
38 Acta Electrotechnica et Informatica, Vol. 10, No. 2, 2010, 38–45

ISSN 1335-8243 © 2010 FEI TUKE

ARCHITECTURE FOR DISTRIBUTED DATA COLLECTION FOR MANAGEMENT OF
CRISIS SITUATIONS USING TRUSTED AGENT EXECUTION

Ladislav HLUCHÝ, Zoltán BALOGH, Emil GATIAL
Institute of Informatics, Slovak Academy of Sciences/Department of Parallel and Distributed Computing,

Bratislava, Slovak Republic, tel.: +421 2 5477 1004, e-mail: ladislav.hluchy@savba.sk

ABSTRACT
This article proposes a distributed architecture designed for management of crisis situations where multiple actors are involved

from various organizations with different competences and communicating over IP-based networks including wireless devices. In
such settings requirements exist for secure communication and trusted collection of data from various sources. The primary role of
agents in the proposed architecture is coordinated collection of information. In respect to requirements the overall agent
infrastructure must be a secure, robust and fail resistant system. The required level of trust for agents is based on a special hardware
module which provides trusted computing functionality. In the article we describe such architecture in terms of detailed
requirements, design and decomposition to subsystems. We also provide a sample use case scenario inspired by concrete crisis
situation. The architecture described herein is being used within the scope of an EU integrated project called Secricom; therefore we
briefly describe the integration points with other systems involved in the project. We conclude with current state of the architecture
implementation and with further plans concerning the development of the described architecture.

Keywords: distributed architecture, agents, trusted code, process execution

1. INTRODUCTION

One of the challenging demands of the communication
infrastructures for nowadays crisis management is to add
new smart functions to existing services which would
make the communication more effective and helpful for
users. The aim is to provide smart functions by distributed
IT systems which should provide a secure distributed
paradigm to achieve confidentiality and access to
resources. Such infrastructure should further provide a
smart negotiating system for parameterization and
independent handling of access requests to achieve rapid
reaction. By fulfilling the above stated goals a pervasive
and trusted communication infrastructure satisfying the
requirements of crisis management authorities and ready
for immediate application could be introduced. More
concretely in crisis situations requirements exist to collect
information from legacy systems of various organizations
and from human operators in order to semi-automatically
manage the crisis mitigation process or to enact decisions
at various management levels. This collection of
information must be enacted in a secure manner while
ensuring trust between both parties – information
consumers and information providers. Many actors
participate in a crisis situation and the competences
between all parties are explicitly defined in a crisis
mitigation plan. Gathering of information is enacted either
from legacy systems or from human end-users through
mobile devices by guided dialog. Herein we present the
requirements analysis, design, and system decomposition
of a distributed architecture which would fulfill all the
goals set above. Further we suppose that the
communication infrastructure is IP-based.

We decided to design and implement such architecture
using agent paradigm. The distributed agent-based
infrastructure is designed as a collection of software
services with agent-like features (such as code mobility)
which would execute in a secure and trusted manner.

Agent technology was selected due to the ability to fulfill
such requirements through support of mobile and
dynamically deployable executable code. Other
advantages of agent-based systems are that they can help
overcoming temporal or longer term communication
network failures, save network bandwidth by being
executed remotely and deliver only the execution results,
provide means to execute code on remote host platforms
in a trusted and secure manner or deploy code on host
platforms on demand. The role of agents in the
architecture is primarily coordinated collection of
information. Gathering of information is enacted either
from legacy systems or from human end-users through
mobile devices by guided dialog. In respect to
requirements the overall agent infrastructure must be a
secure, robust and fail resistant system. Because validity
and authenticity of gathered information is a key factor for
decision making in crisis management, trust must be set
between agents and third party information systems. Also,
agents must trust the host platform providers - remote sites
which provide the computational environment for agents.
The required level of trust for agents is based on a special
hardware module which provides trusted computing
functionality.

This article is written as follows: The next section
deals with analysis of requirements and security
considerations of the proposed architecture. The third
section describes the proposed architecture with
decomposition to subsystems and envisaged core agents.
The fourths section describes a sample scenario which is
used as a reference scenario for the infrastructure
implementation. The architecture described herein is being
integrated within an EU integrated project called
Secricom. Therefore the fifth section introduces the
Secricom project and the integration points of the
proposed architecture with other systems involved in the
project such as the PTT (Push To Talk) system, SDM
(Secure Docking Module) or MBR (Multi Barer Router).

