
Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011, 21–25, DOI: 10.2478/v10198-011-0025-8 21

EVOLVING METAMODELS IN ASPECT-ORIENTED MANNER

Michal VAGAČ∗, Ján KOLLÁR∗∗, Sergej CHODAREV∗∗
∗Department of Informatics, Faculty of Natural Sciences, Matej Bel University,

Tajovského 40, 974 01 Banská Bystrica, Slovak Republic, e-mail: michal.vagac@gmail.com
∗∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, e-mail: jan.kollar@tuke.sk

ABSTRACT
Multi-layered software architecture allows to allocate different responsibilities to different layers. When such a responsibility is to

react about other part of the system, we can speak about a metalevel architecture. Such an architecture consists of at least two levels–a
base level and a metalevel, where the metalevel reasons about the base level. A causal connection associates the base level objects
with the metalevel objects and guarantees that changes to the metalevel are reflected into corresponding changes to the base level and
vice-versa [14].

This paper presents an innovative approach to handle casual connections in metalevel architectures. The base level is represented
by a legacy application. The metalevel contains a metamodel. The metamodel represents certain feature of the base level application.
Aspect-oriented techniques are used to add a new code to the base level application. This code manages casual connection between
the base level and the metamodel at the metalevel.

Keywords: aspect-oriented programming, metalevel architecture, metaprogramming, software change

1. INTRODUCTION

In a multi-layered software architecture, different re-
sponsibilities of an application are allocated to different lay-
ers. This is useful especially in more complex applications,
where it makes maintenance easier. When one layer is sub-
ject of another layer, we can speak about metalevel archi-
tecture. Then metalevel controls, handles, or describes the
base level.

In general, a metalevel architecture consists of different
levels, where one level is controlled by another one (Fig.
1). From the view of object-oriented programming, where
a program is represented as a set of objects, it is possible
to define several terms in area of metalevel architectures.
Application describing problem being solved is located at
domain level. Domain objects are objects of this appli-
cation. These objects describe the problem being solved.
A domain object protocol defines operations provided by a
domain object. A domain operation is an operation from a
domain object protocol.

Fig. 1 Metalevel architecture from view of object-oriented
programming

Besides the domain level there is a metalevel which pro-
vides space for metaobjects. Metaobjects describe, control,

implement or modify domain objects. In the case of a mul-
tilevel architecture, a metaobject can control other metaob-
jects. A metaobject protocol (MOP) is object-oriented in-
terface allowing communication between objects at the do-
main level and objects at the metalevel. It defines appli-
cation programming interface which can be used to work
with metaobjects. Metaobject protocols in a programming
language are interfaces to the language which provide abil-
ity to change language behavior and language implemen-
tation [9]. Finally, a metaobject operation is an operation
from the metaobject protocol.

The metalevel contains internal structure (metadata)
which describes the base level. The metalevel is casually
connected to its base level, when any change in the base
level reflects in the corresponding change of metadata and
vice-versa–any change in metadata will be reflected at the
base level.

The term meta in general expresses information about
information. Metaprogramming relates to programs which
manipulate other programs. Metalevel contains data which
are representing related part of base level. If this represen-
tation always corresponds to real state of the base level, we
can say that the base level and the metalevel are casually
connected.

Aspect-oriented programming allowed better separation
of such concerns which are impossible to describe by avail-
able language constructs (as classes or methods) used to
modularize code. These concerns, named crosscutting con-
cerns, are impossible to modularize from its essence, since
they crosscut basic system functionality. This results in tan-
gled code which it is difficult to understand and reuse. Two
concerns crosscut when they have to be composed differ-
ently, but at the same time they must be coordinated [10].

An aspect represents a modular unit consisting of the
pointcut and the advice. Join points are points in which an
aspect crosscuts a basic program. By defining a pointcut,
it is possible to define a set of join points. Advice allows
to define an action executed at points defined by the point-

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



22 Evolving Metamodels in Aspect-Oriented Manner

cut. Composing defined aspects and the affected program
is a task of the aspect weaver. The most common way of
aspect implementation is weaving the aspect code into the
program code.

Besides clearer modularization possibilities, aspect-
oriented programming allowed adding a new functionality
to an existing code.

