
Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011, 17–20, DOI: 10.2478/v10198-011-0024-9 17

A CLIENT-SERVER MODEL FOR EDITING ODF DOCUMENTS ON MOBILE DEVICES

Zoltán HORVÁTH∗, Imre BARNA∗, PÉTER BAUER∗, Kinga BERNÁD∗, Zsolt HERNÁTH∗∗,
Balázs KŐSZEGI∗, Gergely KOVÁCS∗, Tamás KOZSIK∗, Zsolt LENGYEL∗∗∗,

Róbert ROTH∗, Sándor SIKE∗∗∗, Gábor TAKÁCS∗
∗Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter
sétány 1/C, H-1117 Budapest, Hungary, e-mail: {hz, bib, bauer p, bekraai, pma, sanyisd, kto, rorraai, baller}@inf.elte.hu

∗∗Department of Information Systems, Faculty of Informatics, Eötvös Loránd University,
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary, e-mail: hernath@inf.elte.hu

∗∗∗Department of Software Technology and Methodology, Faculty of Informatics, Eötvös Loránd University,
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary, e-mail: {lengyel, sike}@inf.elte.hu

ABSTRACT
Open Document Format (ODF) is a popular office document format accepted by most of modern desktop office suites. The aim

of our project is to create a software suite of specialized mobile ODF schemata and editors to provide support of editing ODF-based
documents on mobile devices. Number of tests have been carried out with prototype tools focusing on the resource need of transferring,
visualizing and editing simple ODF documents. Based on test results we have found that the limited capacity of mobile devices
(compared to desktop computers) implies that documents in their original form cannot be handled on mobile devices. In this paper we
investigate the methods and background of ODF-based document transfer and edition in a client-server model.

Keywords: mobile office, mobile software, ODF, XML, RELAX NG, schema, schema transformation

1. INTRODUCTION

The continuous evolution of mobile devices provides
the possibility of implementing mobile software to handle
office documents. Open Document Format (ODF) is an
open standard and accepted by numerous office suites on
desktop computers. The aim of our project is to establish
a client-server software model enabling document distribu-
tion over computers and mobile devices, and editing office
documents on the mobile site.

We implemented special editor prototypes to measure
the editing capabilities of a wide range of mobile devices.
We generated a variety of documents of different complex-
ity and size, and measured the resource need of different
editor operations performed on test documents through a
scripting interface [1]. ODF documents’ complexity can be
characterized by the narrowest schema derivative of ODF
schema the document is conformed to.

Prototypes have proved that mobile devices with differ-
ent capabilities (processor capacity, display size, memory,
software platform) are able to handle documents of differ-
ent complexity and size. This paper focuses on document
transformation needed to distribute ODF documents over
mobile devices and desktop computers. Distribution in-
cludes extracting a part or a whole document from desktop
site, transferring extractions to mobile site, edit them there
and transfer them back.

ODF as a set of XML documents [7] is described by
Open Document Format Specification [2, 3] in terms of
a RELAX NG [4–6] schema. The complexity of doc-
uments to be transferred to a mobile device can be tai-
lored by transforming the original ODF schema to a deriva-
tive, which excludes certain semantic structures. Different
derivatives are required for different devices and user re-
quirements. Schema derivatives provide the rules for trans-
forming the original document to the one which on the one
hand matches user requirements, on the other hand suits to
specific device capabilities.

Since it is not possible that each set of user requirements
could meet the capabilities of each unique device, a (rela-
tively small) number of document class, called profiles, has
been introduced to classify user requirements and device
capabilities.

The rest of the paper is organized as follows. In sec-
tion 2 document distribution is detailed. Section 3 discusses
profiles and the profile selection based on information of the
mobile device. The method of schema transformation is de-
tailed in section 4. We discuss document transformation in
section 5. Our conclusion is given in section 6.

2. DISTRIBUTING ODF DOCUMENTS OVER
SERVER AND CLIENT

In our approach editing documents on a mobile plat-
form is achieved by document independent preparations,
and handling the document in question.

