30 Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012, 30-37, DOI: 10.2478/v10198-012-0006-6

ONTOP: A COMPONENT FOR ACQUIRING INFORMATION FROM OWL
ONTOLOGIES

Ines CEH*, Milan ZORMAN™**, Matej éREPINgEK*, Tomaz KOSAR*, Marjan MERNIK*, Jaroslav PORUBAN***
*Programming Methodologies Laboratory, Faculty of Electrical Engineering and Computer Science, University of Maribor,
Smetanova 17, 2000 Maribor, Slovenia, e-mail: {ines.ceh, matej.crepinsek, tomaz.kosar, marjan.mernik } @uni-mb.si
**Laboratory for System Design, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17,
2000 Maribor, Slovenia, e-mail: milan.zorman @uni-mb.si
***Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of KoSice,
Letna 9, 042 00 Kosice, Slovak Republic, tel.: +421 55 602 2565, e-mail: jaroslav.poruban@tuke.sk

ABSTRACT
This paper presents a parser for OWL DL. OWL DL, a sub-language of OWL, allows efficient reasoning with computability as-
surance. The OWL parser, named OntoP, has been developed specifically for the requirements of a larger framework: Ontology2DSL.
Ontology2DSL enables the semi-automated construction of a formal grammar, as well as programs incorporating domain-specific lan-
guages (DSLs) from OWL ontologies. In this presentation of the parser, we focus on the data structure that the parser uses to store the
extracted information from an OWL document (written in RDF/XML syntax), the algorithm used to construct and visualise the class
hierarchy of the ontology, a converter that can transform the RDF/XML to Manchester OWL syntax, and those ontology metrics that

highlight key ontology characteristics.

Keywords: parsing, ontology, OWL, RDF/XML syntax, Manchester OWL syntax

1. INTRODUCTION

Web Ontology Language (OWL) is a semantic markup
language developed for the representation of information
on the semantic web [1]], [2]. It was designed by the World
Wide Web Consortium (W3C). It reached the status of a
recommendation in 2004. OWL ontologies are used for
modeling domain knowledge. Ontology describes the con-
cepts in a domain and the relationships among those con-
cepts [3]. A review of existing literature provides several
definitions for ontology. The more widely-accepted is the
definition by Studer et al. that defines ontology as: ”An
ontology is a formal, explicit specification of a shared on-
ceptualization.” [4], [5]. Besides its formal W3C recom-
mendation status, OWL is a success because of the vast set
of tools that enable working with OWL ontologies. These
tools enable the creating and editing of OWL ontologies
(Protégé [6]], Swoop [7]), and offer inference and reason-
ing (Pellet [8]], Fact++ [9]). In addition to these tools,
there are also various Application Programming Interfaces
(APIs) that enable the use of ontologies within various ap-
plications (OWL-API [10] and Jena [[11])).

OntoP the presented parser, as explained in further de-
tail in Section 3, was developed for the Ontology2DSL
framework [12], [13]. The Ontology2DSL framework,
shown as a workflow diagram in Fig. [I] enables the
semi-automated construction of formal grammars [14],
DSLs [15], and programs, all from an OWL ontology.
The framework accepts an OWL document (written in
RDF/XML syntax) as its input. It then proceeds with pars-
ing the document and uses the acquired information to fill
its internal data structure, known as an ontology data struc-
ture (ODS). The transformation pattern (TP), a sequence of
rules that construct the grammar and programs, is run over
ODS. Some of the rules in the TP require some involvement
and activity from a DSL engineer. The final results of the
framework are the DSL grammars and programs.

It was decided to construct DSLs from OWL ontologies

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

because OWL is currently the most widely-used ontology
language [16]]. RDF/XML syntax was selected because it
is the default syntax of OWL and, therefore, must be sup-
ported by all OWL-compatible tools [[1]], [2]. The choice
of language and syntax was made so that it would conse-
quently support the widest possible range of existing on-
tologies for the construction of DSLs.

DSL

&engineer

|

S !
OoWL | Ontology data | 1 | Grammar,
(RDF/XML) structure } programs

|

Fig.1 Ontology2DSL framework workflow diagram

The OntoP parser is one of the five main components of
the Ontology2DSL framework. The architecture and major
components of the framework are presented in more detail
in [[12]]. The tasks of the OntoP parser within the process of
constructing the language grammar and programs, include
the following:

e Creating and filling the internal data structure, ODS.

e Creating and visualising the ontology class hierarchy,
property hierarchy (object and datatype properties),
and the list of individuals.

e Acquiring and presenting all available information
for each of the ontology components (classes, object
properties, datatype properties, and individuals), and
the ontology itself.

e Acquiring and representing information on key on-
tology characteristics.

