suite Application (CSPS), as well as with 
MATLAB 6.5. 

2. MATERIALS AND METHODS 

 
2.1. Model equations 

Several different models of diabetic systems exist in 
the literature including, for example, the very detailed 
21th-order metabolic model of Sorensen [16]. However, to 
have a system that on one hand, can be readily handled 
from the point of view of control design, but on the other 
hand represents the biological process properly, the 
authors considered Bergman’s three-state minimal patient 
model [2]: 
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where the three state variables (as well as outputs) are the 
plasma glucose deviation G(t) (mg/dL), remote 
compartment insulin utilization X(t) (1/min), and plasma 
insulin deviation Y(t) (mU/dL). The control variable is the 
exogenous insulin infusion rate, i(t) (mU/min), whereas 
the exogenous glucose infusion rate h(t) (mg/dL min) 
represents the disturbance. 

Other variables represent parameters of system (1). 
The physiological parameters are GB the basal glucose 
level (mg/dL), YB basal insulin level (mU/dL), VL the 
insulin distribution volume (dL) and p1, p2, p3, p4 represent 
the model parameters. 

As numerical values the authors worked with the 
numerical values determined by [17]: p1 = 0.028, p2 = 
0.025, p3 = 0.00013, p4 = 5/54, GB = 110, YB = 1.5, VL = 
120. 

In order to linearize the system, we need its steady-
state values: G0 = X0 = Y0 = 0, h0 = 0, and for 

16.667VYp  i LB40 == . 
Loading CSPS of Mathematica the linearized system 

around the vicinity of the steady-state can be calculated. 
The system proved to be stable, controllable and 

observable, so we can move to the control algorithm. 

2.2. The LQ and Minimax control methods 

It is well-known [18], that the dynamics of an LTI 
(linear time invariant) system can be described in general 
form by: 
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 (2) 

where A, B, C are constant matrices. 
Using a classical LQ control, the requirement on 

designing is to minimize the following quadratic cost 
functional: 
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where Q and R are positive definite matrices. The classical 
LQ attempts to find an optimal control u*(t), ],[t ∞∈ 0 , 
based on CARE (Control Algebraic Riccati Equation): 

J(u*)  ≤  J(u) (4) 

for all u(t) on ],[t ∞∈ 0 . So, LQ realizes an optimization 
in the “average” direction, [18]. 

For the considered glucose-insulin interaction (1), 
because the first component of u(t) states for disturbance 
(representing the glucose intake in the human body which 
disturbs the steady-state level), it must be eliminated from 
LQ control. 

Therefore, considering the R matrix its R11 component 
should be considerably greater than R22. As a result we 
have chosen: 
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As a result, the LQ gain (KLQ) can be determined by 
solving CARE, [19]: 
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The disturbance rejection LQ method represents a 
generalization of the classical LQ problem [18], and is 
based on the minimax criteria, where the system dynamics 
are generally described as before, (2). 

Now the input variable u(t) is separated in control 
input )t(u and disturbance d(t), which can be considered 
unmeasurable: 
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 (7) 

Therefore, in this situation the quadratic cost 
functional will be modified with the disturbance 
explicitly: 
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Now, the disturbance – while it appears with negative 
sign – attempts to maximize the cost, while we want to 
find a control )t(u  that minimizes the maximum cost 
achievable by the disturbance (by the worst case 
disturbance). 

This is a case of the so called “worst-case” design and 
leads to the formulation of the following differential-
game: 

)d,u(Jmin)d,u(Jmax
)t(u)t(d

→  (9) 

)t(u , d(t) satisfying the state equation. It was 
demonstrated [18] that the solution of the differential-
game (9) exists, is unique and satisfies the saddle point 
condition: 

J( *u , d) ≤  J( u , d) ≤  J( u , *d ) (10) 

where *u  is the optimal control and *d  is the worst-case 
disturbance. 

As a result, the optimal control and the worst-case 
disturbance are given by: 

)t(PxB)t(u *T* −=  (11) 
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where P is the positive definite symmetric solution of the 
modified control algebraic Ricatti equation (MCARE): 

01
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 (13) 
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2.3. Solving the MCARE with Mathematica 

Due to the fact that the not measurable X(t) variable 
(remote compartment insulin utilization), is a slow 
variable [20], it can be considered zero, and so the second 
equation of the model (1) can be eliminated [21]. As a 
result the reduced linearized model becomes [22]: 
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For the solution of the MCARE equation we are 

looking for a symmetric solution ⎟⎟
⎠
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complete step-by step solution under Mathematica 
notebook realized by the authors can be found on 
Wolfram Research site [19]. 

The critical solution of this system belongs to the 
critical value of the parameter γ. Crossing with γ this 
critical value, the solution which is real becomes 
imaginary and vice versa. This critical solution 
numerically is an ill-conditioned problem; therefore, the 
computation was carried out using reduced Gröbner basis 
on rational field, which provides solution for the unknown 
variables with infinite precision avoiding round-off errors. 
Substituting the values of the system parameters in 
rational form and determining the solution for the P11 
value, the result was obtained as a fourth order monomial 
with γ as parameter [19], [21]. Creating a function 
providing the first root of this monomial, Im(P11(γ)), the 
critical value is the smallest nonzero positive root, namely 
[21], [22]: 
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Starting form a lower bound using step size Δ, the 
location of the critical value can be approximated with 
error Δε ≤ . Choosing ε = 10-8 the critical value resulted 
is 1174259417.crit =γ . Employing MATLAB v.6.5 by 
using the interval halving method, the same result was 
obtained. 

