
Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011, 3–10, DOI: 10.2478/v10198-011-0022-y 3

STATIC ANALYSIS BASED SUPPORT FOR
PROGRAM COMPREHENSION IN ERLANG 1

Melinda TÓTH, István BOZÓ, Judit KŐSZEGI, Zoltán HORVÁTH
Department of Programming Languages and Compilers Eötvös Loránd University, Faculty of Informatics,

Pázmány Péter st. 1/C, Budapest, Hungary, e-mail: {toth m, bozo i, kojqaai, hz}@inf.elte.hu

ABSTRACT
Program comprehension is important process in software maintenance, considering the lifetime of an industrial software. The first

task for a developer is to understand the structure and the behaviour of the program without considering the type of the change -
refactoring, bugfix - must be performed on the source code. Understanding and debugging the source code is not straightforward in
case of a dynamically typed functional programming language, like Erlang. Thus RefactorErl supports code comprehension through a
Semantic Query Language that helps the developers to query semantic relationships in their software product.

Keywords: Erlang, program comprehension, query language

1. INTRODUCTION

Under developing a software certain changes could be
performed on the source code to improve its quality or to
fix bugs, etc. Maintaining the software could be hard for the
developer of the program and even harder for new project
members. A tool which helps in program comprehension
is valuable for everyone. Therefore our goal is to develop
such tool for Erlang [11].

Our research was focused on refactoring [2] at first.
Hence complex static analysis is necessary to guarantee a
meaning preserving source code transformation, thus we
have been developing RefactorErl [13] as a source code
analyser and transformer tool. The result of the static anal-
ysis could be useful for developers who want to understand
the behaviour of the program, or could simplify everyday
programming tasks. Therefore we have decided to develop
a query language [6] in RefactorErl to make the information
about source code available for programmers.

The paper is structured as follows: Section 2 provides a
description of our Erlang refactoring tool, RefactorErl; Sec-
tion 3 introduces different levels of information query in
RefactorErl; Section 4 describes examples how RefactorErl
can support code comprehension; Section 5 describes the
web based interface for using queries; Section 6 presents
further source code analysis applications available in our
refactoring tool. Finally, Section 7 describes related work,
and Section 8 is a conclusion.

2. REFACTORERL

RefactorErl [3] is a source code analyser and trans-
former tool originally developed to support refactoring of
Erlang programs. Refactoring [2] is a meaning preserving
source code transformation, i.e. to modify the source code
without altering its behaviour. Erlang [11] is a dynami-
cally typed functional programming language which was
designed to write high available, concurrent, distributed,
fault tolerant systems with soft real-time characteristic, like
telecommunication systems.

To guarantee a meaning preserving transformation in

case of a dynamic language is not straightforward, and lots
of static checks have to be satisfied. Therefore each refac-
toring is divided into two parts: checking side-conditions
and transforming the source code. To validate the side-
conditions different kinds of syntactic and static seman-
tic information is required about the software. Therefore
RefactorErl represents the source code in a Semantic Pro-
gram Graph that provides effective information retrieval
about the source code.

The Semantic Program Graph – SPG stores and ma-
nipulates the source code in a layered graph: it has a lex-
ical, a syntactic and a semantic layer. The lexical layer
contains the token information including whitespaces and
comments. The syntactic layer in based on an the abstract
syntax tree (AST). When the scanning and parsing process
is completed and the AST is ready, different semantic anal-
ysers construct the semantic layer, e.g. the function call
graph or the binding structure of variables etc. The se-
mantic analysers are part of the modular, incremental, asyn-
chronous analyser framework of the tool. This framework
makes it possible to run the analysis in parallel on the syn-
tactically independent parts of the program. The module,
function, variable, record and context analysers form the
base of the semantic layer and further complex analysis,
such as side-effect analysis, data-flow analysis, dynamic
function call analysis, etc.

RefactorErl is fully integrated with (X)Emacs and
Eclipse, it has an interactive and a scriptable Erlang con-
sole interface (called ri & ris), it is also available through
Vim or GVim and it has a Web based server interface to
serve multiple users.