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012

31

The construction of language grammar and programs
from an OWL ontology is executed over three phases. Dur-
ing each phase OntoP performs one or more of the tasks
listed previously. The phases are:

e Ontology selection. As stated Ontology2DSL en-
ables the construction of DSL grammars and pro-
grams from OWL ontologies. The development of a
DSL is significanty shortened if it is constructed from
an existing ontology. When a DSL engineer wishes
to use an existing ontology for DSL construction he
has to consider whether the ontology is appropriate
for the task. Key ontology information is vital for
evaluating the ontology. For instance, if an ontol-
ogy only contains classes, and there are only a few of
them, it is highly probable that such an ontology con-
tains an insufficient number of concepts needed for
DSL development. Based on information from key
ontology characteristics, a DSL engineer can quickly
determine whether the ontology is worth considering.
The condition for the DSL development is a good un-
derstanding of the ontology semantics. The engineer
must determine the purpose for which the ontology
was created, what concepts it describes, what is the
overlap of these concepts with the DSL needs, etc.
During this phase OntoP acquires and presents infor-
mation to the DSL engineer on key ontology charac-
teristics. It also displays all the hierarchy, as well as
a list of individuals and information on all ontology
parts.

e Transformation. The transformation is done over
four steps using Ontology2DSL. During the first step,
the user selects the ontology over which the transfor-
mation will run. In the second step, the user select
the pattern that will be used in the transformation.
Since the transformation does not usually include the
entire ontology DSL requirements and does not fully
match with all of the ontology concepts, in step three
the DSL engineer excludes from the class hierarchy
all those classes unused during transformation. Dur-
ing step four, the TP is run over the ODS. Step four
is comprised of a variable number of sub-steps. This
number depends on the number of rules the individ-
ual TP holds.

During this phase OntoP creates and fills ODS and
enables the DSL engineer to view the ontology class
hierarchy and information on individual classes.

e Inspection and verification of created grammar
and programs. The DSL engineer inspects the
newly-created grammar and programs for any incon-
sistencies or errors. If any are found the engineer has
the option of directly editing the grammar, altering
the transformation pattern, or the source ontology. If
the DSL engineer changes a transformation pattern
it is necessary to re-run phases two and three. Dur-
ing this the results from phase one are used. Phases
two and three have to be run from the beginning. If
the DSL engineer uses a different ontology all three
phases need to be executed again. If no inconsisten-
cies or errors are detected, the process is complete.

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

For the DSL engineer it is useful to re-analyze the
ontology characteristics at this time. For example,
based on the information regarding the number of
classes, properties, and individuals, the DSL engi-
neer will be able to create an image of the production
count, types of grammar, and programs that could
be developed from ontology using such characteris-
tics. This will help the DSL engineer with phase one,
the ontology selection, and when working on new
projects.

This paper presents the OntoP parser, the data structure
that the parser uses to store the extracted information from
an OWL document (written in RDF/XML syntax), the al-
gorithm used for constructing and visualising the class hi-
erarchy of the ontology, a converter that can transform the
RDF/XML to Manchester OWL syntax, and those ontology
metrics that highlight key ontology characteristics (number
of classes, properties, individuals, etc.).

The organization of the paper is as follows: Section 2
presents the ontology web language OWL. Section 3 in-
troduces the ODS, an algorithm for constructing and visu-
alising the class hierarchy, a RDF/XML-Manchester OWL
syntax converter, and ontology metrics. The conclusion and
ideas for future work are summarized within Section 4.

2. THE WEB ONTOLOGY LANGUAGE OWL
2.1. OWL Sublanguages

The original OWL specification includes the defini-
tions of OWL’s three sub-languages, having different lev-
els of expressiveness. These languages are OWL Full,
OWL DL and OWL Lite (ordered by decreasing expres-
siveness) [1]], [2], [17]. OWL Full is not a sub-language of
the OWL language, it is the full OWL language itself. OWL
Full allows the user to ”say anything about anything”. The
flexibility of OWL Full is detrimental to computational ef-
ficiency. OWL Full is not decidable, this means that there
are no known algorithms that are capable of assuring com-
plete inference for a given OWL Full ontology. The "DL” in
the name of OWL DL sub-language stands for Description
Logic, an important subset of first-order logic [[I8]. OWL
DL uses the same constructs as OWL Full. Usage regard-
ing some of these constructs is restricted [19]. These re-
strictions make OWL DL decidable and, therefore, an algo-
rithm exists that ensures complete inference for any OWL
DL ontology. Decidability, however, makes no statements
on the efficiency of the algorithm and does not guarantee
real-time completion. OWL Lite is essentially OWL DL
with a sub-set of its language constructs.

2.2. OWL DL

The three basic components of the OWL DL sub-
language, which during the continuation of this paper is
only referred to as OWL, are: classes, properties, and in-
dividuals [[1], [2], [3]].

