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ABSTRACT
The paper deals with stiff systems of differential equations. To solve this sort of system numerically is a difficult task.
There are many (implicit) methods for solving stiff systems of ordinary differential equations (ODE’s), from the most simple such as

implicit Euler method to more sophisticated (implicit Runge-Kutta methods) and finally the general linear methods. The mathematical
formulation of the methods often looks clear, however the implicit nature of those methods implies several implementation problems.
Usually a quite complicated auxiliary system of equations has to be solved in each step. These facts lead to immense amount of work
to be done in each step of the computation. These are the reasons why one has to think twice before using the stiff solver and to decide
between the stiff and non-stiff solver.

On the other hand a very interesting and promising numerical method of solving systems of ordinary differential equations based on
Taylor series has appeared. The potential of the Taylor series has been exposed by many practical experiments and a way of detection
and solution of large systems of ordinary differential equations has been found.
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1. INTRODUCTION

This paper is related with computer simulations of con-
tinuous systems. The research group HPC (“High perfor-
mance computing”) [8] has been working on extremely ex-
act and fast solutions of homogenous differential equations,
nonlinear ordinary and partial differential equations, stiff
systems, large systems of algebraic equations, real time
simulations and corresponding software and hardware (par-
allel) implementations since 1980.

The “Modern Taylor Series Method” (MTSM) is used
for numerical solution of differential equations. The
MTSM is based on a recurrent calculation of the Taylor
series terms for each time interval. Thus the complicated
calculation of higher order derivatives (much criticised in
the literature) need not be performed but rather the value of
each Taylor series term is numerically calculated.

An important part of the MTSM is an automatic inte-
gration order setting, i.e. using as many Taylor series terms
as the defined accuracy requires. Thus it is usual that the
computation uses different numbers of Taylor series terms
for different steps of constant length.

The MTSM has been implemented in TKSL software
[14]. Some articles that are focused on the MTSM were
published last years [16–19].

There are several papers that focus on computer imple-
mentations of the Taylor series method in different con-
text “a variable order and variable step” (see, for instance,
[1,3]). Another more detailed description of a variable step
size version and software implementation of the Taylor se-
ries method can be seen in [11]. The stability domain for
several Taylor methods is presented in [2]. Promising A-
stable combination of implicit Taylor series method with
Trapezoidal rule is described in [9, 10].

1.1. Modern Taylor Series Method

The best-known and most accurate method of calculat-
ing a new value of a numerical solution of ordinary differ-
ential equation y′ = f (t,y), y(0) = y0 is to construct the

Taylor series [6].
Methods of different orders can be used in a computa-

tion [12]. For instance the order method (ORD = n) means
that when computing the new value yi+1 uses n Taylor se-
ries terms in the form

yi+1 = yi +h · f (ti,yi)+
h2

2!
· f ′(ti,yi)+

+ · · ·+ hn

n!
· f (n−1)(ti,yi) , (1)

yi+1 = yi +DY 1i +DY 2i + · · ·+DY ni , (2)

where h is integration step and DY are Taylor series terms.
Similarly we can construct implicit Taylor series

method of order n in the form

yi+1 = yi +h · f (ti+1,yi+1)−
h2

2!
· f ′(ti+1,yi+1)−

−·· ·− (−h)n

n!
· f (n−1)(ti+1,yi+1) , (3)

yi+1 = yi +DY 1i+1 +DY 2i+1 + · · ·+DY ni+1 . (4)

2. STIFF SYSTEMS

Generally speaking, a stiff system contains several com-
ponents, some of them are heavily suppressed while the
rest remain almost unchanged. This feature forces the used
method to choose an extremely small integration step and
the progress of the computation may become very slow.
However, we often need to find out the solution in a long
range. It is clear that the mentioned facts are troublesome
and ways to cope with such problems have to be devised.

One of the most frequently mentioned definition of stiff
systems is to use stiffness ratio r [15].

Let

y′ = f(y, t) , (5)

be a system of k ordinary differential equations. Let J be
the Jacobian of the system (5) and λi the eigenvalues of J .
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The eigenvalues λi are generally time dependent. Let the
eigenvalues λi be arranged in the following way:

Re|λmax| ≥ Re|λi| ≥ Re|λmin| , i = 1 · · ·k−2 , (6)

then the stiffness ratio is in the form

r =
Re|λmax|
Re|λmin|

. (7)

The stiffness ratio r is a coefficient that helps to decide
whether a problem is stiff or not. A higher r indicates a
more stiff system. However, there is no exact value of the
stiffness ratio r that would distinguish the non-stiff prob-
lems from the stiff-problems. For many problems in com-
mon practice the stiffness ratio r is “very high” (say 1 ·106

or higher).