Acta Electrotechnica et Informatica, Vol. 10, No. 2, 2010 39

ISSN 1335-8243 © 2010 FEI TUKE

The last section concludes the article and presents our
current achievements and plans concerning the
implementation of the proposed architecture.

2. REQUIREMENTS AND SECURITY
CONSIDERATIONS

In order to define concrete security requirements for
our architecture we sketch the basic infrastructure in
which agents will operate (Fig. 1):

Fig. 1 Infrastructure and Host Platform Providers in the
Distributed Agent-based Architecture

The home platform for agents is a network of Trusted
Servers (TS). According to [1] the platform from which an
agent originates is referred to as the home platform, and
normally it is the most trusted environment for an agent.
This is also true for our agents – the TS network is a
managed set of systems with defined security policies and
possibly managed by a central authority. From here agents
are delegated to host platforms to gather data and
information. Agents are mainly executed on remote sites
which provide the computational environment in which
agents operate. We will refer to these sites as to host
platforms (or agent platforms).

In general, any party which wishes to join the
implemented architecture and to provide information from
their legacy systems or users must introduce a host
platform for agents. We refer to such parties as Host

Platform Providers (HPP). From end-user requirements,
the following HPPs were identified (Fig. 1): Resource
Providers – hospitals, fire brigade, police, warehouses or
any other entities which can play a role in mitigation of
crisis situation; Command Centers – mobile (nomadic)
centers which coordinate the incident site locally; and
General Command Center and Operators – usually located
at one place or at least closely interconnected.

The features of agents encompass several chosen
attributes: code mobility (without execution state) – the
ability to move code to different platforms and execute
there; within the project we do not plan to support
execution state mobility (as there is no such requirement);
autonomy – the ability to autonomously deliver gathered
data to one or several optional destinations; reactivity – in
some cases agents will perceive the context in which they
operate and react to it appropriately (e.g. agents can
monitor availability of resource and notify the requestor).

Since agents collect information which is often of high
sensitivity, confidentiality and security, while at the same
time requirements for action or decision traceability exist,
agents must be provided with a secure, trusted and attested
execution environment. In the following we identify main
agent-related security threats. A detailed explanation of
generic mobile agent security aspects is discussed in [1].
Generally, four threat categories are identified: an agent
platform attacking an agent, an agent attacking an agent
platform, an agent attacking another agent on an agent
platform and other entities attacking the agent system. The
last category covers the cases of an agent attacking an
agent on another agent platform, and of an agent platform
attacking another platform, since these attacks are
primarily focused on the communication capability of the
platform to exploit potential vulnerabilities. The last
category also includes more conventional attacks against
the underlying operating system of the agent platform.
The host platform attacking agent

The main threat for agents in foreign execution
environment of host platforms is the “malicious host
problem”. This is one of the main problems in the class of
“an agent platform attacking an agent“. Simple
explanation of the “malicious host problem” is provided
in [2]: “Once an agent has arrived at a host, little can be
done to stop the host from treating the agent as it likes”.
Therefore, the main requirements from the agent-side are
laid out in respect to the “malicious host problem”.
Concrete security requirements of agents in respect to the
host platform are as follows: isolated execution
environment for agent execution – not only virtual
isolated execution environment but dedicated isolated
hardware preferred; means to attest the platform required
in order to detect whether the host platform is in trusted
state; and protected storage for credential data (such as
PKI’s secret key).
Agent attacking the host platform

There are also threats stemming from an agent
attacking an agent host platform. Therefore reversely a
host platform has also requirements in respect to agents.
These requirements are more evident when provided in
context of HPPs security requirements:

1. HPPs do not want to install and execute any external
application on their systems in line with their strategic
legacy applications.

40 Architecture for Distributed Data Collection for Management of Crisis Situations Using Trusted Agent Execution

ISSN 1335-8243 © 2010 FEI TUKE

Fig. 2 Distributed architecture designed for management
of crisis situations

2. HPPs prefer to have a dedicated and isolated system
for agent system which would connect to their legacy
system in a secure predefined way.

3. HPPs want to be able to control what (data), when
and by who (traceability) is provided to agents.

4. HPPs want to be able to configure the set of
applications executable on their side. Agents must be
therefore audited and verified and therefore mediate trust
to executable agent code.

The agent platform has the following security
requirements in respect to agents: isolated execution
environment for agent execution - agents must be
executed in isolated environment (isolated hardware
preferred), so an agent can not harm legacy systems;
means to monitor and trace agents activity; and means to
configure the set of agents executable on the host
platform. In order to track agents, any agent in the
platform must be cryptographically signed. Only agents
signed with trusted authority and assigned to selected
category will be trusted by a host system. Agents need to
send signed messages to Trusted Servers.
An agent attacking another agent

It is required that any agent which will be used in the
system will need to be audited and certified by a central
authority. In turn every host platform will be configured to
execute only agents which are certified. These two
security policies should ensure that malicious agents will
not be deployed into the infrastructure. Only a breach of
the set security policies might lead to potential agent-to-
agent security risk.