Classes are interpreted as those sets containing individ-
uals [3]. OWL defines two types of classes: simple named
and predefined classes. Simple named are those classes de-
fined by the user. The predefined classes, as provided by

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

32

OntoP: A Component for Acquiring Information from OWL Ontologies

OWL, are "Thing” and "Nothing.” Whilst ”Thing” is the su-
perclass of all classes, ”Nothing” is an empty class and can
be a subclass of every class. Two types of simple named
classes are defined; primitive and defined classes. Whilst
the primitive classes are described only with necessary con-
ditions, the defined classes are described with at least one
set of necessary and sufficient conditions. If a class is only
described using necessary conditions, then it can be as-
certained that if an individual is a member of that class it
must satisfy the conditions that describe this class. If a ran-
dom individual satisfies the conditions, it cannot be stated
that it must be a member of this class. If the class should
later be defined using necessary as well as sufficient con-
ditions, it would be possible to make decisions using both
statements. Classes can be disjoint. Classes can be orga-
nized into hierarchies. The second component is properties,
which is a binary relation. The two main types of properties
in OWL are object properties and datatype properties. Ob-
ject properties link objects with other objects, and datatype
properties with data values. OWL uses data values defined
within the XML Schema Definition Language (XSD) (ver-
sion 1.0) [1f]. Properties, similarly to classes, are also or-
ganized into hierarchies. Every property has a domain and
range. A property links domain individuals with range indi-
viduals. Object properties can also have inverse properties
and in that case domain and range are swapped. Individual
properties can have multiple domains and ranges. OWL
allows properties to have special characteristics. Conse-
quently, objcet properties can be transitive, symmetrical,
functional and inverse functional, datatype properties can
only be functional. The third component is the set of indi-
viduals, which are members of user-defined classes. A doc-
ument is an OWL DL if its corresponding graph conforms
to the rules for OWL-DL [20].

2.3. Syntaxes

Syntax is a set of rules that defines a language’s format.
The OWL W3C recommendation defines the standard ex-
change syntax as the RDF/XML syntax [1], [2], [[18]]. This
is the syntax that all OWL-compatible tools should support.
Other syntax also exists in addition to RDF/XML syntax.
Some examples include: Turtle, Abstract Syntax [1]], [2],
Manchester OWL [21]], and others. Different syntax is opti-
mised for different purposes. For our work, the most impor-
tant syntaxes are the RDF/XML and the Manchester OWL
syntax.

RDF/OWL, the primary syntax that all OWL-
compatible tools must support, is the XML syntax intended
to represent RDF triples. RDF/XML is a very extensive
syntax. Most tools use this syntax as the default for sav-
ing OWL ontologies. The advantage of this syntax is that
it is widely-supported but its disadvantage is that it is very
extensive and difficult for humans to comprehend.

Manchester OWL, the compact-text syntax, is derived
from Abstract Syntax. When compared to it, Manchester
OWL is less extensive and minimizes the use of brackets.
This results in it being easy to read, write and edit. Rel-
atively difficult expressions written in this syntax should
be as easily readable as regular English language. Syntax

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

uses natural language words such as "AND”, ”SOME” and
”NOT” instead of mathematical symbols. Reading and un-
derstanding is also made easier with the infix notation. The
simplicity of this syntax is its major advantage but its dis-
advantage is that it is very clumsy regarding some OWL
axioms. How compact and readable the Manchester syntax
is when compared to XML/RDF syntax is represented in
Fig.[2]and 3] Both show the definition of VegetarianPizza
class, in Fig. [2]it is written in RDF/XML while in Fig. [3]it
is written in Manchester OWL syntax.
<owl:Class rdf:about="#VegetarianPizza>
<owl:egquivalentClasss
<owl:Class>
<owl:intersectiondf rdf:parseType="Collection™:>
<rdf:DPescription rdf:abouc="#Pizza"/>
<owl:Restriction:
<owl:onProperty rdf:resource="#hasTopping™/ >
<owl:allValuesFrom>
<owl:Class>
<owl:uniondf rdf:parseType="Collection:>
<rdf:Description rdf:sbout="#CheeseTopping”/>
<rdf:Description rdf:sbout="#VegetableTopping"/>
</owl:iunionof:>
</owl:Class:>
<fowl:allValuesFrom:
</owl:Restrictions
</owl:intersectionOf:
</owl:Class>

</owl:equivalentClasss>
<fowl:Class>

Fig. 2 Definition of VegetarianPizza class written in RDF/XML
syntax

Class:
VegetarianPizza

Equivalent classes:
Pizza and hasTopping only (CheeseTopping or VegetableTopping)

Fig. 3 Definition of VegetarianPizza class written in Manchester
OWL syntax

3. ONTOP PARSER

Parsing is the procedure during which the parser pro-
vides a concrete representation of a document containing an
ontology, and then builds an internal representation compli-
ant with the document. OntoP is a parser implemented in
the programming language C# which is part of the .NET
framework. OntoP uses the XML document object model
(DOM) and those XML parsers associated with it, in order
to parse RDF/XML documents. It is intended to parse OWL
ontologies. OntoP supports all syntactic elements of OWL
language. Elements of the language, their descriptions and
examples can be found in 1], [2[], [19]], [22]].