3. QUERYING SEMANTIC RELATIONSHIPS

As already mentioned, RefactorErl represents the
source code in a Semantic Program Graph. This graph
is a rooted, directed graph with typed nodes and labelled
edges. Gathering information about the software is possible
through graph traversing. You can query semantic informa-
tion about the source code using a query language or draw
the graph to find semantic relationships in your program.

1SUPPORTED BY KMOP-1.1.2-08/1-2008-0002 AND ERICSSON HUNGARY

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

4 Static Analysis Based Support for Program Comprehension in Erlang

path() = [PathElem]

PathElem = Tag | {Tag, Index} | {Tag, Filter}

Tag = atom() | {atom(), back}

Index = integer() | {integer(), integer()} | {integer(), last}

Filter = {Filter, ’and’, Filter} | {Filter, ’or’, Filter} |

{’not’, Filter} | {Attrib, Op, term()}

Attrib = atom()

Op = ’==’ | ’/=’ | ’=<’ | ’>=’ | ’<’ | ’>’

Fig. 1 The syntax of path expression

3.1. Path Expressions

RefactorErl introduces a low level query language (sim-
ilar to XPath [15]) for retrieving static semantic and syn-
tactic information about the source code. This language
was originally designed to support information gathering
for refactorings, but it is also useful in code comprehension
to determine relationships in the source code.

The Semantic Program Graph can be traversed by eval-
uating a path expression starting from a given node. The
structure of the path expressions and the filters are writ-
ten according to the Erlang EDoc type specification syn-
tax [9] on Figure 1. The type path() is a sequence of
PathElem. A PathElem can be a graph edge label (Tag)
or a graph edge label with filtering options ({Tag, Index}
or {Tag, Filter}). The former case represents the labelled
graph edges to follow during graph traversal, and the latter
make it possible to select a subset of graph nodes during
the graph traversal according to the given filtering options.
It is possible to filter the result with syntactic or seman-
tic information ({Tag, Filter}) and also with the indices
of edges in the graph ({Tag, Index}). For instance, the
pair {esub, {6,8}} denotes the sixth, seventh and eighth
subexpressions of a graph node. The graph edges can be
traversed both forward (Tag = atom()) and backward di-
rection (Tag = {atom(), ’back’}).

The path expressions can be evaluated with the path/2
function, which takes two arguments: a starting graph node
node() and a path() to follow.

For example, the following function call queries the
functions defined in a given module:

path(ModuleNode,

[{form, {type, ’==’, func}}])

The disadvantage of the path expression is that it
strongly depends on the graph representation of Refactor-
Erl, and even the smallest change on the representation can
affect the path expressions. For instance, if we change the
label of an edge, then each path expression using that label
should be updated too. Therefore we have defined a few
library modules with functions which returns the path ex-
pressions, and a high level evaluation framework to execute
queries. The main element of the framework is the function
exec. Its basic behaviour is similar to the function path, it

takes a starting node and a path to execute.
For example, the queries that are related to modules

were defined in module reflib_module, and function/0
defines the previously used query:

-module(reflib_module).

...

records()->

[{form, {type, ’==’, record}}].

functions()->

[{form, {type, ’==’, func}}].

You can query the functions defined in the given module
ModuleNode by using the query execution framework and
the library functions:

exec(ModuleNode,

reflib_module:functions())

Using the exec/2 function you can also evaluate a se-
quence of queries from the start node (with functions seq/1
or seq/2) or evaluate more queries from the same start
node (with functions all/1, all/2, any/1, any/2).
For example, the following query returns both, the func-
tions and records defined in the module ModuleNode:

exec(ModuleNode,

all(reflib_module:functions(),

reflib_module:records())

3.2. Erlang Semantic Query Language

When using path expressions to query information it
is necessary to know the structure of the Semantic Pro-
gram Graph. We can not presume that the developer has
any precognition about our program representation, thus we
have defined a user friendly Erlang Semantic Query Lan-
guage [6] that does not assume any knowledge about the
semantic graph. It operates with Erlang language entities,
thus no prior knowledge is necessary in addition to the Er-
lang language.