2.1. Test example 1

Let us examine “school example” system

y′ = −ay , a > 0 ,
z′ = −0.0001z , (8)

with initial conditions y(0) = 1, z(0) = 1.
Note: well known analytic solution of (8) is in the form

y = e−at ,
z = e−0.0001t ,

(9)

Typically we calculate the Jacobian of the system (8)

J =

(
−a 0
0 −0.0001

)
,

then we specify the eigenvalues of the system (8)

λ1 = −a ,
λ2 = −0.0001 .

We suppose that a > 0.0001 then the stiffness ratio of the
system is in the form

r =
Re|λmax|
Re|λmin|

=
a

0.0001
. (10)

Many stiff systems solver needs to compute the Jaco-
bian of the ODEs systems to detect the stiffness. Mod-
ern Taylor Series Method as implemented in TKSL soft-
ware needn’t compute Jacobian matrix or eigenvalues of the
ODEs systems.

Explicit Taylor series solution of (8) is in the form

yi+1 = yi−ah · yi +
(−ah)2

2!
· yi +

+ · · ·+ (−ah)n

n!
· yi , (11)

yi+1 = yi +DY 1i +DY 2i + · · ·+DY ni , (12)

similarly

zi+1 = zi−0.0001h · yi +
(−0.0001h)2

2!
· zi +

+ · · ·+ (−0.0001h)n

n!
· zi , (13)

zi+1 = zi +DZ1i +DZ2i + · · ·+DZni . (14)

Let us analyze Taylor series terms in the first step. The
absolute value of explicit Taylor series terms |DZni| have
rapidly decreasing trend. As we can see in Fig. 1 for con-
stant a = 1 (respectively r = 10000) and integration step
size h = 1, 15 Taylor series terms are needed to obtain re-
sult with absolute error EPS = 10−10.
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Fig. 1 Taylor series terms, a = 1

When the constant a is increased (the stiffness ratio r is
also increased) we need to use more Taylor series terms to
keep the stability of numerical method. In Fig. 2 resp. Fig. 3
we can see Taylor series terms for a= 10 (r = 100000) resp.
a = 100 (r = 1000000). To obtain local error EPS = 10−10

for a = 100 we need to use 295 Taylor series terms.
There is a problem when a = 100 (Fig. 3). As we can

see in Fig. 3 absolute value of explicit Taylor series terms
|DY ni| haven’t got decreasing trend and we have to use mul-
tiple arithmetic.
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Fig. 2 Taylor series terms, a = 10
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Fig. 3 Taylor series terms, a = 100

As we can see in Fig. 3 and Fig. 2 absolute value of
Taylor series terms |DY ni| have increasing character. Mod-
ern Taylor series method as implemented in TKSL auto-
matically detects (from different and rapidly growing Tay-
lor series terms) the stiffness in system (8) with growing
constant a and automatically reduces integration step size
h. Tendency of decreasing Taylor series terms after auto-
matic decreasing step size is shown in Fig. 4.
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Fig. 4 Taylor series terms after automatic step size reduction

Conclusion: The TKSL automatically detects stiff sys-
tem (8) using Taylor series terms and automatically reduces
integration step size until the strategy in Fig. 4 is obtained.
After detection of stiffness (using explicit MTSM), implicit
Taylor series method must be used as presented in the Test
example 2 as follows.

2.2. Test example 2

Stiff systems in some literature [7] are defined as sys-
tems of ODEs where explicit numerical methods don’t
work and implicit numerical methods must be used.

Let us analyze system [15]

y′ = z ,
z′ = −b · y− (b+1) · z , b ∈ (1,∞) ,

(15)

with initial conditions y(0) = 1, z(0) =−1.
Well known analytic solution of (15) is in the form

y = e−t ,
z = −e−t .

(16)

The system (15) becomes stiff for b� 0 and stiffness
ratio is r = b.

Let’s try to find the solution of (15) with explicit Taylor
series method. Absolute error of numerical solution which
is defined as difference between numerical zi and analytical
z(ti) solution

|Error(z)|= |zi− z(ti)| , (17)

where ti = h · i is shown in Tab. 1. Abbreviation ORD = 1
means that 2 Taylor series terms are used during the com-
putation (explicit Euler method) in Tab. 1. explicit Euler
method becomes unstable with growing constant a accord-
ing to the Tab. 1. We should reduce integration step size, or
we must use more Taylor series terms Tab. 2.