3.1. Ontology data structure

The Ontology2DSL framework needs the ontology to be
in proper format. For this purpose OntoP takes a concrete
representation of an OWL document written in RDF/XML
syntax and constructs the inner representation (fully com-
pliant with the OWL document). The inner representation
is the ontology data structure ODS, to which OntoP writes
the extracted information. ODS is used to run transforma-
tion patterns over.

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012

33

ODS is composed of the following data structures: tree
of classes, tree of object properties, tree of datatype prop-
erties, and a list of individuals. The parser fills the ODS
in the same sequence as listed here. The nodes in the indi-
vidual trees are objects that contain information about the
individual ontology blocks stored within each node. Each
node stores the name of the block, as well as the following:

e equivalent classes, superclasses, members, disjoint
classes, comments, and labels (class tree),

e characteristics, domains, ranges, inverse properties,
and super properties (object property tree),

e characteristics, domains, ranges, and super properties
(datatype property tree), and

e types, data property assertion and object property as-
sertions (list of individuals).

3.2. Hierarchy construction and visualization algo-
rithm

During the process of ontology analysis, the DSL engi-
neer determines which concepts (classes) the ontology con-
tains and how they overlap the concepts of the DSL being
developed. Experience shows that ontology often contains
concepts that are irrelevant and these concepts should be
removed before the transformation. In order to ease the
elimination process for the DSL engineer, it was decided
to enable a visual representation of the ontology class hi-
erarchy. This ontology hierarchy is visualised in the form
of a tree in which each node is an ontology class. Using
visual representation, the DSL engineer can easily deselect
those classes that are unrequired during the transformation,
and therefore removing the long procedure of eliminating
unnecessary classes from the RDF/XML syntax. A visual
representation of the ontology consequently diminishes the
time needed for DSL development.

The OntoP parser uses a two-part algorithm for con-
structing the class hierarchy. The first part of the algorithm
creates lists of classes from an OWL file, in RDF/XML syn-
tax. Individual lists contain elements from a branch derived
from each of the ontology’s top-classes (a branch lists all
subclasses of a top class; the number of branches is limited
with the number of top classes multiplied with the number
of sub-classes). These lists are in ascending order from the
0 index as a leaf of the branch (the lowest subclass), to the
higher indexes as branches containing higher-classes. Dur-
ing the second part of the algorithm, the tree of classes is
filled with these lists. The algorithm performs the following
steps:

e In step one it loads an OWL document and removes
all non-essential information. Non-essential infor-
mation includes user comments written in the XML
file that do not syntactically match the ontology com-
ments.

o In the second step, the algorithm acquires a list of all
ontology classes. For each of them, the parent class
is found and stores them in the form of "ClassName-
ParentName” pairs. The first element is the class, and

ISSN 1335-8243 (print) (©) 2012 FEI TUKE
www.aei.tuke.sk

V.ERSITA, | EMERGING SCIENCE PUBLISHERS

the second is its parent class. Each pair is added to
a list of pairs. A part of the list of pairs for Pizza
ontology is presented in Fig.

e In the third step, the algorithm loops over the list of
pairs and performs data cleaning and verification pro-
cedures.

e In step four, the remaining pairs are collated into lists.
This procedure starts with the first pair, then scans the
remaining pairs to find the pair where the parent class
of the first pair is found to be the class name. From
that pair, the parent name can be extracted. There-
fore, a first list can be formed with three members.
The procedure is repeated until no more parents can
be extracted. Then the entire procedure is repeated
for all remaining pairs until all of them have been
transformed onto hierarchy lists. The merging proce-
dure (pairs to lists) is presented in Fig.[5} A part of
the list of all merged lists is presented in Fig.[6]

e Finally, in the fifth step the algorithm fills a
tree by first creating the root of the tree called
”Thing.” ("Thing” being the superclass of all ontol-
ogy classes.) The lists are then ordered according to
length. The longest lists are ranked highest, there-
fore their elements are the first to be written to the
tree. A part of the lists is shown in Fig.[f] The num-
ber of elements in the longest list provides the depth
of the tree. Each list is then processed individually.
Each list is first checked for length and, if the list is
amongst the longest, the final element from it will be-
come a child-node of the root-node ("Thing”), unless
that node has been inserted already. The other ele-
ments from the list become its children (each a level
lower). The procedure is run recursively for all the
lists.

For the construction of the hierarchy of objects and
datatype properties, the same algorithm is used as for the
construction of the ontology class hierarchy.