The language was designed to provide help in the soft-
ware development process. It uses a formalism close to the
Erlang language concepts, thus a developer can easily learn
and adopt it.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 5

semantic_query ::= initial_selection [’.’ query_sequence]

query_sequence ::= query [’.’ query_sequence]

query ::= selection | iteration | closure |

property_query

initial_selection ::= initial_selector [’[’ filter ’]’]

selection ::= selector [’[’ filter ’]’]

iteration ::= ’{’ query_sequence ’}’ int [’[’ filter ’]’]

closure ::= ’(’ query_sequence ’)’ int [’[’ filter ’]’] |

’(’ query_sequence ’)+’ [’[’ filter ’]’]

property_query ::= property [’[’ filter ’]’]

Fig. 2 The structure of the semantic queries

The language concepts are defined according to the se-
mantic units and relationships of the Erlang language, e.g.
functions and function calls, records and their usage, etc.
The main elements of the language are the entities: mod-
ule, function, variable, expression, record, macro, etc. Each
entity has a set of selectors and properties. A selector is a
binary relation between entities, it selects a set of entities
that meet the given requirements. A property is a function,
which describes some properties of an entity type. For ex-
ample a function has a name and an arity property, and
it has a refs selector, which refers to its references. Thus
here the selector refs is a relation between functions and
expressions, and the mentioned properties refer to one of
the attributes of the entity. It is also possible to filter enti-
ties based on the properties. A filter is a boolean expression
to select a subset of entities. We can build filters by using
properties with boolean values, valid Erlang comparisons,
logical operators or embedded queries.

There is a special selector type in the language called
initial selector, which is the starting point of a semantic
query. The selectors of this type do not have an initial set of
entities to work with, so they do not belong to specific en-
tity types. The initial selectors get the current file and po-
sition as their parameters. Almost all of them start with the
character @ to indicate that they depend on a position. For
example the initial selector @var will look for a variable
at the given position. If no variable can be found the result
will be empty. Besides the position based initial selectors
there is another initial selector: mods. This selector returns
all of the modules that are loaded into the semantic program
graph.

The formal syntax of the language is described on Fig-
ure 2. A semantic query is a sequence of queries starting
with an initial selector and an optional filter. Queries are
separated with dots. A query is a

• selection (calculates the relationship with other enti-
ties based on selectors),

• iteration (iterates a query n times),

• closure (calculates the transitive closure of a query
sequence) or

• property query (selects a property of an entity).

4. SUPPORTING PROGRAM COMPREHENSION

Understanding and maintaining a huge software system
is a hard task, and it becomes more harder if the program-
ming language gives opportunity to use dynamic constructs,
like dynamic function calls. Therefore, a Semantic Query
Language have been developed for RefactorErl to provide a
tool for program comprehension of Erlang programs. This
query language offers help for better understanding the re-
lations among the program parts that are difficult, or almost
impossible to detect manually.

In the rest of this section we give case studies about how
to use the language to find specific information about the
source code.

4.1. Call Chain

Assume that during the development the return value
of a specific function could be changed. In this case we
have to lookup for every application of this function and
update the context according to the performed change. We
can get these references by evaluating the @fun.refs query.
But these modifications could spread through the call chain
further and further. To calculate the backward call chain we
can use the transitive closure on the function call graph. The
following query identifies the backward call chain for the
selected function: @fun.(called by)+, where @fun means
the selected function in the editor.

We can calculate the forward call chain with the query:
@fun.(calls)+. The result will contain those functions that
are called by the pointed function. During the debugging,
when the selected function returns with bad return value,
this query seems to be useful.

Calculating the full transitive closure can take a long
time on a large code base. If a shorter chain also holds use-
ful information, we can use the @fun.(calls)n query (where
n denotes the maximum length of the call chain).