This paper describes innovative approach which uses
aspect-oriented techniques to handle casual connection be-
tween the base level and the metalevel. A base level ap-
plication is advised with a new code which gathers runtime
information about the application, and after change request
it introduces a new code which extends (or replaces) the
original one.

The rest of the paper is organized as follows: Section 2
describes our method of casual connection utilizing aspect-
oriented techniques; Section 3 describes an experimental
tool created according to the method proposal. Section 4
provides a brief overview of topics related to our work. Fi-
nally, Section 5 draws our conclusions resulting from the
text presented.

2. CASUAL CONNECTION USING AOP

From the user’s point of view, an application is repre-
sented by a set of functional parts–features. Each feature
represents a well-understood abstraction of a system’s prob-
lem domain [18]. It exists at runtime as a collaboration of
objects exchanging messages to achieve a specific goal.

The method proposed uses a multilevel architecture to
model relation between application feature implementation
and its model. The base level is represented by a legacy ap-
plication. The metalevel contains different types of meta-
models of selected features from the base level. When
handling casual connection between the base level and the
metalevel (feature and its implementation), two situations
have to be handled: information transfer from the base level
to the metalevel and vice-versa–information transfer from
the metalevel to the base level.

When handling information transfer from the base level
to the metalevel, it is required to get all information about
feature implementation in the base level application. Since
this information must be gathered during runtime, it is im-
possible to use any static code analysis techniques. Instead,
aspect-oriented programming ability of extending existing
program with a new code is used. By using aspect-oriented
programming, the base level application is extended with
a code which monitors execution of the base level appli-
cation. The new code is added to those parts of the appli-
cation which relates to the feature implementation. While
running the base level application, monitoring code gathers
all needed information and sends it to the metalevel. At the
metalevel, according to this information, the metamodel is
created or updated.

Handling information transfer from the metalevel to the
base level is more difficult. After metamodel change, it is
required to alter the base level application. Changing in
general a running program is a difficult task. Among other
things, the biggest issues to solve are handling of active
threads and transfer of a program state. Replacing exist-

ing class with another one can break the functionality of the
original program (e.g. when removing methods which are
used by other classes). The method proposed uses aspect-
oriented techniques also for application of change. With
help of adding a new code to an existing application, it is
possible to use around advice to avoid execution of selected
parts of original code. Instead of original code, it is possi-
ble to get executed a new code implementing change (Fig.
2). This way it is possible to apply required changes with-
out need of solving problems related to general dynamic
software change.

Fig. 2 Original sequence of statements a) is advised with a new
code b). This code avoids statement Sn and instead uses the new

statement S′n

.

Fig. 3 Overall system architecture–relation between the base
level and the metalevel

Fig. 3 describes the overall system architecture. The
base level application is extended with aspects which mon-
itor its execution and change its behavior. While executing
the application, the monitor aspect is gathering data about
execution. These data are sent to the metalevel. There the
data are used to create (or update if already exists) a meta-
model. As follows, the metamodel is presented to the user.

After changing the metamodel, the change aspects are
used to propagate the change to the base level application.
Affected code is advised with around aspect. According to
the type of change, the original code is completely avoided
or extended with the new functionality.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 23

3. METAMODEL OF DATA STREAMS

The Experiment based on the method described consists
of two parts–a base level application and a completely inde-
pendent metasystem. Both levels are developed using Java
programming language.

The base level application focuses on work with data
streams. Input-output data stream is a sequence of data. In-
put stream reads data from a defined source (file, network,
memory, etc.) and transfers it to the program; output stream
gets data from the program and transfers it to the defined
target (file, network, memory, etc.).

Main Java classes dedicated to work with data
streams are abstract classes java.io.InputStream,
java.io.OutputStream, java.io.Reader and java.io.Writer.
The first two classes work with bytes, the second ones
work with characters (thus support encoding). In the ex-
periment, we have focused only on byte-related classes.
Java API defines several classes which extend mentioned
abstract classes and which allows processing of data which
passes via the stream.

It is possible to make combinations of classes men-
tioned. The first class can be connected with the second
one by passing itself as a constructor parameter while cre-
ating the second class. This way it is possible to create a
“chain” of classes through which the stream of data passes.
Each “link” in the chain has the ability to process passed
data in some way (for example to do any compression and
encryption).

In the experiment, the task of the metalevel is to cre-
ate metamodels of data stream chains used in the program.
Each metamodel represents chain of processors affecting
data passed in the stream (Fig. 4).