PizzaTopping — »«
JalapenoPepperTopping — > PepperTopping
PepperTopping —— VegetableTopping
RedPepperTopping —— PepperTopping
VegetableTopping —— PizzaTopping
GreenPepperTopping —> PepperTopping
Thing — »«

Fig.4 An excerpt of the list of pairs for the Pizza ontology

JalapenoPT —— PepperT
PeppefT — VegetableT

JalapenoPT v, PepperT —— VegetableT

v
JalapenoPT ——> PepperT —— VegetableT

VegetableT — > PizzaT

v
JalapenoPT —— PepperT — VegetableT —— PizzaT

Fig. 5 The merging procedure

ISSN 1338-3957 (online)
www.versita.com/aei

34

OntoP

: A Component for Acquiring Information from OWL Ontologies

JalapenoPT ——> PepperT ——> VegetableT —— PizzaT
GreenPT —— PepperT —— VegetableT —— PizzaT
RedPT —— PepperT —— VegetableT —— PizzaT

Fig. 6 A part of the list of all merged lists

3.3. RDF/XML-Manchester OWL syntax converter

Since the key to successfully constructed DSL is a
proper understanding of the source ontology, OntoP pro-
vides a description of all ontology components. Descrip-
tions are written in Manchester OWL syntax.

Visualization of component information is important
because if the ontology is better understood, the resulting
DSL is also improved. Manchester OWL syntax was cho-
sen for its easy readability, as easily readable syntax short-
ens the development-cycle.

Manchester OWL syntax was primarily intended for
representation and editing of class descriptions. It can also
be used for the representation the entire ontology. This
means that full descriptions can be prepared for classes,
properties, and individuals. A full description of the Vege-
tarianPizza class is presented in Fig.

Class
VegetarianPizza

Equivalent classes

Pizza and hasTopping only (CheeseTopping or VegetableTopping)

Disjoint classes
NonVegetarianPizza

Fig.7 VegetarianPizza class description written in Manchester
OWL syntax

In general OntoP displays those individual ontology
components marked with:

e equivalent classes, superclasses, inherited anony-
mous classes, members, disjoint classes, comments,
and labels (classes),

e characteristics, domains, ranges, inverse properties,
and super properties (object properties),

e characteristics, domains, ranges, and super properties
(datatype properties), and

e types, data property assertion, and object property as-
sertions (individuals).

The conversion between RDF/XML and Manchester
OWL syntax is done by the RDF/XML-Manchester OWL
syntax converter, which is a part of the OntoP implemen-
tation. For the creation of annotation classes (equivalent
classes and superclasses), RDF/XML-Manchester OWL
syntax converter uses class-description syntax, as repre-
sented in Table [

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

Table 1 The class description syntax [21]

OWL Construct DL Man. OWL
intersectionOf cnD CAND D
unionOf cuD CORD
complementOf -C NOT C
oneOf {a} U{b}... {ab..}
someValuesFrom JRC RSOME C
allValuesFrom VRC RONLY C
minCardinality > NR RMINN
maxCardinality < NR RMAXN
cardinality = NR REXACTLY N
hasValue IR{a} R VALUE «

Annotation (equivalent classes) for the VegitarianPizza
class, which is shown in Manchester OWL syntax in Fig.
is created by the converter within the sequence presented
in Fig.[§]

owl:equivalentClass 1, 2, 3,...

2
owl:Class a, b, c,... — writing sequence

(Manchester OWL syntax)

dwl:IntersectionOf

gwl:ResEr}ction
AND oo
b

édf:Description
Pizza .
a 6 — 7 ~.

owl:onProperty owl:allValuesFrom
hasTopping ONLY
c 4 dwl:Class

éwl:uﬂionof

fdf:Description
OR VegetableTopping)
f g

0 .
rdf:Description
(CheeseTopping

e

Fig. 8 The sequence of creating annotation (equivalent classes)
for the VegetarianPizza class, which is written in Manchester
OWL syntax

3.4. ONTOLOGY METRICS

Several ontologies that can be freely downloaded online
could have been used for the presented purposes. When
determining whether an ontology was useful, quality be-
came the deciding factor. To make the process easier,
new or summarised existing metrics [23]], [24]] were defined
that highlight ontology characteristics. Based on the infor-
mation on ontology characteristics, the DSL engineer can
make a quick and effective decision on the appropriateness
of the ontology. For instance, when reviewing information
on which components are in the ontology, DSL engineer
can determine which types of productions can be generated
from the ontology. The metrics used here are considered to
be a helpful tool and are not meant to be the final grade by
which the ontology is evaluated as appropriate or not. The

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012

35

represented metrics are evaluated and presented to users
within the OntoP component. This paper continues with the
representation of several metrics used in OntoP, explaining
their value for DSL development. The metrics are:

o Number of Classes (NoC)
Number of Classes is the number of classes within
the ontology.

o Number of Object Properties (NoOP)
Number of Object Properties is the number of object
properties within the ontology.

o Number of Datatype Properties (NoDP)
Number of Datatype Properties is the number of
datatype properties within the ontology.

o Number of Indivuduals (Nol)
Number of Indivuduals is the number of individuals
within the ontology.