Table 1 Absolute error: expl. Taylor series method, h = 0.1,
ORD = 1

|Error(z)|

t b = 104 b = 105 b = 106 b = 107

0.1 0.00483742 0.00483742 0.00483742 0.00483742

0.2 0.00873075 0.00873075 0.00873075 0.00873075

0.3 0.0118182 0.0118182 0.011818 0.011781

0.4 0.01422 0.0143073 0.0375021 37.2672

0.5 0.0160768 0.856836 2328.16 3.72529×107

0.6 0.0187225 8727.91 2.32816×108 3.72529×1013

Table 2 Absolute error: expl.Taylor series method, h = 0.1,
b = 100

|Error(y)|
t ORD = 1 ORD = 2 ORD = 3 ORD = 4

0.1 0.00483742 0.000162582 4.0847×10−6 8.1964×10−7

0.2 0.00873075 0.000294247 7.39197×10−6 1.48328×10−7

0.3 0.0118182 0.000399404 1.00328×10−5 2.0132×10−7

0.4 0.01422 0.000481905 1.2104×10−5 2.4302×10−7

0.5 0.0160407 0.000545106 1.36903×10−5 3.14994×10−7

0.6 0.0173706 0.000591932 1.48514×10−5 1.20207×10−5

Multiple arithmetic: with growing constant a multiple
arithmetic is needed. Only 9 Taylor series terms are used
for integration step h = 0.1 and local error EPS = 10−20.
Corresponding word length of Taylor series terms for large
constant b are shown in Tab. 3.

TKSL automatically detects stiffness in system (15)
(when b is growing) from Taylor series terms and TKSL
uses automatically smaller step size.
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Table 3 Multiple arithmetic

b Word length [bits]

1010 3681

1020 8900

1050 24000

Implicit Taylor series method (as implemented in
iTKSL software) has prosperous properties to solve stiff
systems especially implicit Taylor series method has big-
ger absolute stability domain than those of explicit Taylor
series method.

Let’s solve the system (15) with implicit Taylor series
method. Implicit Taylor series is in the form

yi+1 = yi +hy′i+1−·· ·−
(−h)n

n! y(n)i+1 ,

zi+1 = zi +hz′i+1−·· ·−
(−h)n

n! z(n)i+1 ,
(18)

where higher derivations are in the form
y′i+1 = zi+1 ,
z′i+1 = −byi+1− (b+1)zi+1 ,

y′′i+1 = −byi+1− (b+1)zi+1 ,
z′′i+1 = −by′i+1− (b+1)z′i+1 =−bzi+1−

−(b+1)(−byi+1− (b+1)zi+1) ,

y′′′i+1 = −bzi+1− (b+1)(−byi+1− (b+1)zi+1) ,
z′′′i+1 = −b(−byi+1− (b+1)zi+1)− (b+1)·

·(−bzi+1− (b+1)(−byi+1− (b+1)zi+1)) ,

y(4)i+1 = −b(−byi+1− (b+1)zi+1)−
−(b+1)(−bzi+1− (b+1)(−byi+1− (b+1)zi+1)) ,

z(4)i+1 = −b(−bzi+1− (b+1)z′i+1)−
−(b+1)(−bz′i+1− (b+1)(−bzi+1− (b+1)z′i+1)) ,

...

After substitution higher derivations into implicit Taylor
series form (18) we obtain numerical solution in the form

yi+1 = yi(hb+h+1)+zi(h)
1+h2b+hb+h ,

zi+1 = − yi(hb)−zi
1+h2b+hb+h ,

for implicit Taylor series order 1 (ORD = 1) that is implicit
Euler method.

Similarly for ORD = 2 we obtain formula in the form

yi+1 = 2 yi(h2b2+h2b+2hb+h2+2h+2)+zi(h2b+h2+2h)
2h2+2h3b2+h4b2+2h3b+4+4hb+4h+4h2b+2h2b2 ,

zi+1 = −2 yi(h2b2+2hb+h2b)+zi(h2b−2)
2h2+2h3b2+h4b2+2h3b+4+4hb+4h+4h2b+2h2b2 ,

implicit Taylor series ORD = 3 is in the form

yi+1 = 6(yi(h3b3 +h3b2 +h3b+h3 +3h2b2 +3h2b+3h2+

6hb+6h+6)+ zi(h3b2 +h3b+h3 +3h2b+3h2+

+6h))/(36+36h2b+6h3b3 +36hb+3h5a3+

+3h5b2 +h6b3 +18h2 +18h3b2 +36h+18h3b+

+9h4a2 +6h4b3 +6h4b+6h3 +18h2b2) ,

zi+1 = −6(yi(3h2b2 +6ha+3h2b+h3b+h3b2 +h3b3)+

+zi(−6+3h2b+h3a2 +h3b))/(36+36h2b+

+6h3b3 +36hb+3h5b3 +3h5a2 +h6b3+

+18h2 +18h3b2 +36h+18h3b+9h4b2+

+6h4b3 +6h4b+6h3 +18h2b2) ,

etc.
Absolute error of numerical solution using implicit Tay-

lor series method of different order is shown in Tab. 4. Note
that constant b has no influence on error of computation.