Moreover, each agent should be executed in a
relatively isolated virtual environment with limited access
to data of other parallel executed agents on the same host
platform.
Other entities attacking the agent system

Agents will also connect to legacy systems (third party
software). Therefore there is a risk of an agent being
attacked by a legacy system but also vice versa – the risk
of attacking legacy system by an agent also exists. The
host platforms will need to provide a kind of connection to
legacy systems. We explicitly presume that this will be a
network connection. On any network connection there is
an eavesdropping risk. Therefore another requirement
which arises from agents to the host platform is secure
protected connection to legacy systems. Physical security
of network connection can be achieved either by direct
cable connection of the host platform with legacy system
or by managed network security (managed switch with
well defined security policies). The data transport security
will be achieved primarily through encryption.

3. ARCHITECTURE

In this section we present a distributed architecture
designed for management of crisis situations were
multiple actors are involved from various organizations
with different competences and communicating over IP-
based networks including wireless.

The architecture (Fig. 2) is designed for mobile
services with agent-like features (mobility, pro-activity)
which would execute on secure devices. In general it
consists of interconnected trusted (TS) and untrusted
servers (US). TS carry out the following tasks: registry of

services, users and modules, public encryption keys, the
agent base (base of mobile code) or generic security
politics. Each agent has features and “abilities”, which are
used for the enactment of certain processes.

The enactment of processes is inspired by the domain
of management of crisis situations in which collection of
information from multiple systems is required. The whole
process starts with the specification of a problem in the
form of dialog. Further, an agent specifies the most
serious problems which were rendered by the crisis
situation. Based on the type of crisis situation and on the
region where the crisis has occurred appropriate actions

are initiated for each crisis situation type. The system will
semi-automatically generate plausible generic plans of
possible solutions (mitigation plans) of identified
problems. In the next step the specification of context will
be enacted in order to be able to generate the constraints
of the crisis situation. Relevant resource providers will be
identified in the central database based on constraints
generated in the previous step. Agents which are able to
query selected servers will be selected from the agent
base. Information about available capacities of resource
providers will be retrieved and sent back to central trusted
server base. The system will then generate a concrete plan

Table 1 The architecture subsystems

Subsystem Basic description and functionality

Distributed Secure
Agent Platform

(DSAP)

The core agent platform.
Will provide means for agent

deployment, execution, migration
and communication.

Process
Management

Subsystem (PMS)

Based on the plan collected from
users it will generate a plan of

activities.
Executes the plan.

Agent Repository
(AR)

Database of system users, agents and
their certificates.

Process of accreditation of agents.
Public Key

Infrastructure (PKI)
Certification and verification of

agents, users and resources.

Resource Inquire
System (RIS)

Will provide information which
system to query for specific

information.

Acta Electrotechnica et Informatica, Vol. 10, No. 2, 2010 41

ISSN 1335-8243 © 2010 FEI TUKE

of crisis situation resolution based on the retrieved
disposable resource capacities. The last step is execution
of the plan prepared for the concrete crisis situation.

In order to fulfil the architectural requirements set the
infrastructure was decomposed into subsystems. These
subsystems are related and will cooperate together through
defined interfaces. The list of all subsystems is in Table 1.

The purpose of the Distributed Secure Agent Platform
(DSAP) is to provide an execution environment for
different types of agents. The main aim of Process
Management Subsystem (PMS) is execution of processes
and coordination of involved agents in the emerged crisis
situation. The plan scenario for each type of crisis
situation will need to be pre-prepared in the form of an
abstract process. The exact execution of such plan in a
concrete situation will depend on the context of the crisis
situation. The agents available within the herein proposed
infrastructure have to be stored on Trusted Servers, from
which they can be requested for deployment on the side of
HPPs – this functionality is encompassed within the Agent
Registry (AR). Public Key Infrastructure (PKI) will allow
certifying, and subsequently verifying, all the objects
deployed in the infrastructure. Agents will require having
information about the information sources which can be
queried in order to retrieve information about resource
availabilities. The Resource Inquire System (RIS) will
provide an interface which will provide such capability.

In addition there is a set of core agents which are
required in order to ensure functionalities of the
architecture. List of agents including their brief
functionality description is given in Table 2.