4.2. Finding Dynamic Function References

In Erlang, the most commonly used dynamic construct
is the apply/3 BIF (built-in function). That function takes
three parameters: the name of the module, where the func-
tion is defined, the name of the function and a list, which
contains the actual parameters of the function. apply/3

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

6 Static Analysis Based Support for Program Comprehension in Erlang

evaluates the function with the given parameters. Under-
standing a program with apply(Mod, Fun, ArgList)

dynamic function calls could be hard, in case we can not de-
termine the exact value of the Mod, Fun, ArgList vari-
ables. Based on static data-flow analysis RefactorErl is able
to determine dynamic function references. Therefore when
the @fun.calls query is evaluated, the result also contains
functions using apply/3 to call @fun. However, it is also
possible to query only the dynamic references using the
@fun.dynref, @fun.dyncall, @fun.dyncalled by queries.

In everyday programming task, when we want to deter-
mine what the program does at a certain point of the pro-
gram, the @expr.dynfun query returns for us those func-
tions, that are possibly called by the pointed apply expres-
sion.

Lets consider the following Erlang code part, that con-
tains the definition of the sum function, which summarizes
the elements of a list, and the definition of test1 and
test2 functions, which call the sum function with a dy-
namic construct.

In the body of function test1 it is easy to detect that
the apply expression calls the sum function. In the body of
test2 it is not so easy to detect the called function manu-
ally, because it may be called outside the module (for exam-
ple, from mod2). Pointing the cursor to the apply expression
in function test2 and then running the query @expr.dynref
returns both test/1 and sum/2 – because of the function
calls in dup_sum/0.

-module(mod1).

-export([sum/2, test1/1, test2/3]).

sum([], Acc) ->

Acc;

sum([H|T], Acc) ->

sum(T, Acc + H).

test1(List)->

Fun = sum,

apply(mod1, Fun, [List, 0]).

test2(Mod,Fun, ArgList)->

apply(Mod, Fun, List).

-module(mod2).

dup_sum()->

mod1:test2(mod1, sum, [[1,2,3], 0]) ++

mod1:test2(mod1, test1, [[1,2,3]]).

4.3. Identifying Spawned Processes

Erlang has built in support for concurrent program
development. When asynchronous message passing and
blocking message receiving expressions are often used in
the source code, following the control and understanding

the behaviour of the program are difficult.
Lets consider the following function body:

fun1()->

...

receive

{msg, B} -> process(B);

{info, A} -> print(A)

end,

...

The execution of function fun1/0 depends on the received
message. If the message contains the message tag msg,
function process/1 is called. If the message contains the
tag info, function print/1 is called. To determine which
message was sent, we have to find the process sending the
message, so we have to find the spawn/3 function call that
started the execution of function fun1/0. A spawn/3 call
is similar to the apply/3 call, only it executes the given
function in a new process: spawn(Mod, Fun, Args).

A more complex query should be used if we want to de-
tect the function applications of the spawn/3 spawning the
function fun1/0:

mods[name = "erlang"]

.funs[(name = spawn) and (arity = 3)]

.refs[type = application]

[.param[index = 2]

.origin[(type = atom) and

(value = fun1)]]

This query first selects the erlang module, then selects
the function from this module with the given name (spawn)
and arity (3). Then .refs identifies the references of function
spawn/3 and filters out the function calls (applications)
from the result. This filtering is necessary, because there
are other types of function references, such as export or
import list references to the function. The selector .param
means that we want to query the parameters of an applica-
tion. Specially, in this query, we need the second parameter
of the application, so we select only the second parameter,
which is the name of the called function. Then, by using the
origin selector we can query the origin value of the param-
eter and filter out the atoms with value fun1. We determine
the origin values of the expression e with data-flow analy-
sis, thus the origin expressions are that expressions which
value can flow into expression e. (The query[.query] nota-
tion stands for the embedded queries. This special filter is
true if the result set of the embedded query is not empty.)

