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ABSTRACT
The C++ Standard Template Library is the flagship example for libraries based on the generic programming paradigm. The

usage of this library is intended to minimize classical C/C++ errors, but does not warrant bug-free programs. Furthermore, many
new kinds of errors may arise from the inaccurate use of the generic programming paradigm, like dereferencing invalid iterators or
misunderstanding remove-like algorithms.

In this paper we present some typical scenarios that may cause undefined or weird behaviour. We present approaches that can
be used for developing different safe iterators to avoid run-time errors. Some of these iterators are able to manipulate the container
directly, hence they cannot result in undefined behaviour when an algorithm needs to add elements to the container or delete elements
from the container. Our iterators are able to indicate if they are invalid. Algorithms’ preconditions are evaluated with our iterators.

Keywords: C++, STL, iterators, safety

1. INTRODUCTION

The C++ Standard Template Library (STL) was devel-
oped by generic programming approach. In this way con-
tainers are defined as class templates and many algorithms
can be implemented as function templates. Furthermore, al-
gorithms are implemented in a container-independent way,
so one can use them with different containers [24]. C++
STL is widely-used because it is a very handy, standard
C++ library that contains beneficial containers (like list,
vector, map, etc.), a lot of algorithms (like sort, find, count,
etc.) among other utilities.

The STL was designed to be extensible [13]. We can
add new containers that can work together with existing al-
gorithms. On the other hand, we can extend the set of al-
gorithms with a new one that can work together with exist-
ing containers. Iterators bridge the gap between containers
and algorithms [4]. The expression problem [26] is solved
with this approach. STL also includes adaptor types which
transform standard elements of the library for a different
functionality [1]. Adaptors can modify the interface of a
container, transform streams into iterators, modify the be-
havior of functors etc.

However, the usage of C++ STL does not mean bugless
or error-free code [8]. Contrarily, incorrect application of
the library may introduce new types of problems [16].

One of the problems is, that the error diagnostics are
usually complex, and very hard to figure out the cause of a
program error [27,28]. Violation of the requirement of strict
weak ordering in comparison functors also means strange
bugs [10]. This results in incosistent containers at runtime.

Most of the properties are checked at compilation time.
For example, the code does not compile if one uses sort
algorithm with the standard list container, because the list’s
iterators do not offer random accessibility [12]. Other prop-
erties are checked at runtime [22]. For example, the stan-
dard vector container offers an at method which tests if the
index is valid and it raises an exception otherwise [19].

Unfortunately, there is still a large number of some
properties are tested neither at compilation-time nor at run-

time. Observance of these properties are in the charge of the
programmers. Let us consider the following code snippet:

std::vector<int> v;

int x;

//...

std::vector<int>::iterator i =

std::lower_bound( v.begin(), v.end(), x );

The purpose of lower bound is to find an element in
an ordered range. It is a version of binary search, hence it
has logarithmic complexity. We assume that we can find
an element in a vector in logarithmic time because of the
sortedness of the vector. However, it causes undefined re-
sult, if the vector is not ordered [21]. Implementations
of these algorithms do not test if the range is sorted ap-
propriately. Many STL algorithms expect ordered range:
equal range, binary search, set difference, etc.

Furthermore, sortedness of container is not enough. We
must make sure that the same sorting function object is used
for sorting and for searching. The following code snippet
also results in undetermined behaviour:

std::vector<int> v;

int x;

//...

std::sort( v.begin(), v.end() );

std::vector<int>::iterator i =

std::lower_bound( v.begin(), v.end(), x,

std::greater<int>() );

Other typical STL-related mistakes are related to itera-
tor invalidation. This problem occurs when a container that
is being processed using an iterator has its shape changed
during the process, for example anything that causes a vec-
tor’s reallocation (increase in the result of capacity())
will invalidate all iterators. When one use an invalid iter-
ator also causes an undefined result [9]. Let us consider the
following code:

std::vector<int> v;
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//...

std::vector<int>::iterator i = v.begin();

// ...