4. AGENT PLATFORM DESIGN AND

IMPLEMENTATION

The following paragraph explains the agent code
migration and agent lifecycle, while the next one
introduces the security mechanisms of this agent platform.

Since distributed algorithms were elaborated by
computer science, the designed platform focuses merely
on remote code execution with emphasis on establishing
trust among multiple parties. Moreover, the agents in our
scenario are designed to access resources in order to help
a person make a decision but not make a decision
autonomously. This does not express that the agents are
meant to execute only simple code accessing resources
(i.e. querying DB systems or temperature sensors). The
selection of resources or resource providers can be
optimized within the agent’s code, while a responsible

person has a full control upon agent’s activities. Such
optimizations of resource selection are beyond the focus
of the agents described in this paper. According to [1] the
platform from which an agent originates is referred to as
the home platform and the platform where an agent’s
execution takes place is called host platform (HP). In
general, any party which wishes to join the implemented
architecture and to provide information from its legacy
systems or users must introduce a host platform for
agents. We refer to such parties as host platform
providers. One of the main focuses of designed agent
platform is securing and migration the agent from a home
platform to a HP and their mutual communication.

DSAP is built upon the Java and Jini framework
making use of the service proxy’s remote method call
feature for modeling a HP. The HP, issuing an agent,
locates possible service providers by querying LS(s)
(either using known LS location or finding all possible LS
by multicast) for specific DSAP service proxy. The DSAP
services registered in LS usually hold additional service
attributes (service metadata) like service location and
service capabilities. The DSAP client discovers the right
DSAP service implementation by matching the required
service attributes with DSAP service attributes stored at
LS and makes use of a DSAP proxy instance to access the
HP.

The lifecycle of agent brings the following issues:
• Finding suitable DSAP service in order to deploy an

agent with specific goal: In order to successfully
accomplish the goal of an agent, the suitable DSAP
service has to be identified. One way how to
successfully identify the suitable DSAP service
deployment is to discover every DSAP service among
LS and to filter out the most appropriate service by
service attributes’ matchmaking. This process includes
comparison of DSAP service attributes with goal
specific attributes of an agent. Such process should be
done every time the agent has to be deployed, which
leads to cumbersome and time consuming operations.
Another way is to implement special kind of service
whose special goal is to register event listener
notifying a service attribute change among discovered
available DSAP services. This kind of service should
periodically discover new DSAP services or discard no
longer available services. RIS service should
implement methods searching for the most appropriate
DSAP service according to specific criteria, for
example to find the DSAP service deployed in the
vicinity to given geographical location, etc.

• Deployment of an agent in short- or long-term manner
using DSAP client: The short-term agent deployment
occurs in on-demand information acquisition where an
agent responds almost immediately to a DSAP client
with return messages. Typically, the agent is
terminated and cleared from HP or suspended to be
used later on. In case of the long-term deployment, the
agent may reside on the HP and respond to a DSAP
client continuously or may check the HP environment
by invoking events on DSAP client.

In Fig. 3, the process of discovery, join and agent

communication is shown within the scope of the DSAP
services. Here, HP discovers LS and joins the registrar

Table 2 Core agents used in the architecture

Agent Functionality

Information
Delivery Agents

(IDA)

IDA agents will need to connect to
legacy information systems of third
parties to retrieve information about

available resource capacities.

User
Communication
Agent (UCA)

Will communicate with users in a
form of guided dialog through
electronic device. Will include
authentication and interface to

authorization of the user.

IP Agent (IPA) An agent able to configure IP
devices such as routers.

42 Architecture for Distributed Data Collection for Management of Crisis Situations Using Trusted Agent Execution

ISSN 1335-8243 © 2010 FEI TUKE

object. When a DSAP client (residing in a home
environment) wants to deploy an agent it searches the LS
for the DSAP services conforming the attributes of an
agent. Commonly, the attributes describe a location of a
DSAP service, the capabilities reflecting the actions that
can be made by an agent using specific Java libraries and
an organizational unit that an agent needs to cooperate
with. This attribute concept can be easily extended using
other attribute types. Once an appropriate DSAP service
was found an agent is uploaded and run in HP
environment under the control of the DSAP service. Each
agent is assigned with globally unique identifier (GUID)
before the process of deployment will take place in order a
client can communicate with specific agent. A DSAP
client is able to send messages to agent using GUID and to
receive immediate response, or a DSAP client is notified
by firing the events processed by event handler of DSAP
client.