Document independent preparation to establish proper
software environment:

1. Profile selection: Mobile users select the proper pro-
file considering the capacity of the mobile device and
their document handling’s requirements. The deci-
sion process can be supported by a simple program
that discovers the properties of the given device, and
suggests an appropriate profile. The user can override
this suggestion risking bad performance for a wider
spectrum of features to access. This selection should
be made once, before the first use of the mobile edi-
tor, and may be overridden later.

2. Schema derivation: A schema for each profile de-
fined should be derived by transforming the original
ODF schema using a macro language under devel-
opment. Derived schemata keep conformity against
RELAX NG grammar. Schema transformation is

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



18 A Client-Server Model for Editing ODF Documents on Mobile Devices

performed only once, and has to be repeated only if
the ODF schema or the profile set is changed.

Handling document, an interaction between desktop
computer and mobile device:

1. Document transformation: When the mobile device
connects to the computer and requests a given docu-
ment, the server site identifies the profile and trans-
forms the document by using the appropriate schema.
Transforming the document those parts of the doc-
ument that are not conform against the schema se-
lected are replaced by unique, typed markers. Re-
placed parts are stored along with their markers in a
separate document on the computer.

2. Editing on the mobile device: The transformed doc-
ument is sent to the mobile device, where it can be
viewed and changed by the client program. As mark-
ers are typed, they can be displayed as icons if appro-
priate. During the edition process the document con-
formity against the derived schema is kept. The latter
guarantees that the markers can be replaced later by
the original components. The new document is sent
back to the computer.

3. Document reconstruction: Markers are replaced by
the original components and the result is a new doc-
ument that is valid against the ODF schema.

3. PROFILE SELECTION

Mobile devices perform differently. Some have lots of
memory, some have fast processors. Others may lack good
hardware, but their optimized software still provide a good
performance. All these factors contribute to the overall per-
formance of a device, and none of them may be neglected
when estimating the performance of our software with dif-
ferent profiles.

The software platform chosen as the Java Micro Edition
that hides low-level hardware information, e.g. the speed
of the processor, the amount of internal memory available
etc. The capabilities of a mobile device should therefore be
estimated by benchmarking the cost of the operations to be
performed. Building a resource model [8] consists of three
steps:

1. Identifying schema-related operations: Different
profile-associated schemata provided for the user re-
quirements involve working with different objects
like tables, graphics, paragraphs, charts etc. Work-
ing with an object means executing some of the basic
operations. In each schema derivations we determine
the frequency of each basic operation. This has to be
done only once for each schema.

2. Identifying device profile: Before running the mobile
editor for the first time, a series of tests are executed
on the mobile device to measure the performance of

different basic operations. We have defined the ba-
sic operations required for editing documents, and
grouped into several categories as follows:

• File operations – reading and writing files from
and onto internal memory or memory card,
parsing XML, extracting and compressing ZIP
files.

• String operations – string concatenation, sub-
string look-up.

• Display operations – displaying various user in-
terface elements.

3. Offering a schema derivative: Based on the costs
of basic operations and their frequency, we can es-
timate the total amount of costs concerning a derived
schema. By defining a threshold based on the de-
vice profile, schema derivatives can be offered for
the user. Users have the possibility to override the
schema selection manually, but that may cause a
lower application performance.

4. SCHEMA TRANSFORMATIONS

Before all, it is important to see that a RELAX
NG grammar defines document frames by using pat-
terns <define...> ... </define> and inside that
frame patterns <element...> ... </element>, and
<attribute...>...</attribute> for the latter also
permitting the form <attribute.../>. Due to that any
schema transformation resulting in some derivative can be
composed by a particular sequences of of schema transfor-
mation primitives defined as follows:

1. removing <define...> ... </define> patterns by
name, together with all <ref.../> patterns refer-
encing the same name,

2. introducing new <define...> ... </define> pat-
terns,

3. removing <element...> ... </element> patterns
by name, together with all <ref.../> patterns refer-
encing the same name,

4. introducing new <element...> ... </element>

patterns,

5. removing <attribute...> ... </attribute>

or <attribute.../> pattern, together with all
<ref.../> patterns referencing the same name,

6. introducing new <attribute...> ...

</attribute> or <attribute.../> patterns,

7. removing content-less patterns (like <choice>

</choice>, etc), occasionally resulted by remove
operations numbered 1, 3 and 5.