// vector’s capacity has been changed...

std::cout << *i;

When *i is referred, it causes undefined result because
i has become invalid.

STL’s copy and transform algorithm can be used to
copy an input range of objects into a target range. These
algorithms neither allocate memory space nor call any spe-
cific inserter method while coping elements. They as-
sume that the target has enough, properly allocated ele-
ments where they can copy elements with operator=. In-
serter iterators can enforce to use push back, push front

or insert method of containers. But these algorithms can-
not copy elements into an empty list, for instance. They do
not know how to insert elements into the empty container.
The following code snippet can be compiled, but it results
in an undefined behaviour [20]:

std::list<int> li;

std::vector<int> vi;

v.push_back( 3 );

std::copy( vi.begin(),

vi.end(),

li.begin() );

However, there are some adaptors in the library
to overcome this situation: back inserter and
front inserter adaptors. On the other hand, they cannot
change the elements of a container, only add new element
to the container [15]. However, we have developed a tech-
nique that is able to emit compilation warnings if the usage
of the copy algorithm may be erroneous [18].

Another common mistake is related to removing algo-
rithms. The algorithms are container-independent, hence
they do not know how to erase elements from a container,
just relocate them to a specific part of the container, and we
need to invoke a specific erase member function to remove
the elements phisically. Therefore, for example the remove
and unique algorithms do not actually remove any element
from a container [15]. Let us consider the following code
snippet:

std::vector<int> v;

for( int = 1; i <= 10; ++i )

v[i] = i;

v[3] = v[5] = v[7] = 99;

std::remove( v.begin(), v.end(), 99 );

std::cout << v.size();

In contrast to the name of the algorithm, the size of
the container is unchanged. The remaining elements have

been moved to front of the container, but the tail is also
unchanged. The result of this algorithm may be counter-
intuitive at first time. The proper usage of the remove is
called erase-remove idiom:

v.erase( std::remove( v.begin(),

v.end(),

99 ),

v.end() );

Whereas C++ STL is pre-eminent in a sequential realm,
it is not aware of multicore environment [3]. For exam-
ple, the Cilk++ language aims at multicore programming.
This language extends C++ with new keywords and one can
write programs for multicore architectures easily. However,
the language does not contain an efficient multicore library,
just the C++ STL only which is an efficiency bottleneck in
multicore environment. We develop a new STL implemen-
tation for Cilk++ to cope with the challenges of multicore
architectures [25]. This new implementation can be a safer
solution, too. Hence, our safety extensions will be included
in the new implementation. However, the techniques pre-
sented in this paper concern to the original C++ STL, too.

In this paper we present extensions of the C++ STL, that
is able to check iterators’ validness at runtime. We also de-
scribe a technique that can use generic algorithms on sorted
intervals in a safer way. Erasable and copy-safe iterators
are introduced in order to overcome some typical mistakes.

This paper is organized as follows. In section 2 a mod-
ification in the related traits type is advised to be taken ad-
vantage of the following sections. We provide an approach
for checking algorithms’ preconditions in section 3. We ar-
gue for a solution to the iterator invalidation in section 4.
Erasable iterators are introduced and present in section 5.
We provide our copy-safe iterators in section 6. Finally,
this paper concludes in section 7.

2. EXTENSION OF ITERATOR TRAITS

In this paper we argue for some new kinds of iterators
that subserve the correct usage of the STL. This requires
new traits to make the compilers able to make decisions
about iterators’usage. The following empty types describes
if an iterator is erasable and precondition-safe.

struct erasable{};

struct unerasable{};

struct precond_safe{};

struct precond_unsafe{};

Next, two new traits added to iterator traits. A
similar approach is available [18]. The first traits specifies
if an iterator is erasable, the second one specifies if an iter-
ator is precondition-safe. The default iterator traits is
the following:

template <class T>

struct iterator_traits

{

typedef typename T::iterator_category

iterator_category;
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typedef typename T::value_type

value_type;

typedef typename T::difference_type

difference_type;

typedef typename T::pointer

pointer;

typedef typename T::reference

reference;

typedef unerasable

erasability;

typedef typename T::precond_safety

precond_safety;

};

The new kind of traits is defined as erasability

and precond safety type synonyms. As the default
case shows, the ordinary iterators are not erasable and not
precondition-safe. These traits can be set by the trivially
modified iterator base class. In the case of erasable iter-
ators, the erasibility tag must be set to erasable, and in the
case of precondition safe iterators, the precondition safety
property must be set to precond safe. In every other case
it must be set to the default.