The presented semantic query identifies the spawn/3

function calls. The return value of the function is the pro-
cess identifier (Pid) of the newly created process. We have
to use forward data-flow reaching (@reach from Pid) to se-
lect the expressions where Pid identifies the recipient of a
message passing: Pid ! SomeMsg. We can filter the result
to select only the sent messages using the following query:
@reach.top[type=send expr].sub[index=2].

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 7

mods[name = "erlang"]

.funs[(name = spawn) and (arity = 3)]

.refs[type = application][.param[index = 2].origin[(type = atom) and (value = fun1)]]

.reach.top.[type=send_expr].sub[index=2]

Fig. 3 Finding received messages

Since the result of the spawn/3 call is the process iden-
tifier, you can concatenate the two queries: Figure 3.

We should note here that executing this query could re-
turn no result because not the fun1/0 was spawned, but the
function that calls function fun1/0:
parallel() ->

spawn(mod, fun2, []).

fun2() ->

...

fun1(),

...

In this case we have to query the revers call chain from
fun1/0 using @fun.(called by)+. In our example the re-
sult contains fun2/0, and we should replace the name fun1
with fun2 in the query on Figure 3.

4.4. Identify Callback Functions

The Erlang/OTP [12] framework provides a set of ap-
plications and standards designed to help the Erlang de-
velopers to build new applications. The gen_server be-
haviour of OTP was designed to provide the generic frame-
work of a client-server application, such as starting the
server, communicating with clients via message passing,
stopping the server, etc. The specific part of the client-
server application should be implemented in a, so-called,
callback module. For instance, the callback module im-
plements the specific functionality of the server: what
messages are allowed to be send, what is the response
of the server for a specific message, etc. The developer
can use gen_server:call/3 or gen_server:cast/3 for
synchronous and asynchronous messages sending to the
server, and all of these messages have to be handled in a
handle_call/4 or handle_cast/3 functions in the call-
back module implementing the specific behaviour and re-
sponse of the server.

The query language is also applicable for detecting typ-
ical programming mistakes. One of them is when a pro-
grammer uses the gen_server behaviour and forgets to
handle all of the messages or mistypes a message tag. The
user can first query the messages handled in callback func-
tions (2), then the messages used in gen server calls (1) and
compare them manually.

(1) mods[name = "gen_server"]

.funs[(name = call) and (arity = 2)]

.refs[type = application]

.param[index = 3]

(2) mods[name = "CallBackMod"]

.funs[(name=handle_call) and (arity=3)]

.args[index = 1]

4.5. Bad Smell Detection

Static analysis and the semantic query language could
help in bad smell detection, too.

For instance, the Semantic Query Language can be used
for dead code detection. In most cases the dead code frag-
ment is an unused function (1) or an unused variable (2):

(1) mods.funs[not .refs[type=application]]}

(2) mods.funs.vars[not .refs]

An other type of bad smells could be those server re-
quests which are unnecessarily synchronous, and it could be
rather asynchronous. That occurs in case of gen_server
usage, when we use the gen_server:call/3 function and
its return value is ignored. This is a synchronous server
request, which waits for a response from the server side;
sometimes it is necessary for synchronization, but in most
cases the only reason is to obtain the result. You can use
the following query to check whether the return value of
the result is used anywhere:

mods[name=gen_server]

.funs[(name=call) and (arity=3)]

.refs.reach

The inefficient usage of the ++ operator can be a bad
smell code, too. This operator when concatenates two lists,
makes a copy of its left hand side operand. When this op-
erator is repeated during list processing, and its left hand
side operand is an ever growing list, this list will be copied
again and again. This kind of suspicious code could be in-
efficient in case of long lists. The following query helps to
find the suspicious lists, but the length of the left hand side
list depend on the actual value of the list:

mods.funs

.exprs[value=’++’]

.sub[index=1][.origin[type=cons]]

4.6. Complexity Metrics

The cost of posterior changes and modifications in the
program code depends highly on the structural complexity
of the source code. Measuring complexity is important, as
it can indicate the weaknesses of the program, or it can re-
veal, at an early phase, that testing is unattainable, or its cost
is too high. Measuring complexity also helps us to give an

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

8 Static Analysis Based Support for Program Comprehension in Erlang

estimation of the cost of servicing and changing the source
code.