However, the controller corresponding for this 
obtained γcrit critical solution, 
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is a compensation on the disturbance (glucose) part too. 
This means some kind of negative injection of the 

glucose in the body, which is physically not possible. On 
the other hand, if one cancels the feedback of the 
disturbance and considers only the effect of the control 
input, no positive definite solution is obtained, and an 
unstable system is resulted [22]. This means that the 
minimax control has limitations in practice. 

However, increasing the value of γ up to the value 
providing a positive definite solution, the question is that 
if in the close neighborhood of the above mentioned 

critical solution can we get a better result than LQ does. 
Investigating the above mentioned concrete situation, we 
have obtained a positive definite solution at 

160217.*
crit =γ  value (somewhat at 0.25 % of the γcrit). 

For this situation the control matrix 
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KLQrej  provides a stable system. 

2.4. H∞ control using Mathematica 

The concepts of H∞ control under Mathematica are 
presented in [2] and it represents a graphical designing 
procedure which differs from the literature and MATLAB 
approach. 

The aim of the graphical method in frequency domain 
is to fit the complementary sensitivity function, 
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+
=

1
 inside a defined requirement 

envelope. For this, briefly the following criteria set should 
be satisfied (Fig. 1): 

1. T must satisfy the disk inequality: 

)i(R)i(T)i(K ωωω ≤− ,  for ωa ≤ ω ≤ ωb , (16) 

where K and R are fixed functions that embody 
the desired specifications of the system. K is 
called the center of the disk and R is called the 
radius; 

2. Defining the gain-phase margin as 
PCinfm += 1 , the constraint should be: 

m
)i(T 11 ≤−ω ,  for all ω; (17) 

3. The bandwidth of the complementary sensitivity 
function (T(iω)) should be below than 1/√2 or in 
other words below -3 dB [18]; 

4. For the closed-loop roll-off, specifying a given n 
and αr as well as the roll-off frequency ωr for 

which the 
n

r)i(C
ω

α
ω ≤ inequality is held, then 

for large ω frequencies it is true that 
)i(C)i(P)i(T ωωω ≤ , or by other words: 

nr

)i(P
)i(T

ω

ω
αω ≤    ,   for rωω >  . (18) 

In addition our investigations showed [21], that with 
an additional condition for the disturbance rejection 
requirement, the requirement envelope can be smoothed. 
Considering Pd(s) the transfer function of the disturbance 
and having the sensitivity transfer function (1-T(s)), the 
inequality should be, [23]: 

)i(P
c)i(T

d ω
ω ≤−1  , (19) 

where c is a constant less then 1. 
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Fig. 1  Requirement envelope for robust control design in 
frequency domain 

In order to insure the control purposes as well as the 
proper performance of the optimized process, the 
following performance requirements were chosen [23]:     
c = 0.95; αr = 8.7641*10-7; n = 2; ωd = 2.65; ωb = 4 ; ωr = 
6.5; αg = 2.5; αb = 0.9. 

As a result, we have obtained a subunitary solution of 
the H∞ suboptimal problem, namely 36790.* =γ . This 
value was also checked with the mu-toolbox of Matlab 
and a very similar result was obtained. 

With γ* calculated, we have checked the performance 
requirements similarly as in [24]. The numerical values of 
the corresponding optimal T* was approximated with a 
proper rational function, in our case a 20th order one, and 
having P(s) known the transfer function of the control 
part, C(s) can be determined, [23]. 

3. RESULTS 

The performance of the control algorithms investigated 
above was tested for a standard meal disturbance with 
about six hour duration, modeled by [20] (Fig. 2). 
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Fig. 2  Considered exogenous glucose infusion (meal 
disturbance), by [20] 

3.1. Simulation results for the Minimax control 

Although, the controller design was carried out for the 
reduced 2-states linear model (see section 2.3), the system 
is simulated for the original 3-states nonlinear model. 

Comparing the results of the classical LQ control and 
minimax control for γcrit corresponding to the 
physiologically interpretable case ( 160217.*

crit =γ ), it 

can be seen that even in this considered case, the 
disturbance rejection LQ control is more efficient than the 
classical LQ (Fig. 3, Fig. 4). 

 

Fig. 3  Blood glucose concentration, G(t) for LQ and “modified” 
minimax control 

 

Fig. 4  Insulin infusion rate, i(t) in case of LQ and “modified” 
minimax control 

3.2. Simulation Results for the H∞ Method 

For the H∞ method, the controlled dynamics of the 
blood glucose and insulin infusion are presented in Fig. 5 
and Fig. 6. 
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Fig. 5  Controlled dynamics of blood glucose concentration, G(t) 



14 Robust Control Algorithms for Blood Glucose Control Using Mathematica 

ISSN 1335-8243 © 2010 FEI TUKE 

0 200 400 600 800 1000

17. 5

20

22. 5

25

27. 5

30

32. 5

( )mint

⎟
⎠
⎞

⎜
⎝
⎛

dL
mUi

 

Fig. 6  The corresponding insulin infusion rate, i(t) 

4. CONCLUSIONS 

The case study presented two robust control methods 
using graphical interpretation and representation under 
Mathematica to regulate glucose-insulin system for Type I 
diabetic patients under intensive care. 

For the minimax control it turned out that the critical 
value of γ together with the physically / physiologically 
realizable interpretation of a control system, will not 
ensure automatically a positive definite solution, if one 
needs a physically interpretable solution. This means that 
the minimax method determines the worst-case solution, 
but this depends on the concrete problem if it could be or 
could be not physically interpreted. However, even in this 
case it is possible to obtain a better solution than LQ does. 

However, this problem can be avoided by using 
another numerical technique, employing the H∞ control 
under Mathematica developed by [2]. In this case one may 
define a linear, high order compensator, in relatively easy 
way, which can be tested via nonlinear model simulation. 
Introducing a proper disk inequality constraint for 
disturbance rejection, this method is proved to be effective 
for providing acceptable control performance. 
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