All of the above-mentioned metrics are used as max-
imization fitness evaluations: higher numbers are
better for the successful development of DSL. It is
also very favorable if the ontology contains all of
these components; as all of the metrics are evaluated
as positive (higher than zero). It should be noted
that high values do not guarantee that the DSL will
be successfully developed. On the other hand, low
values do not automatically mean that the ontology
is insufficient for the DSL development.

o Number of Root Classes (NVoRC)
Number of Root Classes [24]] is the number of classes
explicitly defined within the ontology. Root-class is
a class that does not have any superclass. Mathemat-
ically NoRC can be formulated as:

n 1 if C;is root class
NoRC = ;Cia Ci= { 0 otherwise

6]

where: C - the ontology class, n - number of classes
within the ontology. The number of classes can be
from 1 to n, because the ontology can contain only
root-classes.

e Number of Leaf Classes (NoLC)
Number of Leaf Classes [24]] is the number of leaf-
classes explicitly defined within the ontology. A leaf-
class is a class that does not have any subclasses.
Mathematically NoLC can be formulated as:

NoLC(0)

I
lyg
O

! C— 1 if C; is leaf class
"1 0 otherwise

2

where: C - the ontology class, n - number of classes
within the ontology. The number of leaf classes can
be from 1 to n. A root-class that does not have any
subclasses can be considered as leaf-class.

ISSN 1335-8243 (print) (© 2012 FEI TUKE

With both metrics, NoRC and NoLC, border values
are undesirable for DSL development. For instance,
values close to 0 in both would mean that the on-
tology only has classes on the first level of the class
hierarchy. Consequently the Ontology2DSL frame-
work can only generate the start production. Auto-
mated generation of productions based on subclasses
is impossible in such a case [12], [13].

Average Depth of Inheritance Tree of Leaf Nodes
(ADIT-LN)

Average Depth of Inheritance Tree of Leaf
Nodes [24] is the relation between the sum of depths
of all paths and the total number of all paths. The
depth is the number of all nodes between the root
and leaf-nodes along a path. All ontology-paths are
all the different paths from each root-node to individ-
ual leaf-nodes. The root-node is the first level on any
path. Mathematically ADIT-LN can be formulated
as:

n
ADIT-LN =Y D;/n 3)
i=1

where: D; - depth of i —th path, n - number of all
possible paths.

Average Population (AP)

Average population [23] is the ratio between the
number of individuals and number of classes. Math-
ematically AP can be formulated as:

AP =i/c “

where: i - number of all individuals within ontology,
¢ - number of all classes within ontology.

Class Richness (CR)

Class Richness [23]] is the ratio between the num-
ber of classes with individuals and the number of all
classes within the ontology. Mathematically CR can
be formulated as:

AP={"/c 5)

where: ¢’ - number of classes with individuals, ¢ -
number of all classes within ontology. The higher
the value of AP the more knowledge the ontology
contains.

For DSL, the development values of AP in CR should
be high since this provides a better chance of devel-
oping a richer grammar.

Relationship Richness (RR)

Relationship Richness [23] is the ratio between the
number of relations within the ontology on one side,
and the sum of all subclasses (number of inheritance
relationships) added by number of relations on the
other side. Mathematically RR can be formulated as:

RR =r/(sc+r) (6)

ISSN 1338-3957 (online)

www.aei.tuke.sk VERSITA | EMERGING SCIENCE PUBLISHERS www.versita.com/aei

36

OntoP: A Component for Acquiring Information from OWL Ontologies

where: r - number of all relationships, sc - number
of all subclasses (inheritance relationships) within
ontology. This metric represents the diversity and the
position of relationships within the ontology. Ontol-
ogy that contains more relationships that are not of
class-subclass type (RR value is close to 1) is richer
than a taxonomy (which contains only class-subclass
relationships and has RR value close to 0).

Higher values of ADIT-NL, AP, CR in RR are de-
sirable for DSL development. Since higher values
indicate information rich ontologies they can be used
to create richer, better grammar and programs.

e Inheritance richness (/R)
Inheritance richness [23] is defined as the average
number of subclasses per class. Mathematically /R
can be formulated as:
IR = sc/c (7
where: sc - number of all subclasses within ontology,
¢ - number of all classes within ontology. This metric
measures the distribution of information on different
levels of the class hierarchy, and serves as an in-
dicator of how well the knowledge is grouped into
different categories and sub-categories within the on-
tology. IR metric distinguishes between the horizon-
tal and vertical ontology. Horizontal-ontology has
classes that have many subclasses, whilst vertical-
ontology has classes that have a small number of
direct subclasses. /R values close to 0 indicates verti-
cal ontologies (describing a specific domain in detail)
whilst high IR values represent horizontal-ontologies
(more general knowledge with fewer details).

