
38 Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012, 38–43, DOI: 10.2478/v10198-012-0007-5

PROGRAM COMPONENTS & ABSTRACT BEHAVIORAL TYPES

Marián JENČIK, Daniel MIHÁLYI
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic, e-mail: marian.jencik@student.tuke.sk, daniel.mihalyi@tuke.sk

ABSTRACT
In this paper we deal with the construction of the component-based complex program system categorical model which will be

used to behavioral description. The basis of the behavioral description of the component-based complex system and definition of the
model is Abstract Behavioral Type (ABT) which yields behavior of the program component as maximal interactions among observable
timed data streams. Program component is an independent entity, black-box, from which we can compose component-based complex
program system and an interaction is in this case defined as a relation between observable program component input and output
through component ports. Observable input and output is yielded as a pair of the infinite data stream and timed stream. Complexity of
the system is given by number of ABTs where individual complex program system we can divide into two kinds of ABT types, namely
component instance’s ABT whose internal structure is unknown and connector’s ABT whose internal structure is known and can be
defined by user. Behavior of the whole complex system can be yielded as a conjunction of the ABTs.

Keywords: component-based programming, program component, abstract behavioral type, complex program system

1. INTRODUCTION

Component-based software engineering, as a part of
software engineering deals with the construction of pro-
gram systems by combining prefabricated components with
new programs that provide both glue between the compo-
nents, and new functionality [2].

Each program component can be defined as follows:

Definition 1.1. Program component form which is pro-
gram system composed is by [6] defined as a unit of com-
position with contractually specified interfaces and fully ex-
plicit context dependencies that can be deployed indepen-
dently and is subject to third party composition.

A program component have to match three following char-
acteristics [5]:

1. Black-box composability, substitutability and
reusability: there is no need to know the design and
the implementation when composing a component
with other parts of the system, substituting a com-
ponent with another one or reusing it in another
application.

2. Independent development: components can be de-
signed, implemented, verified, validated and de-
ployed independently.

3. Interoperability: components can be implemented in
different programming languages and paradigms, but
they can be composed, be glued together and they co-
operate with each other.

�

In a programming paradigm where instances of com-
ponents are their primitive buildings blocks, all decisions
about which components will be used and composed to-
gether to build a new program application must be made
from outside what in generally means that a component
cannot be allowed to internally decide that component will
be communicate with another components.

2. ABSTRACT DATA TYPE (ADT)

If we try to use Abstract Data Type (ADT) which is de-
fined in Definition 2.1 and which has served as a founda-
tion structure for structural and object-oriented program-
ming for some decades as a model for program components
then only way to communicate with a program component
is by invoking it’s operations and inter-component commu-
nication becomes the same as inter-object communication.
This way of inter-component communication would be for
program components rather restrictive. A formal model of
components has to provide an inter-communication mecha-
nism that affords a higher level of mutual independence to
components than the ADT model does.

Definition 2.1. Abstract Data Type (ADT) is formally de-
fined as a triple

(T ,F ,A ), (1)

where T is a set of sorts denoting the required types, F is
a set of operations over T and A is a set of axioms written
as algebraic equations defining the results of various com-
binations of operations in F on data items of various types
in T .

�

Abstract Behavioral Type (ABT) as a model for program
components in contrast to ADT supports only sending un-
targeted passive message through it’s contact ports. Com-
ponents exchanges with it’s environment some passive
data :

• sending message is just write-operation and

• receiving message is just read-operation.

This view of inter-component communication for
component-based system is more appropriate.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM



Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 39

3. ABSTRACT BEHAVIOR TYPE (ABT)

Abstract Behavioral Type (ABT) in contrast of abstract
data type (ADT) which contains operations and data struc-
tures that may be used by operational interface implemen-
tation defines behavior of the program component based on
observable program component input and output .