It is obvious that any schema transformation can be de-
scribed as a particular sequence of the primitives above. As

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 19

previously stated, for each profile there is an associated de-
rived schema. The question is how particular profiles can
be achieved for users. One way is to predefine a collec-
tion of editor profiles and, for users, the only possibility to
select one of them. The disadvantages of this way is that it
makes a strong restriction for users. Another way is to allow
the user to freely describe a desired schema transformation
as a particular sequence of the primitives above. This way
seems a better one, but only for those users who are famil-
iar with ODF grammars. An ideal way would be to provide
a formal document frame and style description system in
strong relationship with schema transformation primitives
in which users may and can freely construct their ideal
document style and frame. This way is even much rather
ideal, since it offer the possibility of computer controlled
automatic generation of the adequate macro definitions and
embedding guaranteeing derived schema’s consistency and
conformity.

5. DOCUMENT TRANSFORMATION

A document is transformed before transferring to the
mobile device according to the RELAX NG schema relat-
ing to the selected profile. Transformation takes the docu-
ment and the RELAX NG schema as input, and outputs two
files:

• The transformed document contains typed markers
each equipped with a unique ID.

• Marker definition file is an XML document contain-
ing pairs of markers and XML fragments. When
committing mobile site changes, each marker is re-
placed with the associated XML fragment. Since
markers are typed the document conformity against
ODF schema is guaranteed.

The transformation is done by validating the document
against the schema derivative. Whenever a document frag-
ment is found (a sub-tree in the graph representation of the
document) which is not allowed by the derived schema, we
place a typed marker with a unique ID in its place while
saving the replaced document fragment in the marker defi-
nition file associated with the marker. This means we pro-
vide a bijection between markers and document fragments.

Here we present a basic example. Let the input docu-
ment fragment be:

. . .
< t a b l e name=” F i r s t T a b l e ” s t y l e =” F i r s t T a b l e ”>

<column s t y l e =” F i r s t T a b l e .A” />
<column s t y l e =” F i r s t T a b l e . B” />
<row s t y l e =” F i r s t T a b l e .1”>

<c e l l s t y l e =” F i r s t T a b l e . A1”>
H e l l o
< l i s t >

<i tem>F i r s t </ i tem>
<i tem>Second </ i tem>

</ l i s t >
</ c e l l >
<c e l l s t y l e =” F i r s t T a b l e . B1”>

World
</ c e l l >

</row>
</ t a b l e >
. . .

Let us suppose that the schema does not allow placing a list
inside a table. The transformed document is as follows:

. . .
< t a b l e name=” F i r s t T a b l e ” s t y l e =” F i r s t T a b l e ”>

<column s t y l e =” F i r s t T a b l e .A” />
<column s t y l e =” F i r s t T a b l e . B” />
<row s t y l e =” F i r s t T a b l e .1”>

<c e l l s t y l e =” F i r s t T a b l e . A1”>
H e l l o
<marker t y p e =” l i s t ” i d =”0” />

</ c e l l >
<c e l l s t y l e =” F i r s t T a b l e . B1”>

World
</ c e l l >

</row>
</ t a b l e >
. . .

The marker definition file:

. . .
<m a r k e r D e f i n i t i o n >

<marker t y p e =” l i s t ” i d =”0” />
< l i s t >

<i tem>F i r s t </ i tem>
<i tem>Second </ i tem>

</ l i s t >
</ m a r k e r D e f i n i t i o n >
. . .

6. CONCLUSIONS

Our idea was to equip mobile devices schema-
controlled office-document editor. Our mobile site editor
prototypes’ measurement results concluded that there is no
possibility providing the same schema-controlled editor for
each mobile platform unless we restrict its operation set and
style capabilities according to the most primitive mobile de-
vice environment. As a consequence we should provide
an editor which can adapt to all-time document complex-
ity and mobile device resources. Schema-controlled edi-
tion of documents needs to perform ODF schema transfor-
mations along with schema-conform document transforma-
tions. There is a need for a user-friendly formal document-
frame and document-style base set from which users can
freely build their desired document structure and desired
style, which can be translated into a sequence of schema
transformation primitives.