Numerous structural complexity metrics have been de-
veloped for Erlang in RefactorErl. A query language for
calculating complexity metrics on the source code is em-
bedded in the RefactorErl framework [4], but the structural
complexity metrics are also available through the semantic
query language. The metrics appear as properties for mod-
ules and functions. The usage of these metric properties is
identical with the usage of the other properties, accordingly
we can use a metric to query directly its value, furthermore
we can build a filter expression with its help.

An important field of applicability of metrics is check-
ing design rules. There are simple rules, such that

• Rule1: No module should contain more then 1000
LOC or

• Rule2: Do not use more than 80 characters in a line.

The queries mods[line of code ≥ 1000] and
mods.funs[max length of line ≥ 80] return the modules
and functions breaking the previous rules.

There are some other more complex design rules to fol-
low. To check these rules manually is s not straightforward,
for instance:

• Rule3: Every function is tail recursive.

You can select the functions breaking this rule using the fol-
lowing query: mods.funs[is tail recursive=non tail rec].

5. WEB BASED INTERFACE FOR SEMANTIC
QUERIES

Besides the Emacs [10] integration, RefactorErl in-
cludes an interactive and a scriptable shell interface that al-
low the user to run and display semantic queries. In the
latter interface, query results are able to be utilized in fur-
ther computations and other queries. In addition, there is
a quite different, third option to run semantic queries: the
web-based interface, due to its server-client manner, allows
many programmers to access semantic information simul-
taneously via web browser.

Technically, the refactoring tool along with a web server
run on a dedicated server computer and they communi-
cate each other. By this, a possibly large amount of com-
mon source code can be loaded into the tool running on a
high-performance server and the semantic content becomes
available to all the programmers. The centralised solution
allows arbitrarily many clients to execute semantic queries
on a shared code base. The web server passes the query re-
quests to the tool, and the received results are sent back to
the clients via HTTP.

The web based interface has many more benefits and
implements additional functionality. For instance, an ex-
pression editor guides us in composing queries, by supply-
ing with suggestions of possible continuations. For exam-
ple, when examining dynamic connections of a given func-
tion and typing

mods[name==foo].funs[name==bar].dyn

the editor suggests us to continue either with dynrefs, dyn-
calls, or dyncalled by. This autocomplete mechanism helps
new RefactorErl users to use the language, and also for all
developers to speed up query construction and avoids con-
structing wrong queries.

There is support for saving query strings as well as for
storing and displaying results of previously run queries.
Stored queries can be browsed and re-run. When one ap-
points a query for re-running, the tool checks whether the
code has been modified since the time of save: if no changes
have been made then the stored result is displayed, other-
wise the query gets indeed executed. Stored queries are
shared and are available for every client, however, logged in
users are able to hide queries belonging to others and only
browse own data. After the result of a query appears, one
can select resulting entities to be displayed: the source code
of the containing module is shown and the specific entity is
highlighted.

Last but no least we have the opportunity to visualize the
result of a frequently used query: mods.funs.(calls)+. Its re-
sult contains all the possible call chains of the program. A
proper composition of these call chains describes the call
graph of the program. The tool can construct a graph de-
scription from the result of the former query, which can
be visualised on the web page. Cyclic call dependencies
(marked with * in the textual result) are colour highlighted
in the graph, making the call graph comprehension easier.

6. FURTHER SOURCE CODE ANALYSIS WITH
REFACTORERL

Besides performing refactoring transformations and
performing semantic queries the RefactorErl framework
can be used to perform further analysis on the Erlang source
code. Based on the source code representation and the addi-
tional semantic information in the RefactorErl graph model
module and function clustering [7] can be performed.