Definition 3.1. An Abstract Behavior Type is an inter-
action between observable input and output that occur
through component ports without specifying any detail
about:

1. the operations that may be used to implement such
behavior or

2. the data types those operations may manipulate for
the realization of that behavior.

The set of component ports we can name interface of the
component.

�

4. INTERACTION

If we can define an interaction between observable in-
put and output of the component which can be denoted
as :

inputi
interactionk- output j,

where inputi is observable input and output j is observable
output, for 0 < i≤ m a 0 < j ≤ n,

we have firstly to define Data Stream (DS) and Timed Data
Stream (TDS).

Definition 4.1. Data Stream (DS) is defined as an infinite
sequence of elements over set of data items and is denoted
Dω . Stream over data items is very often denoted by char-
acters of the Greek alphabet as α , β , γ , . . ..

�

The elements of an individual data stream are by [7] num-
bered as the first, the second, the third, etc. elements of the
data stream, e.g., α(0), α(1), α(2), α(3), . . . where α(0)
we call initial value of the data stream α .

Definition 4.2. Timed Data Stream (TDS) is defined as a
pair of streams

〈α,a〉, (2)

where TDS = Dω ×T ω consists of data stream, α ∈ DS
and timed stream, a ∈ TS, with the interpretation that an
input resp. an output of a data item α(i) occurs at time
moment a(i), for all i≥ 0.

�

Notation 4.1. Two timed data streams 〈α,a〉 and 〈β ,b〉 are
equal if their respective elements are equal

〈α,a〉= 〈β ,b〉 ≡ α = β ∧a = b. (3)

�

An interaction between program components, which are
independent entities [4], that internal structure is unknown
is then yielded by relation among input and output timed
data streams.

This relation can be denoted as :

Rk(〈α1,a1〉, . . . ,〈αm,am〉;〈β1,a1〉, . . . ,〈βn,an〉), (4)

where 〈αi,ai〉 is an input timed data stream and 〈β j,b j〉 is
an output timed data stream, for 0 < i≤ m and 0 < j ≤ n.

An interaction is not as trivial as it seems. The black-
box program components do not know anything about each
other and are not necessarily designed to work with one
another. The chance that they have compatible communi-
cation periods is very small. This means that glue code that
connects two components and composes a pair has to im-
plement an interaction protocol, it’s relation that somehow
compensates the mismatch of their periods.

5. COMPLEX PROGRAM SYSTEM

A complex program system P is from the ABT’s view
defined as a component-based system, which consists of
program component instances pki and connectors ki (glue
code) between them, which are together modelled as ab-
stract behavior types (ABTs).

Distinction between a component’s ABT and a connec-
tor’s ABT is just that a component’s ABT is an atomic ABT
whose internal structure is unknown, whereas a connector’s
ABT is known to be an ABT that is itself composed out of
other ABTs

Since glue code is between components which connects
and through which can components communicate with their
environment. It implies that :

1. the components must be amenable to external coordi-
nation control what implicate to glue code must con-
tain suitable mechanism through which components
can interact with their environment and

2. the glue code must contain constructs to provide such
external coordination what implicates to glue code
programming language must incorporate a coordina-
tion model.

A complex program system P, Fig. 1, can be denoted as :

P =

{
pk1

k1◦ pk2
k2◦ . . .

kn−1◦ pkn

}
. (5)

where pki is component’s ABT and ki is connector’s ABT ,
for 0 < i≤ n.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM



40 Program Components & Abstract Behavioral Type

pk1

pk2 pk3

k1 k2

interface

interfaceinterface

Fig. 1 Complex Program system consists of three program
components and two connectors.

5.1. Connectors

Definition 5.1. A connector can be in general defined as
a medium of communication with exactly two ends, and a
relation that defines its interaction protocol through these
ends.