ACKNOWLEDGEMENT

Supported by National Innovation Office under
TECH 08-A2/2-2008-0089.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



20 A Client-Server Model for Editing ODF Documents on Mobile Devices

REFERENCES

[1] BARNA, I. – BAUER, P.– BERNÁD, K. – HERNÁTH,
Zs. – HORVÁTH, Z. – KŐSZEGI, B. – KOVÁCS, G.
– KOZSIK, T. – LENGYEL, Zs. – ROTH, R. – SIKE,
S. – TAKÁCS, G.: ODF Mobile Edition – Towards the
development of a mobile office software, to appear in
Proceedings of ICAI 2010 – 8th International Confer-
ence on Applied Informatics.

[2] OASIS Open Document Format for Office
Applications (OpenDocument) TC – Open
Document Format Specification, 2006–2010.
http://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=office

[3] ISO/IEC 26300:2006 Information technology – Open
Document Format for Office Applications (OpenDocu-
ment) v1.0, 2006. http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=43485

[4] OASIS RELAX NG Committee Specification,
December 3, 2001. http://www.relaxng.org/spec-
20011203.html

[5] ISO/IEC 19757-2:2003 Information technology –
Document Schema Definition Language (DSDL) –
Part 2: Regular-grammar-based validation – RE-
LAX NG. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=37605

[6] ISO/IEC 19757-2:2008 Information technology –
Document Schema Definition Language (DSDL) –
Part 2: Regular-grammar-based validation – RE-
LAX NG. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=52348

[7] Extensible Markup Language (XML) 1.0 (Fifth Edi-
tion), W3C Recommendation, November 26, 2008.
http://www.w3.org/TR/xml/

[8] MONCINELLI, F. – INVERARDI, P.: A Resource
Model for Adaptable Applications, in: Proceedings of
the 2006 international workshop on self-adaptation and
self-managing systems, Section: Models, ACM Press,
New York, 2006, pp. 9–15.

Received June 28, 2011, accepted September 14, 2011

BIOGRAPHIES

Zoltán Horváth received his MSc in mathematics, physics
and computer science in 1986 at Etvs Lornd University
(Budapest, Hungary). He received his PhD (title: ”A Rela-
tional Model of Parallel Programs”) in 1996 and completed
his habilitation process (title: ”Verification of Distributed
Functional Programs”) in 2004 at the same university. He
is head of Department of Programming Languages and
Compilers since 2003, and full professor since 2008. Be-
tween 2007 and 2010 he was vice-dean for scientific affairs
and international relations of Faculty of Informatics. Since
2010 he is vice-rector for international relations. He is the
leader of the Budapest Associate Partner of EIT ICT Labs.

Zsolt Hernáth received his MSc degree in mathematics
in 1973 from Etvs Lornd University, Faculty of Natural
Science (Budapest, Hungary). He received his PhD de-
gree (title: ”On the Role of Data in Modelling the Real
World: Data and what are behind them”) in 2008 at the
Faculty of Informatics of the same university. He was
involved in a number of research and development enter-
prises, several industrial and business projects in Hungary
and abroad. From 1980 till 1996 he worked for Etvs Lornd
University Computer Centre. In 1990 he was invited by
University Paderborn to take part in JESSI (Joint European
Sub-micron Silicon Initiative) Common Framework (1990-
1995) as guest researcher and developer. Since 2003 he
has been working at the Department Information Systems
of Faculty of Informatics of Etvs Lornd University, since
2008 as a senior research fellow.

Zsolt Lengyel received his MSc in computer science in
2010 at Etvs Lornd University (Budapest, Hungary). He
entered the postgraduate school of the same university,
where he is a PhD student.

Sándor Sike received his MSc in computer science in 1988
at Etvs Lornd University (Budapest, Hungary). He received
his PhD (title: ”Computer-Based Constrained Chemical
Structure Generation in Three Dimensions” in 1992 at the
University of Leeds (United Kingdom). He started work-
ing at Etvs Lornd University in 1988, and after finishing his
PhD at Leeds he returned. He is an associate professor at
Etvs Lornd University since 1996.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=43485
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37605
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37605
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52348
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52348
http://www.w3.org/TR/xml/