Fig. 3 The concept of DSAP based on the Jini framework

Security mechanism for agent platform is incorporated
into the DSAP service using PKI standards with respect to
security requirements on the agent platform. Moreover,
the DSAP relies on a Secure Docking Module (SDM)
storage holding private keys and a Trusted Docking
Station (TDS) quoting a trusted platform state. The HP,
deployed within the TDS, is measured by auditing the
BIOS and operating system booting sequence
measurements evaluated as SHA-1 hash values and stored
in a Trusted Platform Module (TPM). The SDM only
releases private keys if the host platform adheres to a
configuration (trusted state) that enforces a key protection
policy. The root of trust is established between the agents’
home platform and HP by audited agent code before its
usage will take place. The audit process must ensure that
the agent does only what its creator states it should do,
and that it does not contain any malicious code, which
may jeopardize the integrity of the HP. Establishing the
trust between an agent and a HP is depicted in Fig. 4.

Agent repository (AR) holds the set of certified agent
Java classes or .jar files. The code of agents may vary
from executing simple DB query to complex management
of HP resources. It is up to agent designer to implement an
agent’s functionality, but with respect to the fact that the
code must be audited and certified whether by the HP
provider or by trusted third-party authority. Based on the
code certification the HP provider can trust the code
running his or her HP.

When PMS decides to issue an agent, it queries AR to
obtain the classes implementing the agent. Here, PMS is

able to verify the certificate of agent classes. Next, an
instance of agent object is created by PMS where the
agent attributes are set. The agent object and its classes are
encrypted using AES key secured by TDS1PubKE/D public
key (referred to as key wrapping) of HP.

Fig. 4 The scheme of DSAP concept to establish secure and
trusted communication of agents

After the encrypted agent is moved on the HP, the
DSAP service decrypts the AES key using TDS1PrKE/D
private key of the HP (received from SDM) and uses this
key to decrypt an agent. The HPs usually provide access
to some resources that a specific agent is able to process.
Here, PMS is responsible for choosing the right type of
agent and for setting it up to provide the required results.
The results are encrypted using the same AES key and
sent back to PMS.

5. AGENT COORDINATION

Since DSAP platform provides convenient mechanism
for secured agent migration within trusted environment,
the coordination of agents is managed by centralized PMS
capable of tracking sequence of actions to achieve a
specific goal. PMS holds ontological description of
processes that can possibly occur when some external
event is fired.

Formally, the process P means to execute any possible
actions to achieve the process goal. The process state or
context C denotes the set of resources available during a
process execution. The process goal GP is to execute every
ending action in the specific process P. Action templates
of the process ATP = {atP1, atP2,…, atPm} hold the set of
action templates available for execution in the given
process P. Action templates prescribe what action will be
instantiated while fulfilling the preconditions of ATP.
Such precondition set PCAT = {pcAT1, pcAT2,…, pcATn}
specifying the set of resources that must be available
before the action will be executed. Here, each ATP holds
references to the role of responsible actor RAT, which is
mapped to specific actor (person or legacy resource
responsible for process invocation) later in the deriving
process of action instance. ATP also describes the type of
its effects EAT = {eAT1, eAT2,…, eATp} containing the set of
activity output types. Each action derived from ATP
produces resources of EAT (subset of Resource ontological

Acta Electrotechnica et Informatica, Vol. 10, No. 2, 2010 43

ISSN 1335-8243 © 2010 FEI TUKE

concept) that are stored in C. Agents AG = {ag1, ag2,…,
agq} contain set of agents that are capable of solving a
specific task. Action AP = {aP1, aP2,…, aPr} represents an
instance of ATP coupled with agi zero or more agents
while resources PCAT are available in C. Formally, the
task of PMS is to initiate a process P and to manage
execution of actions AP prescribed as ATi in order to
achieve the goal GP.

Initially, PMS searches for initial action templates in
ATP, where the precondition is not specified, thus PCAT =
{}, for each process P and therefore instances of such ATP
can be executed without any required resources. For every
atPi where PCAT = {} the starting action aPi is created. The
instances of agents agj, described as EAT in aPi are created
and deployed in DSAP service in order to communicate
with the specific actor matching the role RAT for process
P. Actually, the PMS will issue the starting agents which
contact actors (persons or legacy resources) to initiate a
process P. In case of communicating with a person, the
UCA long-term agent is utilized to query the responsible
person for initiating the process; in case of communicating
with legacy system, the ICA long-term agent is sent to HP
to check availability of specific resource. Starting agents
usually sit in the HP till the required resource is made
available to initiate process P and update the context C.
Since multiple processes can be enacted simultaneously,
the starting agent is redeployed right after the agent has
started a new process.