Fig. 4 Data stream metamodel

The base level application has no information about the
metalevel–and so there are no extra requirements on its de-
velopment. It simply implements tasks related to its do-
main. The metalevel uses abilities of aspect-oriented pro-
gramming (namely AspectJ) to create a relation to the base
level. As stated above, the solution of casual connection
between two levels is handled in two parts: gathering in-
formation about the base level and changing the base level
application behavior.

To get information about the actual data streams im-
plementation, it was necessary to catch all information
about all used classes which inherit from the one of
java.io.InputStream or java.io.OutputStream. It was done
by pointcuts defined for all constructors for the mentioned
types of classes. Always when a new instance of such a
class is created, defined advice checks for existence in the
related metamodel. If the tracked class is not defined yet
in the particular metamodel, a new “chain link” in meta-
model is created. If the class is already defined, it is verified
against the existing metamodel. The essential part is con-
text tracking of intercepted constructor invocations which

defines relationship between created instances. This way a
metamodel is automatically created, while running the base
level application.

To change the behavior of the base level program is a
more difficult task. It is possible to realize two types of
changes–to insert a new instance of a class processing a
data stream, and to remove (or disable) an existing instance
of a class processing a data stream. This problem partly is
solved by applying the Cuckoo’s Egg aspect-oriented de-
sign pattern [16]. The pattern defines an aspect that inter-
cepts the creation of the original class and instead returns
an instance of replacement class transparently to the origi-
nal business logic.

Described aspect is defined for each creation of an in-
stance of the stream processing class. Its around advice
allows to make the execution of original code conditional.
When there is a request to remove the “chain link”, the
around advice simply avoid using of the disabled class. In
the case of the other option–insertion of a new instance–this
instance is added before (or after) execution of the advised
original class constructor.

The result of the experiment described is the existence
of a tool which allows to create a metamodel of data streams
used in any Java application. The application doesn’t
need to be prepared or changed in any way. The tool is
linked with the application by aspect-oriented techniques.
When running the application, the tool automatically cre-
ates metamodels of used data streams. These metamodels
can be changed (existing stream processors can be removed
or new added) and this change is automatically reflected in
the base level application behavior.

4. RELATED WORK

Tracing a base level application to collect information
about it is not a new idea. One possibility to trace an ap-
plication in Java language is using Java Debug Interface
(JDI). With a help of this approach the application doesn’t
need to be modified. The collected data are usually anal-
ysed and/or visualised. This approach is used in several
works [13, 17, 19].

Another possibility to collect information about a run-
ning system is using the mentioned properties of aspect-
oriented programming. [6,11] uses AOP to instrument sub-
ject system with a new tracing code. The collected data
are visualised to a user. The most common way to visu-
alise such data are UML sequential diagrams. [6] describes
class diagrams used to store metamodels built from the col-
lected data. Papers [8, 12, 15] contain overview of other
approaches used to reconstruct a software system behavior.

The mentioned works create different kinds of meta-
models of the collected data. The metamodel modifications
are not supported.

An idea of a program modification utilizing AOP was
used in [7]. Authors of the paper are using aspects to incor-
porate new, collaborative features into existing applications.
Modification of existing applications with help of AOP is
subject also of several other works [2–5]. In the first step, a
subject application is extended with a tracing code. As fol-
lows the application is executed. After navigating the ap-

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



24 Evolving Metamodels in Aspect-Oriented Manner

plication flow to the point of interest, the tracing code is en-
abled. Gathered trace information is filtered and analysed–
the result of the analysis are the class and the method which
will be modified. Modification itself is described by an as-
pect, which is defined according to the analysis result and
according to the required change.

Works [1,20] differentiate two types of changes–domain
specific change types and generally applicable change
types. A domain specific change is described in a do-
main specific way. A generally applicable change can be
a kind of an aspect-oriented design pattern. The relation-
ship between these two groups is maintained in a catalog of
changes. Each domain specific change type is defined as a
specialization of one or more generally applicable changes.