�

We recognizes two types of connector’s end:

• source end - through this end timed data stream enter
into channel;

• sink end - through this end timed data stream come
out of the channel;

Connector’s simplest types are channels (Fig.:2). Chan-
nels as a set of simplest glue code was firstly defined in
REO by Dr. Fahrad Arbab [1], [2], [3], [8], [9]. There is
no requirement in channels to have defined a source and a
sink end. It is perfectly content with a channel that has two
sources or two sink, but there have to be defined behavior
of the channel through relation which defines interaction
protocol of the channel.

LossySync Channel

SyncDrain Channel

Asynchronous FIFO1 Channel

Filter Channel
P

Synchronous Channel

Fig. 2 Some simplest connectors - Channels

Synchronous channel

Synchronous channel is a channel on which ends
are read-operations and write-operations succeed syn-
chronously.

Behavior of Sync ABT is defined by the relation

〈α,a〉Sync〈β ,b〉 ≡ α = β ∧a = b. (6)

This notation represents the behavior of any entity in
which :

• output data stream is identical to its input data stream
(α = β );

• element on the output is produced at the same time as
element on its input is consumed (a = b);

LossySync Channel

LossySync is a synchronous channel with a behavior very
similar to Synchronous channel except that it is always
ready to consume data items written to its source. Behavior
of LossySync ABT is defined by the relation

〈α,a〉LossySync〈β ,b〉 ≡

≡



〈α,a〉LossySync〈β ,a(0).b′〉
for a(0)> b(0),

β (0) = α(0)∧〈α ′,a′〉LossySync〈β ′ ,b′〉
for a(0) = b(0),

〈α ′,a′〉LossySync〈β ,b〉
othervise.

(7)

This notation represents the behavior of any entity that :

• all write-operations on the source end of a LossySync
channel are immediately succeed;

• if there is a pending take on its sink end, then the
written data item is transferred;

• otherwise, the write-operation succeeds, but the writ-
ten data item is lost;

SyncDrain Channel

SyncDrain is a synchronous channel and the behavior of
SyncDrain ABT is defined by the relation

〈α,a〉SyncDrain〈β ,b〉 ≡ a = b. (8)

This notation represents the behavior of any entity that :

• produces no output data stream, because it has no
sink end;

• every data item written to its source end is lost;

• write-operation on the one of the end remains pend-
ing until write on other end is performed, in other
world operations on both ends are performed at
the same time (a = b) and write operations can be
blocked if it is necessary, to ensure that they succeed
atomically;

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM



Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 41

Asynchronous channel

The behavior of an asynchronous channel ABT FIFOk with
the bounded capacity of k, for k > 0 is defined by the rela-
tion

〈α,a〉 FIFOk 〈β ,b〉 ≡ α = β ∧a < b < a(k),
where b(i)< a(i+ k).

(9)

The FIFOk ABT represents the behavior of any entity in
which :

• output data stream is identical to its input data stream
(α = β );

• every element on its output some time after its respec-
tive input element is observed (a < b) but before its
kth-next input element is observed (b < a(k) which
means b(i)< a(i+ k), for i > 0);

Observe that FIFO1 is indeed a special case of FIFOk with
k = 1. FIFO1 is an asynchronous channel with :

1. a source end,

2. a sink end and

3. bounded buffer with the capacity of one data item.

Its buffer is initially empty. A write operation on its source
end succeeds and fills the buffer. If the buffer is non-empty,
a write operation is succeeded on the sink end and removed
from buffer. Other input resp. output operations are block
and waiting for change the status of the buffer.

Filter channel

FILTER(P) channel behaves like a Sync channel, except
that only those data items that match the pattern P can ac-
tually pass through it; others are always accepted by its
source, but are immediately lost. The behavior of FILTER
ABT is defined by the relation

〈α,a〉FILTER(P)〈β ,b〉 ≡

≡

 β (0) = α(0)∧b(0) =
= a(0)∧〈α ′,a′〉FILTER(P)〈β ′,b′〉 if α(0) 3 P,

〈α ′,a′〉FILTER(P)〈β ,b〉 othervise.
(10)

The infix operator α(0) 3 P denotes whether the data item
α(0) matches with the pattern P or not and therefore if α(0)
passes through or not. When α(0) does not pass through
channel, it is lost, and the ABT proceeds with the rest of its
timed data streams.