If specific process P is initiated, PMS searches every
action template in ATP set, where the precondition set
PCAT contains a subset of required resources included in
context C, formally expressed as selecting ATP; PCAT
⊆C. For every found action template atPi the action aPi is
created. The instances of agents agj, described as EAT in aPi
are created and deployed in DSAP service in order to
communicate with the specific actor matching RAT for
process P. Here, agents can be issued as long-term usually
for monitoring purposes or short-term requesting
immediate response. Each agent ai produces resources of
type eATi that are included into context C. Each time the
PMS changes the context C, a new set of ATP is found
according to selecting ATP; PCAT ⊆C. The PMS finishes
the process execution P if the GP condition is matched.

6. SAMPLE SCENARIO

Herein we present a sample scenario in which
coordinated information collection using agents takes
place. The presented scenario is not a typical crisis
scenario were emergency responders are involved but
demonstrates all the important and useful abilities of
agents in such distributed settings.

The schema in Fig. 5 depicts an imaginary epidemic
crisis scenario: A country has a sudden rise in the number
of people sick from an epidemic flu. There are many
infected people and others are suspected to be sick soon.
The organization responsible for mitigation of epidemic is
UVZ. Personally a Chief Officer (CO) at UVZ is
responsible for such situations. CO decides to set warning
level to 5. As part of this warning level UVZ needs to
make sure that there are sufficient supplies of vaccines in
regional UVZ branches (RUVZ).

Fig. 5 Schema of a sample crisis scenario

Such information must be retrieved from legacy
systems of each RUVZ. CO must delegate this
information collection to an officer at another organization
called SHR (O2). After the officer at SHR finds out about
the supplies at individual RUVZ he needs to delegate the
task of distributing additional sufficient amount of
vaccines to an Officer at SHR Warehouse. The
information about complement shipments of vaccines to
RUVZ is sent by SHR Warehouse Officer directly to SHR
Officer who redirects this information to CO at UVZ.
Concrete steps of the scenario are:

1. CO initiates a new Crisis Situation in the UCA user
interface, where CO opens the UCA and selects “Initiate
Crisis Scenario” of type “DiseaseEpidemic” and sets
“Level” to value 5.

2. PMS is informed about new crisis. PMS checks if
the request is signed and whether CO is trusted and has
rights to initiate the mitigation. After confirmation is sent
back to CO’s UCA, possible (pre-prepared) mitigation
plans and list of qualified responsible persons (officers
O1-O3) is generated.

3. CO selects the right mitigation plan and decides to
ask O2 to supervise this process. In this stage the process
is in an abstract format, i.e. details are not concretized.

4. PMS informs O2’s UCA that he is responsible for
supervising the process. He is also asked to concretize the
process, in this case by specifying the “DrugName” and
“VacPer1000” properties.

5. O2 accepts to supervise the process and specifies the
required properties.

6. PMS is informed about “DrugName”. PMS needs to
find out who is able to supply the “DrugName” resource.
PMS contacts RIS with a query to provide all suppliers of
“DrugName” resource.

7. RIS replies with a list of RUVZ.
8. PMS now can query all RUVZ for availability of the

resource called “Tamiflu”. PMS formulates the query and
sends List of RUVZ and where to send the result. Query is
send to AR (AgentRepository). Deadline for result
delivery is specified as well.

44 Architecture for Distributed Data Collection for Management of Crisis Situations Using Trusted Agent Execution

ISSN 1335-8243 © 2010 FEI TUKE

9. AR must select an appropriate agent (of IDA type)
for each RUVZ because each RUVZ might have different
legacy systems. AR sends out agents to collect relevant
data. Agents are deployed to each resource provider
(RUVZ in this case).

10. Agents send back their response to query.
11. Data is collected by PMS and after the deadline it

is sent in consolidated form to O2. O2 reviews the data
where he can see current stock amounts at each RUVZ
warehouse.

12. O2 creates order to distribute missing drugs to
RUVZ. This will be a request for resources to be
ordered/delivered. The request is sent through PMS to
Officer at SHR Warehouse. O2 is able to specify that each
region should be equipped with 100 vaccines per 1000
people. Based on information about population of regions
the vaccine numbers are computed and order is created.