5. DISCUSSION/CONCLUSIONS

Aspect-oriented programming allowed adding a new
functionality to an existing code. The approach presented
uses this aspect-oriented programming property to handle
casual connections in a metalevel architecture. The base
level of this architecture is automatically extended with two
types of advices. The first one automatically tracks down
all information about the monitored feature implementa-
tion. According to this information, metamodel represent-
ing the feature is created at the metalevel. After the meta-
model change, the second type of an advice is used to reflect
changes in the base level application. The change is mostly
implemented by AOP around advice which allows to make
execution of the original code conditional. When needed,
the original code is only extended, when needed, it can be
completely avoided.

The experiment described confirmed the method pro-
posed. The tool is able to automatically create a metamodel
of the specified program feature. After changing the meta-
model, the program behavior is changed. As a result the
casual connection is accomplished–the metamodel always
reflects state of the base level and vice-versa–changes in
the metamodel are always reflected in the base level.

ACKNOWLEDGEMENT

This work is the result of the project implementa-
tion: Center of Information and Communication Tech-
nologies for Knowledge Systems (ITMS project code:
26220120030) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] BEBJAK, M. – VRANIĆ, V. – DOLOG, P.: Evolution
of web applications with aspect-oriented design pat-
terns. In M. Brambilla and E. Mendes, editors, Proc. of
ICWE 2007 Workshops, 2nd International Workshop
on Adaptation and Evolution in Web Systems Engi-
neering, AEWSE 2007, in conjunction with 7th Inter-
national Conference on Web Engineering, ICWE 2007,
Como, Italy, July 2007, pp. 80–86.

[2] BLUEMKE, I. – BILLEWICZ, K.: Aspect oriented
programming in program tracing and modification.

Agility and discipline in software engineering, Nakom,
Poznan, 2007, pp. 23–34.

[3] BLUEMKE, I. – BILLEWICZ, K.: Aspects modifica-
tion in business logic of compiled Java programs. IEEE
First International Conference on Information Tech-
nologies, Gdansk, Poland, May 2008, pp. 409–412.

[4] BLUEMKE, I. – BILLEWICZ, K.: Aspects in the
Maintenance of Compiled Programs. IEEE 3rd Interna-
tional Conference on Dependability of Computer Sys-
tems DepCoS 2008, pp. 253–260.

[5] BLUEMKE, I. – BILLEWICZ, K.: Aspect Modifica-
tion of an EAR Application. CIS2E 08, Krakow, Poland,
2008, Springer.

[6] BRIAND, L. C. – LABICHE, Y. – LEDUC, J.: To-
ward the Reverse Engineering of UML Sequence Di-
agrams for Distributed Java Software. IEEE Trans.
Softw. Eng., September 2006, 32:642–663.

[7] CHENG, L.-T. – PATTERSON, J. – ROHALL, S. L.
– HUPFER, S. – ROSS, S.: Weaving a Social Fabric
into Existing Software. In Proceedings of the 5th In-
ternational conference on Aspect-oriented software de-
velopment AOSD05, March, Chicago, USA, 2005, pp.
147–159.

[8] HAMOU-LHADJ, A. – LETHBRIDGE, T. C.: A sur-
vey of trace exploration tools and techniques. In Pro-
ceedings of the 2004 conference of the Centre for Ad-
vanced Studies on Collaborative research, CASCON
04, IBM Press, 2004, pp. 42–55.

[9] KICZALES, G. – RIVIERES, J. D. – BOBROW, D. G.:
The Art of the Metaobject Protocol. MIT Press, Cam-
bridge, MA, USA, July 1991.

[10] KICZALES, G. – LAMPING, J. – MENDHEKAR, A.
– MAEDA, Ch. – LOPES, C. V. – LOINGTIER, J.-M. –
IRWIN, J.: Aspect-oriented programming. In ECOOP,
1997, pp. 220–242.

[11] KHALED, R. – NOBLE, J. – BIDDLE, R.: InspectJ:
program monitoring for visualisation using aspectJ. In
Proceedings of the 26th Australasian computer science
conference - Volume 16, ACSC 03, Darlinghurst, Aus-
tralia, Australia, 2003, Australian Computer Society,
Inc., pp. 359–368.

[12] KOLLMAN, R. – SELONEN, P. – STROULIA, E. –
SYSTÄ, T. – ZUNDORF, A.: A Study on the Cur-
rent State of the Art in Tool-Supported UML-Based
Static Reverse Engineering. In Proceedings of the
Ninth Working Conference on Reverse Engineering
(WCRE02), Washington, DC, USA, 2002, IEEE Com-
puter Society.