3. PRECONDITIONS OF ALGORITHMS

The STL algorithms work well only if its preconditions
are satisfied. Typically, the algorithm which require sorted
input, check if the input is sorted neither at compilation-
time nor at run-time. If this requirement is violated the re-
sult of algorithm is undefined.

We provide precondition-safe iterator adaptor to over-
come this situation. The implementation is the following:

template <class T>

struct Precond_safe: T

{

Precond_safe( T t ): T( t ) { }

typedef precond_safe precond_safety;

};

The adaptor is based on the mixin technique, the type
of the base class is the iterator type itself [23]. Thus,
Precond safe provides all the properties and operations
just like the original iterator only the safety type is defined
to precondition safe. Algorithms can be overloaded on
this type information. The following template method can
be used to deduce the parameter:

template <class T>

Precond_safe<T> Precond( T t )

{

return Precond_safe<T>( t );

}

To present this technique the safe implementation of
lower bound is shown.

The following is the type of exception to indicate the
erroneous usage of the algorithm:

class not_sorted{};

The standard algorithm implementation checks if the it-
erator is precondition-safe:

template <class It, class T>

It lower_bound( It first,

It last,

const T& t )

{

return lower_bound(

first,

last,

t,

typename

iterator_traits<It>::

precond_safety() );

}

The precondition-safe version checks the precondition.
An exception is raised if the precondition fails, otherwise
calls the original implemention:

template <class Iterator, class T>

Iterator lower_bound( Iterator first,

Iterator last,

const T& t,

precond_safe )

{

if ( !std::is_sorted(first, last ) )

{

throw not_sorted();

}

return lower_bound( first,

last,

t,

precond_unsafe() );

}

The original version is the precondition-unsafe one:

template <class Iterator, class T>

Iterator lower_bound( Iterator first,

Iterator last,

const T& t,

precond_unsafe )

{

// original implementation...

}

If the adapter is in-use, the safe implementation works.
The conversion trivially works:

std::vector<int> v;

int x;

// ...

std::vector<int>::iterator i =

std::lower_bound( Precond( v.begin() ),

Precond( v.end() ),

x );
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The user-defined predicated version is straightforward,
just an other template parameter must be used. This tech-
nique is able to check arbitrary precondition of arbitrary
algorithm.

4. INVALID ITERATORS

In this section we present a technique that can be used
to avoid the undefined behaviour of invalid iterators’ usage.
The technique is adaptable for all standard and nonstandard
containers. Different containers invalidate iterators in dif-
ferent ways, however, this technique can be transformed to
list, deque or other third party defined containers too.
In a more sophisticated solution the invalidation behaviour
should be parametrized. We present the technique as an ex-
tension of STL’s vector template.

In our implementation the vector objects keep tracks
their iterators which have a member to describe if the it-
erator is valid. When the vector reallocates itself, it sends a
message to its iterators that they become invalid. If one ac-
cesses an element via an invalid iterator, then an exception
is raised. Since STL always creates copies from the itera-
tors, we have to keep them on the heap memory. We use
the shared ptr to avoid memory-leaks which is the part
of the C++11, and it is the part of Boost library [15].