13. PMS requests AR to send OrderAgents to the
officer at SHR warehouse.

14. ShipmentAgent is sent out to each RUVZ.
15. ShipmentAgent informs PMS about the status of

deliveries.
16. PMS informs O2 about status of deliveries.
17. O2 informs PMS about process status.
18. PMS informs CO about process status.
Please note that in this scenario communication

between users is proposed to be done using UCA – User
Communication Agents. UCA is able to communicate
with users either through computer or through a mobile
device. UCA collects information from a user through a
sequence of simple forms. UCA summarizes the form
results and sends it to PMS for further processing. The
IDA – Information Delivery Agent is used for retrieving
information from legacy systems. There might be different
types of IDA suitable for different legacy systems of
various resource providers. There are also other agents
used in the scenario such as OrderAgent or
ShipmentAgent – they are specific purpose agents. The
only agent not mentioned in this scenario is the IP Agent –
this agent is intended to configure routers or other active
configurable IP devices. IPA can semi-automatically
configure the network according to current need of the
crisis responders. For example in our sample scenario we
could use IPA to prioritise the communication between
the officers at UVZ and SHR.

7. INTEGRATION WITH OTHER SYSTEMS

The architecture described herein is being used also
whithin an EU integrated project called Secricom [9]. The
implementation of the architecture in the project is called
Secure Agent Infrastructure (SAI). SAI solves timely
delivery of relevant information, obtains the information
about available resources (material or human) and helps
the authorities manage the distribution of such resources.
SAI also communicates with legacy information systems
operated by agencies and institutions involved in the crisis
resolution. There are several systems to which SAI gets
connected. Concretely we describe integration with SDM
- Secure Docking Module, PTT - Push To Talk system
and MBR - Multi Barer Router systems.

In order to overcome the threats described in section
II, agents require safe secured place to store cryptographic

credentials (PKI secret keys) and provide interfaces to
retrieve these keys, ways to attested platform (execute on
a host platform which is in a trusted state) and provide
interface to safely communicate with legacy systems. All
these functionalities are provided by a hardware module
called Secure Docking Module (SDM) [5, 6]: SDM is a
key storage device with local attestation and verification
capabilities. SDM establishes trust on the host platform
where agents are being executed – called Trusted Docking
Station (TDS). A trusted state is a specific software
configuration. This software configuration is measured by
using a Trusted Platform Module (TPM). A TPM is a
special security chip, which amongst other functionalities,
provides the protected capability of measuring the
software configuration of its host device. A TPM must be
present in the TDS. The combination of a SDM and a
TDS is called a Secure Docking Station (SDS) as shown
in Fig. 6:

Secure Docking StationSecure Docking Station

Fig. 6 Schema of how SDM, TPM, TDS and SDS relate

SAI uses SDS deployed in a physical proximity of the
legacy information system, preferably in the same room,
and acts as a secured and trusted extension of the
Secricom infrastructure. SAI executed in SDS eliminates
the exposure of the legacy IS to the outside world and
allows the operator of the legacy IS to have increased trust
in the information consuming party. SAI can process the
information received from the legacy IS while conserving
the network bandwidth, limiting possible exposure of
sensitive data – sending back the results only and
continuing data processing even if the connection to the
outside world is intermittent. More information about
these technologies can be found in [5, 6].

Secricom PTT (Push To Talk) is a client-server
communication system using IP protocol and is developed
by a Slovak company Ardaco [7]. PTT optimizes and
protects the way teams of people communicate without
being concerned about misuse of information. Regardless
of communication endpoint (mobile, laptop or handheld)
the communication is secure and safe. SAI connects to
PTT servers in order to communicate with users.
Concretely, UCA agent is being integrated with PTT
through implementation of simple forms. PTT takes care
of delivering and displaying the forms on the user side,
while UCA is responsible for the form processing. Forms
are being automatically generated by PMS during run-
time in accordance to overall process status and process
configuration. Integration of UCA with PTT adds a more
flexible way of data collection and user communication to
Secricom infrastructure.

The Secricom Multi Bearer Router (MBR) is a
modular router development platform and is developed by
a UK-based company QinetiQ [8]. MBR provides one of
the core Secricom platforms and delivers the IPv6
network enabling overlay. It provides seamless, ad-hoc

Acta Electrotechnica et Informatica, Vol. 10, No. 2, 2010 45

ISSN 1335-8243 © 2010 FEI TUKE

end-to-end connectivity between various legacy and
emerging next generation, static and mobile bearers,
networks and user access devices. SAI integrates with
MBR using the IPA agent. MBR must be equipped with
SDS in order to provide trusted and attested execution
environment for agents. IPA agent is able to configure
different properties of network such as communication
prioritization or bandwidth control between different
bearers.