6.1. Clustering

In large projects it is common that the structural com-
plexity of the software becomes unmaintainable. It can
be avoided by design decisions in the right time, other-
wise design failures must be fixed with posterior correc-
tions. Sometimes the code grows to the magnitude that no
programmer is fully aware of the structure of the program
code. Such code is hardly maintainable, therefore the en-
tities must be grouped into smaller sets, called clusters, so
that each cluster is small enough to be maintained effec-
tively. The RefactorErl calculates a set of possible groups
based on the semantic connections of the program entities
and makes a suggestion for the user. If the user accepts
the actual suggestion, using the functionality of the tool the
user can perform the transformation.

6.2. Cyclic dependency analysis

Besides the call chain calculation and visualisation
(Section 5) the tool provides a platform for dependency and
cyclic dependency calculation among functions and mod-
ules. Module lime depends on module plum , if there is a

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 9

function pear in lime and a function apple in plum where
pear depends on apple. Function pear depends on func-
tion apple, if pear calls apple. The result of this depen-
dency analysis can be visualised in a graph. The nodes
of the graph are modules and function, the edges of the
graphs are the dependencies. The cyclic dependency is a
directed cycle in the graph. There are different levels of
analysis: one results only module dependencies, the other
results both module and function dependencies.

7. RELATED WORK

Software maintenance in different aspects of a software
life-cycle is a well know topic. A number of papers deal
with the problem of software evolution [5], but just a few
from that with the presence of code comprehension [1].

Understanding and maintaining the source code writ-
ten by other developers in large software project is nerve-
racking, time consuming and seems almost impossible.
This task can be speeded up by using a tool which per-
forms static analysis on the source code and strain off
only the relevant information for the user. Several current
projects aim to develop a code understanding tool for dif-
ferent programming languages. These projects are related
mainly with OOP programming languages or C, and most
of them have been developing a commercial product. For
instance, the tool Understand [14] is a source code com-
prehension and documentation tool for C/C++. It provides
support for showing call hierarchies, call/callby trees and
include/includedby trees and also for HTML documenta-
tion generation. CodeSurfer [8] is a similar commercial
program-understanding tool for C/C++ that makes manual
review of code easier and faster. It provides an interactive
browser to show the result of different static analysis, such
as data-flow analysis, control dependency analysis, impact
analysis, etc.

8. CONCLUSION

Hence code comprehension has an influence on soft-
ware maintenance a tool supporting code comprehension
is useful in everyday life programming. In this paper we
introduced the different layers for Erlang code representa-
tion, and then we focused on the semantic query language
designed for querying different kinds of information about
the Erlang programs. Then we presented industrial mo-
tivated problems and semantic queries to help in solving
them and to show the usability of static source code analy-
sis with RefactorErl.

These queries based on semantic relationship of Erlang
programs, so they could result a more accurate and possibly
smaller result set than a manually performed string pattern
matching. At last but not at least, using queries is less time
consuming than searching manually.

ACKNOWLEDGEMENT

The Semantic Query Language was designed by the
RefactorErl group. We want to thank for Lászlo Lövei for
the initial design ideas and Lilla Hajós for the current im-

plementation.

REFERENCES

[1] ETZKORN, L. H. – BOWEN, L. L. – DAVIS, C. G.:
An Approach to Program Understanding by Natural
Language Understanding, Natural Language Engineer-
ing, vol. 5, no. 1, 1999, pp. 1–18.

[2] FOWLER, M. – BECK, K. – BRANT, J. – OPDYKE,
W., – ROBERTS, D.: , Refactoring: Improving the De-
sign of Existing Code, Addison-Wesley, 1999.

[3] HORVÁTH, Z. – LÖVEI, L. – KOZSIK, T. – KITLEI,
R. – NAGY, T. – VǴH, A. – TÓTH, M. – KIRÁLY,
R.: Modeling semantic knowledge in Erlang for refac-
toring, Proceedings of the International Conference on
Knowledge Engineering, Principles and Techniques,
KEPT 2009, Cluj-Napoca, Romania, Studia Universi-
tatis Babeş-Bolyai, Series Informatica, vol. 54, Sp. Is-
sue, 2009.