Table 4 Absolute error: implicit Taylor series method, h = 0.1

|Error(y)|: b = 104,105,106,107,108

t ORD = 1 ORD = 2 ORD = 3 ORD = 4

0.1 0.00425349 0.000139958 3.48077×10−6 6.93811×10−8

0.2 0.00771553 0.000253297 6.29908×10−6 1.25557×10−7

0.3 0.0104966 0.000343816 8.54948×10−6 1.70413×10−7

0.4 0.0126934 0.000414829 1.03145×10−5 2.05595×10−7

0.5 0.0143907 0.000469227 1.16662×10−5 2.32538×10−7

0.6 0.0156623 0.000509528 1.26673×10−5 2.52491×10−7

There is a problem with general formulation of
yi+1,zi+1 from implicit Taylor series formula (18) - other
implicit numerical methods have the same problem. We
have to use some iteration method to compute yi+1,zi+1 in
implicit form.

Table 5 Absolute error: ITMRN h = 0.1, ORD = 5,6,7,
TOL = 10−10, b = 104

ORD = 5 ORD = 6 ORD = 7

t |Error(y)| j |Error(y)| j |Error(y)| j

0.1 1.153×10−9 3 1.644×10−11 3 2.035×10−13 5

0.2 2.087×10−9 3 2.976×10−11 3 3.459×10−13 5

0.3 2.833×10−9 3 4.04×10−11 3 4.842×10−13 5

0.4 3.418×10−9 3 4.874×10−11 3 5.898×10−13 5

0.5 3.866×10−9 3 5.513×10−11 3 6.354×10−13 4

0.6 4.198×10−9 3 5.986×10−11 3 6.998×10−13 5

Implicit Taylor series method with recurrent calcula-
tion of Taylor series terms and Newton iteration method
(ITMRN) was implemented. Absolute errors of ITMRN
of ORD = 1,2,3,4 are the same as explicit calculations pre-
sented in Tab. 4 and only two Newton iterations are needed.
Absolute errors of ITMRN ORD = 5,6,7 and number of
Newton iterations j which are needed to obtain numerical
results with tolerance TOL = 10−10 are shown in Tab. 5.

Table 6 Absolute error: ITMRN h1 = 0.1, h2 = 0.05, ORD = 8,
TOL = 10−10, b = 104

t |Error1(y)| j1 |Error2(y)| j2

0.05 — — 7.10543×10−15 4

0.1 2.148×10−12 9 1.77636×10−15 4

0.15 — — 5.00711×10−14 4

0.2 2.753×10−14 8 9.17044×10−14 4

0.25 — — 8.71525×10−14 5

0.3 6.328×10−14 19 8.23785×10−14 5
...

...
...

...
...

0.6 4.938×10−12 7 1.77636×10−14 4
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Problem with increasing the number of Newton iter-
ations j with increasing order of implicit Taylor series
method is shown in Tab. 5. We should use multiple arith-
metic with growing constant a and order of ITMRN or we
should reduce integration step size to obtain better stability
of ITMRN (Tab. 6). Absolute errors of ITMRN ORD = 8
and number of Newton iterations using in each step are
shown in Tab. 6. There are two integration step size used:
h1 = 0.1 with absolute error |Error1(y)| and number of
Newton iterations j1 resp. h2 = 0.05 with absolute error
|Error2(y)| and number of Newton iterations j2. The same
arithmetic (double precision) is used in both cases.

3. CONCLUSION

A very interesting and promising numerical method of
solving systems of ordinary differential equations based on
Taylor series has appeared. The question was how to har-
ness the said ”Modern Taylor Series Method” for solving
of stiff systems. The potential of the Taylor series has been
exposed by many practical experiments and a way of detec-
tion and solution of large systems of ordinary differential
equations has been found.

The paper was presented during the INFORMATICS
2011 conference [21].
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KALUŽA, V.: New Trends in Taylor Series Based
Computations. In Proceedings of 7th International
Conference of Numerical Analysis and Applied Math-
ematics. Rethymno, Crete, GR, AIP, 2009, p. 282–285,
ISBN 978-0-7354-0705-3.
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