5.2. Category of program components

An interface of program component INFpks is a set of
all program component contact ports cppksr

and can be de-
noted as :

INFpks = {cppks1
,cppks2

, . . . ,cppksr
} (11)

while all program components contact ports cppksr
and rela-

tion among observable input and output timed data streams
Rk(〈αi,ai〉;〈β j,b j〉) forms the category Pkomp, category
of program components Pkomp.

Since program components pks communicates with
their environment through the contacts ports sending untar-
geted passive messages, which only supports the operations
of writing and reading, we can also say that each program
component contact port cppksr

is a type :

cppksr
= 〈α(i) : Stream[T ],a(i) : E〉 (12)

where Stream[T] is a type of the data item α(i) and E is a
type of a time moment a(i), for 0 < i≤ n .

The category Pkomp is a category, where :

• objects are individual component interfaces INFpks

which are products of the contact ports cppksr
:

INFpks = {cppks1
× . . .× cppksr

} (13)

• morphisms are interactions among observable input
timed data stream and output timed data stream in
the form :

〈αi,ai〉
interactionk- 〈β j,b j〉,

which is yielded by relations and can be denoted in
the form :

Rk(〈αi,ai〉;〈β j,b j〉). (14)

5.3. Behavior of complex program system

Behavior of complex program system is expressed as
conjunction of maximal relations among a set of timed data
streams. In other words, complex program system behav-
ior B(P) is expressed as union of individual ABTs, because
abstract behavior type (ABT) is a maximal relation among
a set of timed data streams what can be denoted as :

B(P) = {ABTpk1 ∪ABTpk2 ∪ . . .ABTpks} (15)

or

B(P) = {Rmax(〈αpk1 ,apk1〉;〈βpk1 ,bpk1〉) ∪
∪ Rmax(〈αpks ,apks〉;〈βpks ,bpks〉)}

(16)

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM



42 Program Components & Abstract Behavioral Type

6. CONCLUSIONS

Complexity of the component-based program systems
are constantly growing up and are more and more used. But
if we want to reach expected results, we must be able to
model their behavior. Behavior modelling is therefore very
important.

Complex program system from ABT view is composed
from instances of components and connectors, glue code
between them which provide interaction, communication
among components and both are modelled as abstract be-
havioral types (ABTs). Program components ABT is an
atomic ABT whose internal structure is unknown, whereas
a connectors ABT structure is known and connectors ABT
can be itself composed of other connectors ABTs to more
complex ABTs.

ABT as model for program component in contrast to
classical abstract data type (ADT) represents higher level
of the abstraction as ADT and it’s inter-component com-
munication protocol is based on sending untargeted passive
messages through component contact ports which only read
and write operations are supported. Sending message is just
write-operation and receiving is just read-operation and set
of all component contact ports represents interface of the
program component.

Interaction between program components, which are in-
dependent entities that internal structure is unknown is not
as trivial as it in first seems. The black-box program com-
ponents do not know anything about each other and are
not necessarily designed to work with one another and that
means that connector that connects two components and
composes pair has to implement an interaction protocol
which is yielded by relation among input and output timed
data stream

Rk(〈α1,a1〉, . . . ,〈αm,am〉;〈β1,a1〉, . . . ,〈βn,an〉).

In this paper we have defined relational category of pro-
gram components. Objects of this relational category are
individual component interfaces which are products of the
contact ports and morphisms are interactions among ob-
servable input timed data stream and output timed data
stream which is yielded by relations. Category of program
components will be used in our research [10], [11], [12],
[13] as model for behavioral description of the component-
based complex program systems.