8. CONCLUSION

In this article we have analyzed the requirements for
agent-based systems and have proposed a distributed
architecture designed for management of crisis situations.
We have decomposed the proposed agent architecture to
subsystems and identified several core agents to be used in
an architecture implementation. A sample scenario was
described, which demonstrates possible use of individual
agents in case of a crisis in a distributed IP-based
communication infrastructure. Lastly we described the use
of the proposed architecture within an EU integrated
project called Secricom.

Currently the proposed architecture is being
implemented in Java [10] using a Jini [11] services
technology framework. All the subsystems identified in
Table I are implemented and are in pre-prototype version.
Core agents (Table II) are also implemented and deployed
in the system. Currently integration work is in progress
with SDM, PTT and MBR systems as described in
section V.

Our overall goal is to provide full prototype
implementation of the proposed framework. We believe
that beside crisis management there are many other
application domains where trusted code execution using
agents is appropriate to use and where the proposed
distributed agent-based architecture would suit well. In the
future we plan to identify other suitable problem domains
for our architecture and to customize the system for use in
other challenging distributed infrastructures.

ACKNOWLEDGMENTS

This work is supported by the projects SECRICOM
FP7-218123, APVV DO7RP-0007-08, SMART ITMS:
26240120005, VEGA No. 2/0211/09.

REFERENCES

[1] JANSEN, W. – KARYGIANNIS, T.: Mobile Agent
Security – NIST Special Publication 800-19.
National Institute of Standards and Technology,
Computer Security Division, Gaithersburg, MD
20899, 1999.

[2] BORSELIUS, N.: Mobile agent security, Electronics
& Communication Engineering Journal, Volume 14,
no 5, IEE, London, UK, pp 211-218, Oct. 2002.

[3] KOCIS et al.: SECRICOM – Analysis of external
and internal system requirements. Deliverable report
D2.1, the SECRICOM project, Feb. 2009.

[4] O’NEILL et al.: SECRICOM – Analysis of Crisis
Management System Requirements. Deliverable
report D2.2, the SECRICOM project, Feb. 2009.

[5] ŠIMO et al.: SECRICOM - Security requirements
and specification for docking station module.
Deliverble report D4.1, the SECRICOM project,
Apr. 2009, http://www.secricom.eu/public-delivera-
bles

[6] HEIN et al.: Functional specification of the Secure
Docking Module. Deliverable report D5.1, the
SECRICOM project, May 2009,
http://www.secricom.eu/public-deliverables

[7] Ardaco homepage. http://www.ardaco.com/

[8] QinetiQ homepage.
http://www.qinetiq.com/global.html

[9] Secricom Project Homepage.
http://www.secricom.eu/

[10] JAVA Home. http://java.sun.com/

[11] Jini Homepage. http://www.jini.org/

Received January 2, 2010, accepted April 14, 2010

BIOGRAPHIES

Ladislav Hluchý is the Director of the Institute of
Informatics of the Slovak Academy of Sciences and also
the Head of the Department of Parallel and Distributed
Computing at the Institute. He received his MSc and PhD
degrees, both in computer science. He is R&D Project
Manager, Work-package Leader in a number of 4FP, 5FP,
6FP and 7FP projects, as well as in Slovak R&D projects
(VEGA, APVT, SPVV). He is a member of IEEE,
ERCIM, SRCIM, and EuroMicro consortiums, the Editor-
Chief of the journal Computing and Informatics. He is
also (co-)author of scientific books and numerous
scientific papers, contributions and invited lectures at
international scientific conferences and workshops. He is
also a supervisor and consultant for Ph.D., master and
bachelor studies.

Zoltán Balogh is a researcher at the Institute of
Informatics of the Slovak Academy of Sciences. In 1999
he received his M. Sc. degree in management. He received
his PhD in applied informatics in 2007. Since then he is
employed at the Institute of Informatics, SAS. He is the
author or co-author of several scientific papers. He
participated in many European IST projects as well as in
several national projects (VEGA, APVV, APVT, SPVV).
His research interests include Cloud computing, services-
oriented architectures, knowledge-based systems,
ontologies, case-based reasoning, and application of these
approaches in business systems.

Emil Gatial is a researcher at the Institute of Informatics
of the Slovak Academy of Sciences. In 2002 he received
his M. Sc. degree in information systems. Since 2003 he is
employed at the Institute. He is author or co-author of
several scientific papers. He participates in the
CrossGRID FP5, K-Wf Grid FP6, DEGREE FP6,
SECRICOM FP7 as well as in several national projects
(VEGA, APVV, SPVV). His research interests cover the
domain of mobile agents, knowledge driven processes and
semantics in business systems.