Lower values are desired for DSL development be-
cause they represent vertical ontologies that describe
a specific domain in detail.

4. CONCLUSION AND FUTURE WORK

When working with OWL ontologies, a large set of tools
exists that enable the creation, editing, reasoning over on-
tologies, and the usages of ontologies for various applica-
tions. This paper presented another parser for working with
ontologies: the OntoP ontology parser. OntoP was devel-
oped for the needs of a larger framework: Ontology2DSL.
OntoP, within the framework Ontology2DSL, is tasked with
four tasks: filling of the data structure, construction and rep-
resentation of hierarchies, retrieval and displaying of infor-
mation on individual ontology components, and enabling
the evaluation of ontologies with metrics.

The accuracy of OntoP has been verified on a set of on-
tologies. Information retrieved by OntoP has been com-
pared to information extracted from Protégé. OntoP has
been proven to be equal to Protégé. Experiment that will
show the practical value of metrics will be part of our future
work. Future work will include a separation of the OntoP
parser from the Ontology2DSL framework, so that it can be
offered as a freely-accessible tool for interested researchers.

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

ACKNOWLEDGEMENT

This work is sponsored by bilateral project "Language
Patterns in Domain-specific Languages Evolution” between
Slovenia (Grant No. BI-SK/11-12-011) and Slovakia
(Grant No. SK-SI-0003-10).

REFERENCES

[1] LACY, L.: OWL: Representing Information Using the
Web Ontology Language. Trafford Publishing, 2005,
ISBN 1412034485.

HEBELER, J. — FISHER, M. — BLACE, R. — PEREZ-
LOPEZ, A.: Semantic Web Programming. Wiley Pub-
lishing, 2009, ISBN 047041801X.

HORRIDGE, M.: A Practical Guide to Building
OWL Ontologies Using Protégé 4 and CO-ODE Tools.
http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/resources/
ProtegeOWLTutorialP4_v1_3.pdf.

STUDER, R. — BENJAMINS, R. V. — FENSEL, D.:
Knowledge engineering: Principles and methods, Data
& Knowledge engineering 25, No. 1-2 (1998) 161-197.
http://www.sciencedirect.com/science/article/
pii/S0169023X97000566

STAAB, S. — STUDER, R.: Handbook on Ontologies.
Springer Verlag, 2009, ISBN 3540408347

Protégé, http://protege.stanford.edu/

KALYAMPUR, A. — PARSIA, B. — HENDLER, 1J.:
A tool for working with web Ontologies, International
Journal on Semantic Web and Information Systems 1,
No. 1 (2005) 36—49. http://www.ijswis.org/?q=node/8

SIRIN, E. - PARSIA, B. - GRAU, B. - KALYANPUR,
A.—-KATZ, Y.: Pellet: A practical OWL-DL reasoner,
Web Semantics: Science, Services and Agents on the
World Wide Web 5, No. 1 (2007) 51-53.

TSARKOV, D. — HORROCKS, I.: FaCT++ Descrip-
tion Logic Reasoner: System Description. In Proceed-
ings of the International Joint Conference on Auto-
mated Reasoning, Seattle, pp. 292-297, Aug. 2006.

BECHHOFER, S. — VOLZ, R.— LORD, P.: Cooking
the Semantic Web with the OWL API. In Proceeding
of the First International Semantic Web Conference, pp.
659-675, Oct. 2003.

[11] Jena, http://jena.sourceforge.net/

[12] CEH, 1. — CREPINSEK, M. — KOSAR, T. -
MERNIK, M.: Ontology Driven Development of
Domain-Specific Languages, Computer Science and
Information Systems 8, No. 2 (2011) 317-342.
http://www.comsis.org/archive.php?show=vol0802

CEH, 1. - CREPINSEK, M. - KOSAR, T. - MERNIK,
M. — HENRIQUES, P. R. — PEREIRA, M. J. V. - DA
CRUZ, D. - OLIVEIRA, N.: Tool-supported building
of DSLs from OWL ontologies. INForum 2011 : ter-
ceiro simposio de informatica, Coimbra, pp. 210-221,
Sep. 2011.

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[13]

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012

37

[14] AHO, A. V. - LAM, M. S. — SETHI, R. - ULLMAN,
J. D.: Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2007, ISBN 0201100886.

MERNIK, M. — HEERING, J. - SLOANE, A. M.:
When and how to develop domain-specific languages,
ACM Computing Surveys 37, No. 4 (2005) 316-344.
http://dl.acm.org/citation.cfm?id=1118890
&picked=prox

CARDOSO, J.: The Semantic Web Vision: Where are
We?, Intelligent Systems 22, No. 5 (2007) 84-88,
http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=4338482

ANTONIOU, G. — VAN HARMELEN, F.: A Seman-
tic Web Primer, second edition. The MIT Press, 2008,
ISBN 0262012421.