[13] LEROUX, H. – RÉQUILÉ-ROMANCZUK, A. – MIN-
GINS, Ch.: JACOT: a tool to dynamically visualise the
execution of concurrent Java programs. In Proceed-
ings of the 2nd international conference on Principles
and practice of programming in Java, PPPJ 03, New
York, NY, USA, 2003, Computer Science Press, Inc.,
pp. 201–206.

[14] MEERSMAN, R.: On the move to meaningful in-
ternet systems. CoopIS, DOA, and ODBASE : OTM

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM



Acta Electrotechnica et Informatica, Vol. 11, No. 3, 2011 25

Confederated International Conferences, Agia Napa,
Cyprus, October 31-November 4, 2005, ISBN 978-3-
540-29738-3.

[15] MERDES, M. – DORSCH, D.: Experiences with the
development of a reverse engineering tool for UML se-
quence diagrams: a case study in modern Java devel-
opment. In Proceedings of the 4th international sym-
posium on Principles and practice of programming in
Java, PPPJ 06, New York, NY, USA, 2006, ACM, pp.
125–134.

[16] MILES, R.: AspectJ Cookbook. December 2004,
O’Reilly Media, ISBN 978-0-596-00654-9.

[17] OECHSLE, R. – SCHMITT, T.: JAVAVIS: Automatic
Program Visualization with Object and Sequence Dia-
grams Using the Java Debug Interface (JDI). In Re-
vised Lectures on Software Visualization, International
Seminar, London, UK, 2002, Springer-Verlag, pp. 176–
190.

[18] RÖTHLISBERGER, D. – GREEVY, O. – NIER-
STRASZ, O.: Feature driven browsing. In Proceed-
ings of the 2007 international conference on Dynamic
languages: in conjunction with the 15th International
Smalltalk Joint Conference 2007, ICDL ’07, New York,
NY, USA, 2007, ACM, pp. 79–100.

[19] SUNDARARAMAN, J. – BACK, G.: HDPV: inter-
active, faithful, in-vivo runtime state visualization for
C/C++ and Java. In Proceedings of the 4th ACM
symposium on Software visualization, SoftVis 08, New
York, NY, USA, 2008, ACM, pp. 47–56.

[20] VRANIĆ, V. – MENKYNA, R. – BEBJAK, M. –
DOLOG, P.: Aspect-Oriented Change Realizations and
Their Interaction. e-Informatica Software Engineering
Journal, 3(1):43–58, 2009.

Received June 16, 2011, accepted September 16, 2011

BIOGRAPHIES

Michal Vagač is Assistant Professor at the Department of
Informatics, Faculty of Natural Sciences, Matej Bel Uni-
versity, and PhD student at Department of Computers and
Informatics, Technical university of Košice, Slovakia. He
received his MSc. in Computer Science, in 2001. The sub-
ject of his research is metamodeling, metaprogramming,
programming paradigms, and dynamic software systems
adaptation.

Ján Kollár is Full Professor of Informatics at the Depart-
ment of Computers and Informatics, Technical university
of Košice, Slovakia. He received his M.Sc. summa cum
laude in 1978 and his Ph.D. in Computer Science in 1991.
In 1978-1981 he was with the Institute of Electrical Ma-
chines in Košice. In 1982-1991 he was with the Institute of
Computer Science at the P.J. Šafárik University in Košice.
Since 1992 he is with the Department of Computer and
Informatics at the Technical University of Košice. In 1985
he spent 3 months in the Joint Institute of Nuclear Research
in Dubna, USSR. In 1990 he spent 2 months at the De-
partment of Computer Science at Reading University, UK.
He was involved in research projects dealing with real-
time systems, the design of microprogramming languages,
image processing and remote sensing, dataflow systems,
implementation of programming languages, and high per-
formance computing. He is the author of process functional
programming paradigm. Currently his research area covers
formal languages and automata, programming paradigms,
implementation of programming languages, functional pro-
gramming, and adaptive software and language evolution.

Sergej Chodarev is PhD student at the Department
of Computers and Informatics, Technical University of
Košice, Slovakia. He received his MSc. in Computer
Science in 2009. The subject of his research is domain-
specific languages, metaprogramming and programming
paradigms.

ISSN 1335-8243 (print) c© 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:18 AM