[4] KIRÁLY, R. – KITLEI, R.: Application of complexity
metrics in functional languages, In Proceedings of the
8th Joint Conference on Mathematics and Computer
Science, Komrno, Slovakia, Jul. 2010.

[5] KOLLÁR, J. – PORUBÄN, J. – VÁCLAVÍK, P. –
BANDÁKOVÁ, J. – FORGÁC, M.: Adaptive Lan-
guage Approach to Software Systems Evolution, Inter-
national Multiconference on Computer Science and In-
formation Technology: 1st Workshop on Advances in
Programming Languages (WAPL’07), Wisla, Poland,
October 15–17, Polish Information Processing Society,
2007, 2, pp. 1081–1091.

[6] LÖVEI, L. – HAJÓS, L. – TÓTH, M.: Erlang Seman-
tic Query Language, In Proceedings of the 8th Interna-
tional Conference on Applied Informatics, ICAI 2010,
Eger, Hungary, Jan. 2010.

[7] LÖVEI, L. – HOCH, C. – KÖLLÖ, H. – NAGY, T.
– NAGYNÉ-VÍG, A. – HORPÁCSI, D. – KITLEI, R.
– KIRÁLY, R.: Refactoring Module Structure, In Pro-
ceedings of the 7th ACM SIGPLAN workshop on Er-
lang, pages 8389, Victoria, British Columbia, Canada,
Sep. 2008.

[8] GRAMMATECH CodeSurfer Homepage, http://www.
grammatech.com/products/codesurfer/ overview.html

[9] EDoc, http://www.erlang.org/documentation/doc-5.4.
2.1/lib/edoc-0.1/doc/html/index.html

[10] GNU Emacs Homepage, http://www.gnu.org/ soft-
ware/emacs/

[11] Erlang Homepage, http://www.erlang.org

[12] Erlang OTP documentation, http://www.erlang.org/doc

[13] RefactorErl, https://plc.inf.elte.hu/erlang

[14] Understand - Source Code Analysis & Metrics,
http://www.scitools.com/ucpp.html

[15] World Wide Web Consortium: XML Path Language
(XPath), Version 1.0. W3C Recommendation, Nov. 16,
1999. http://www.w3.org/TR/xpath/

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

10 Static Analysis Based Support for Program Comprehension in Erlang

Received June 13, 2011, accepted September 12, 2011

BIOGRAPHIES

Melinda Tóth is a second year PhD student. In 2009 she
graduated (MSc) with distinction at the Faculty of Informat-
ics at Eötvös Loránd University. She has been working with
Erlang since 2007 with the RefactorErl project. Both her
bachelor and master theses were based on Erlang and func-
tion related refactorings. Her PhD research field is about
data and control flow graphs for functional languages, and
impact analysis of refactorings.

István Bozó is a second year PhD student. He received his
master’s degree in Computer Science in 2009 from Eötvös
Loránd University. Both his bachelor and master theses
were focused on Erlang and function related refactorings.
His PhD research field is impact analysis of Erlang pro-
grams and measuring the impact of refactoring source code

transformations, and test case selection.

Judit Kőszegi is a first year PhD student at the Eötvös
Loránd University. In 2010 she graduated (MSc) at the Fac-
ulty of Informatics, Eötvös Loránd University, Budapest.
Her scientific research is focusing on static analysis and
formal verification of programs written in functional lan-
guages, she plans to defend her PhD thesis in 2013.

Zoltán Horváth is Professor at, and Head of, the Depart-
ment of Programming Languages and Compilers and Vice-
Rector for International Affairs at Eötvös Loránd Univer-
sity in Budapest, Hungary. He defended his habilitation
thesis in 2004; the title of his thesis was “Verification and
Semantics of Mobile Code Written in a Functional Pro-
gramming Language”. Current topics researched under his
supervision include language design, construction of pro-
gramming language processing tools, formal methods and
scheduling in grids. He has been supervising the Refactor-
Erl project since 2005.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