ACKNOWLEDGEMENT

This work is the result of the project implementa-
tion: Center of Information and Communication Tech-
nologies for Knowledge Systems (ITMS project code:
26220120030) supported by the Research & Development
Operational Program funded by the ERDF.

REFERENCES

[1] ARBAB, F.: Composition by Interaction. Inaugural
Lecture (2005). Leiden Institute of Advanced Com-
puter Science, Faculty of Mathematics & Natural Sci-
ences, Leiden University.

[2] ARBAB, F.: Abstract Behavior Types: A foundation
model for components and their composition. Science
of Computer Programing 55, 2005, pp. 3–52.

[3] ARBAB, F.: REO: a channel-based coordination
model for component compostition. Mathematical
Structures in Computer Science 14, 2004, pp. 329–366.

[4] KRISTENSEN, B. – MAY, D.: Component Composi-
tion and Interaction. In Proceedings of International
Conference on Technology of Object-Oriented Lan-
guages and Systems, 1996, TOOLS PACIFIC’96.

[5] CHEN, X. – JIFENG, H. – LIU, Z. – ZHAN, N.: A
Model of Component-Based Programming. Report No.
350, 2006, UNU-IIST, P.O.Box 3058, Macao.

[6] SZYPERSKI, C.: Component Software : Beyond
Object-Oriented Programming Addison-Wesley, 1997.

[7] BAIER, Ch. – SIRJANI, M. – ARBAB, F. – RUTTEN,
J.: Modeling Component Connectors in Reo by Con-
straint Automata Science of Computer Programming
61, 2006, pp. 75–113.

[8] CLARKE, D. – PROENCA, J. – ARBAB, F. – LA-
ZOVIK, A.: Deconstruction REO Electronic Notes in
Theoretical Computer Science, Volume 229 (2), 2009,
pp. 43–58.

[9] KOKASH, N. – ARBAB, F.: Applying REO to ser-
vice coordination in long-running business transaction,
SAC’09, 2009, pp. 1381–1382.

[10] SLODIČÁK, V.: Some useful structures for categorical
approach for program behavior, Journal of Information
and Organizational Sciences, Vol. 35, No. 1, 2011, pp.
93–103, www.jos.foi.hr.

[11] MIHÁLYI, D. – NOVITZKÁ, V.: A Coalgebra as an
Intrusion Detection System, Acta Polytechnica Hungar-
ica, Budapest, Vol. 7, Issue 2, (2010), pp. 71–79.

[12] JENČIK, M. – MIHÁLYI, D.: Formal description
of behaviour for large program system, In CSE
2010: proceedings of International Scientific confer-
ence on Computer Science and Engineering, Košice-
Stará Ľubovňa, Slovakia, (2010), pp. 15–22.

[13] JENČIK, M. – NOVITZKÁ, V.: Formal Description
of Behaviour for Object-based Programs, In Electrical
Engineering and Informatics 2: Proceeding of Faculty
of Electrical Engineering and Informatics of the Tech-
nical University of Košice, (2011), pp. 223–228.

Received January 12, 2012, accepted April 16, 2012

BIOGRAPHIES

Marián Jenčik graduated (MSc) at the department of Com-
puters and Informatics of the Faculty of Electrical Engi-
neering and Informatics at Technical University in Košice
in 2004. Since 2008 he is studying as external PhD. student

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM



Acta Electrotechnica et Informatica, Vol. 12, No. 1, 2012 43

at original department. His scientific research is focusing
on modelling software object in category theory and defing
suitable categorical structure for coalgebraic behavior de-
scription of object-oriented and component-based program
systems.
Daniel Mihályi worked as a researcher at the department of
Computers and Informatics of the Faculty of Electrical En-

gineering and Informatics at Technical University in Košice
and later as a assistant professor. In 2009 he defended
PhD. thesis Duality of formal description of construction
and program behavior. The main area of his research in-
cludes application of category theory in informatics and us-
ing source-based logical systems for formal description of
program systems behavior.

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:04 AM