Let us consider the following code snippet:

template <class T,

class Alloc = std::allocator<T>,

bool debug = false>

class vector

{

typedef ItCont

std::list<shared_ptr<iterator_impl> >;

T* p;

int cap, s;

ItCont iterators;

public:

struct iterator_impl

{

private:

bool isvalid;

T* curr;

public:

iterator_impl( T* c ) : curr(c),

isvalid( true )

{}

T& operator*()

{

if ( !isdebug )

return *curr;

if( isvalid )

return *curr;

else

throw invalid_iterator();

}

iterator_impl& operator++()

{

++curr;

return *this;

}

iterator_impl operator++( int )

{

iterator_impl tmp( *this );

++curr;

return tmp;

}

// ...

};

struct iterator:

std::iterator<

std::random_access_iterator_tag,

T>

{

iterator_impl* p;

// delegates

// iterator_impl’s operations

};

private:

void realloc()

{

cap*=2;

T* t = new T[cap];

std::copy( p, p + s, t );

delete [] p;

p = t;

}

void invalid()

{

for( typename ItCont::iterator it =

iterators.begin();

it != iterators.end();

++it)

{

(*it)->isvalid = false;

}

}

public:

vector(): cap( 1 ), s( 0 )

{

p = new T[cap];

}
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vector()

{

delete [] p;

}

void push_back( const T& a )

{

if ( s < cap )

p[ s++ ] = a;

else

{

realloc();

invalid();

push_back( a );

}

}

iterator begin()

{

iterator_impl* x =

new iterator_impl( p );

iterators.push_back( x );

return iterator( x );

}

iterator end()

{

iterator_impl* x =

new iterator_impl( p + s );

iterators.push_back( x );

return iterator( x );

}

// ...

};

Of course, the testing can depend on a preprocessor
macro or something else. Legacy STL-based codes can be
easily transformed to use this vector container with extra
checks. Just an extra parameter should be passed to the
vector type. However, there is no trivial assignment and
copy between an untested and tested vector container, but a
special template copy constructor and assignment operator
can be added.

Naturally, we can create a specialization for the safe and
unsafe versions. This makes our implementation faster.

Similarly, we can create a safe iterator implementation
that is able to pursue the vector’s pointer. In this case, an
exception is thrown when an iterator is referred which point
at an erased element.

It is also should be considered if invalidation includes
the end iterators. Also causes runtime problems if end iter-
ators are dereferenced. It can be handled in an orthogonal
way.

5. ERASABLE ITERATORS

In this section we present our approach to develop it-
erators that are able manipulate the container and remove
elements from it [4].

First, we add a new inner class to the vector container.
This class is called erasable iterator: this is quite sim-
ilar to the standard iterator class, but it has a pointer
to the container and a new member function called erase.
This method accesses the member functions of the con-
tainer via the pointer. Only point is that the method has
to avoid invalidation of the iterator. The container’s mem-
ber function ebegin returns an erasable iterator to the first
element, and its method eend returns an erasable iterator to
the end of the sequence, respectively.

typedef

std::random_access_iterator_tag

ran_acc_tag;

template <class T,

class Alloc = std::alloc<T> >

class vector

{

T* p;

int s, cap;

// usual vector’s members, typedefs,

// classes, operators

public:

class iterator:

public

std::iterator<ran_acc_tag,

T>

{

protected:

T* p;

// usual operators...

};

class erasable_iterator: public iterator

{

vector<T, Alloc>* v;

public:

erasable_iterator( iterator i,

vector<T, Alloc>* vt ) :

iterator( i ), v( vt ) { }

void erase()

{

T* tmp = iterator::p + 1;

v->erase( *this );

iterator::p = tmp;

}

};

erasable_iterator ebegin()

{

return erasable_iterator( begin(), this );

}

erasable_iterator eend()

{

return erasable_iterator( end(), this );
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}

};

This technique can be transformed to other containers,
too.