BAADER, F. - CALVANESE, D. - MCGUINNESS,
D. - NARDI, D. — PATEL-SCNEIDER, P. E.: The de-
scription logic handbook: Theory, implementation and
applications. Cambridge University Press, 2003, ISBN
0521781760.

BECHHOFER, S. - VAN HARMELEN, F -
HENDLER, J. - HORROCKS, I. - MCGUINESS, D.
L. — PATEL-SCHNEIDER, P. F. - STEIN, L. A.: Owl
Web Language Reference. http://www.w3.org/TR/owl-
ref/

PATEL-SCHNEIDER, P. F. — HAYES, P. - HOR-
ROCKS, I.. OWL Web ontology Language Seman-
tics and Abstract Syntax. http://www.w3.org/TR/owl-
semantics/

HORRIDGE, M. - DRUMMOND, N. - HOODWIN, J.
—RECTOR, A. - STEVENS, R. - WANG, H. H.: The
Manchester OWL syntax. OWL: Experiences and Di-
rections Workshop, Athens, Georgia, USA, Nov. 2006.
SMITH, M. K. - WELTY, C. — MCGUINNESS,
D. L. OWL Web ontology Language Guide.
http://www.w3.org/TR/owl-guide/

TARTIR, S. - ARPINAR, I. B. -
A. P: Ontological evaluation and
http://knoesis.wright.edu/library/

YAO, H. — ORME, A. M. — Etzkorn, L.: Cohesion
Metrics for Ontology Design and Application, Jour-
nal of Computer Science 1, No. 1 (2005) 107-113.
http://thescipub.com/issue-jcs/1/1

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

[23] SHETH,

validation.

[24]

Received January 30, 2012, accepted March 30, 2012

BIOGRAPHIES

Ines Ceh received her B.Sc. degree in computer science at
the University of Maribor, Slovenia in 2008. Her research
interests include domain-specific languages and ontologies.
She is currently a Ph.D student, employed as a researcher at
the University of Maribor, Faculty of Electrical Engineer-
ing and Computer Science.

Milan Zorman received his Ph.D. in computer science
in 2001 at the University of Maribor. At the moment he

ISSN 1335-8243 (print) (© 2012 FEI TUKE

www.aei.tuke.sk VERSI T/\

works as an Associate Professor at the Faculty of Electrical
Engineering and Computer Science, the Medical Faculty
and Faculty of Health Sciences, University of Maribor.
He is also the director of Centre for Interdisciplinary and
Multidisciplinary Research and studies of the University
of Maribor (CIMRS), and head of the Enterprise Europe
Network project at the same institution. As a researcher
he is active in the fields of artificial intelligence, machine
learning, medical and nursing informatics, data mining,
knowledge extraction, hybrid intelligent systems and com-
plex systems.

Matej Crepinsek received his Ph.D. degree in computer
science at the University of Maribor, Slovenia in 2007. His
research interests include grammatical inference, evolu-
tionary computations, object-oriented programming, com-
pilers, grammar-based systems and Android application
development. He is currently a teaching assistant at the
University of Maribor, Faculty of Electrical Engineering
and Computer Science.

Tomaz Kosar received his Ph.D. degree in computer sci-
ence at the University of Maribor, Slovenia in 2007. His
research is mainly concerned with design and implemen-
tation of domain-specific languages. Other research inter-
est within computer science include also domain-specific
modelling languages, empirical software engineering, soft-
ware security, generative programming, compiler construc-
tion, object-oriented programming, object-oriented design,
refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical
Engineering and Computer Science.

Marjan Mernik received his M.Sc. and Ph.D. in com-
puter science from the University of Maribor in 1994 and
1998, respectively. He is currently Professor of Computer
Science at the University of Maribor. He is also Visiting
Professor of Computer and Information Sciences at the
University of Alabama, Birmingham USA, and at the Uni-
versity of Novi Sad, Faculty of Technical Sciences. His
research interests include programming languages, compil-
ers, domain-specific (modeling) languages, grammar-based
systems, grammatical inference, and evolutionary compu-
tations. He is a member of the IEEE, ACM and EAPLS.

Jaroslav Porubin is an associate Professor at Depart-
ment of Computers and Informatics, Technical university
of Kosice, Slovakia. He received his MSc. in Computer
Science in 2000 and his Ph.D. in Computer Science in
2004. Since 2003 he is the member of the Department
of Computers and Informatics at Technical University of
Kosice. He was involved in the research of profiling tools
for process functional programming language. Currently
the main subject of his research is the computer language
engineering, concentrating on the design and implementa-
tion of domain-specific languages and computer language
composition and evolution.

ISSN 1338-3957 (online)

EMERGING SCIENCE PUBLISHERS www.versita.com/aei