However, the standard algorithms of the STL do not
known the notation of erasable iterators. Thus, we have to
write new algorithms that take advantage of this new kind
of iterators. An algorithm can be decide if it uses erasable
iterator based on the extended traits. In the case of erasable
iterators the algorithm is able to use the erase method.

template <class It, class T>

It remove( It first,

It last,

const T& t )

{

return remove( first,

last,

t,

typename

std::iterator_traits<It>

::erasability() );

}

The erasable version can be implemented in the follow-
ing way:

template <class Iter, class T>

void remove( Iter first,

Iter last,

const T& t,

erasable )

{

while( first != last )

{

if ( t == *first )

{

first.erase();

}

else

{

++first;

}

}

return first;

}

The version that uses unerasable iterators is the same as
the original implementation.

6. COPY-SAFE ITERATORS

In this section we present our implementation of copy-
safe [17] iterators.

This iterator type is also similar to iterator type of
the container. This kind of iterator also has a pointer
to the container. When a safe pointer is dereferenced
(ie. its operator* is called, it can invoke the container’s
push back method and add new element to the vector if
necessary. Hence, if this kind of iterators is in use it causes

no runtime problems if someone copies elements into an
empty vector. Our implementation is able to detect if the
client uses problematic iterators for copying ranges [18].
The container’s member function cbegin returns a copy-
safe iterator to the first element, and its method cend re-
turns a copy-safe iterator to the end of the sequence, re-
spectively.

template <class T,

class Alloc = std::allocator<T> >

class vector

{

// usual members, methods, typedefs, etc.

class copy_safe_iterator: public iterator

{

vector<T, Alloc>* v;

public:

copy_safe_iterator( iterator i,

vector<T, Alloc>* vt ) :

iterator( i ), v( vt ) { }

T& operator*()

{

if ( *this == v->end() )

{

v->push_back( T() );

iterator::p = &( v->back() );

}

return iterator::operator*();

}

};

copy_safe_iterator csbegin()

{

return copy_safe_iterator( begin(), this );

}

copy_safe_iterator csend()

{

return copy_safe_iterator( end(), this );

}

};

This technique can be transformed to other containers,
too.

Modification of any algorithms is not necessary because
these iterators can be work with standard copying algo-
rithms, such as copy or transform. For instance, the fol-
lowing code snippet shows the usage that cannot be imple-
mented in the original STL way:

std::vector<int> vi;

// ...

std::list<int> li;

// ...

std::copy( li.begin(),

li.end(),

vi.csbegin() );
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This invokation of copy algorithm overwrites all the ex-
isting elements in the vector, and added more new ele-
ments to the vector, if necessary. To achieve this goal with-
out copy-safe iterators is much more harder.

However, limitations can be mentioned with this ap-
proach. However, vector does not offer push front

method, the copy iterator should be parametrized with
strategy of adding new element to container. Function
objects (also known as functors) make the library much
more flexible without significant runtime overhead. They
parametrize user-defined algorithms in the library, for ex-
ample, they determine the comparison in the ordered con-
tainers or define a predicate to find.

The iterator always executes a check when it is deref-
erenced, it has runtime overhead. However, it guarantees
safety, and original non-copier iterators are available, too.
The runtime overhead should be measured [20].

7. CONCLUSION

STL is the most widely-used library based on the
generic programming paradigm. STL increases efficacy of
C++ programmers mightily because it consists of expedient
containers and algorithms. It is efficient and convenient, but
the incorrect usage of the library results in weird or unde-
fined behaviour.

In this paper we present some examples that can be
compiled, but at runtime their usage is defective. We ar-
gue for some new extensions to overcome these risky situa-
tions. New kind of iterators are presented as a solution. The
limitations of these iterators are also discussed.
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[9] DÉVAI, G. – PATAKI, N.: A tool for formally spec-
ifying the C++ Standard Template Library, Annales
Universitatis Scientiarum Budapestinensis de Rolando
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[19] PATAKI, N. – PORKOLÁB, Z. – ISTENES, Z.: To-
wards Soundness Examination of the C++ Standard
Template Library, In Proc. of Electronic Computers and
Informatics, ECI 2006, pp. 186–191.

[20] PATAKI, N. – SZŰGYI, Z. – DÉVAI, G.: Measur-
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