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ABSTRACT
In this paper the quadratic programming problem with linear constraints containing absolute values of variables (QPPLCAV) is

considered. Hessian matrix is presumed to be positive definite. The problem is transformed to the larger problem with double number
of variables with the same number of linear constraints without absolute values and with additional nonnegativity conditions (one
inequality containing n absolute values could be ‘directly’ substituted by the system of 2n inequalities without absolute values). This
problem may have several solutions. The relations between the original and the transformed problems are studied. In order to obtain
stable approximations to the normal solution to the transformed problem corresponding to the unique solution of the original problem
a regularization technique is proposed. A numerical example is given.

Keywords: convex quadratic programming, portfolio optimization, linear constraints with absolute values, normal solution, regular-
ization, stabilization

1. INTRODUCTION

Quadratic programming (QP) is the simplest nonlin-
ear programming problem. An extensive research in this
area starts with the pioneering work of [12]. In the pa-
per [3] a comprehensive summary of quadratic program-
ming bibliography (including items corresponding to elec-
trotechnics and informatics, e.g., digital filter design or
using Neural Networks to solve LP and QP problems)
have been published, and quadratic programming codes
have been listed at [4]. Authors refer to H. Mittelmann’s
QP solvers site [14]. The numerical optimization includ-
ing QP can be found, e.g., in books [9, 15]. A reposi-
tory of convex quadratic programming problems is intro-
duced in [13]. A survey on methods for solving the gen-
eral quadratic programming problem is presented in [16].
There are numerous algorithms for the convex QP, see, e.g.,
[2, 5–8, 10, 11, 18, 21, 23–26]. The comparison of five QP
algorithms is given in [19].

Usually, QP problems with linear equality and inequal-
ity constraints are considered. In [1] optimal solutions to
quadratic programs with quadratic constraints and inequal-
ity constraints expressed by means of lp-norms are studied.
We have not found papers dealing with linear constraints
containing absolute values.

This paper is organized as follows. In Section 2 a brief
motivation is given. In Section 3 the quadratic program-
ming problem with linear constraints containing absolute
values of variables (QPPLCAV) is introduced. Section 4
contains auxiliary theoretical results necessary to prove the
main results. In Section 5 we propose a stable method for
solving QPPLCAV. We transform the QPPLCAV to the QP
problem with linear constraints without absolute values at a
cost of doubling the number of variables, adding only non-
negativity constraints. To stabilize the solution of the trans-
formed problem we introduce a regularization method. A
numerical example is given in Section 6.

2. MOTIVATION

Consider a system of traded pairs (α1,β1), (α2,β2), . . . ,
(αm,βm), where m is the number of feasible pairs, n is the
number of assets, αk, βk ∈ {1, 2, . . . , n}, and αk 6= βk for
all k = 1,m, where symbol 1,m denotes all integer numbers
from the interval [1,m], i.e., 1,m = 1, . . . , m ( [20]).

Let the corresponding relative investments v1, v2, . . . ,
vm in these pairs fulfil the constraint

m

∑
j=1

q j|v j| ≤ 1, (1)

where q j > 0 is the margin requirement associated with the
j-th pair.

Wealth fractions wi (where
n
∑

i=1
wi = 1) invested in par-

ticular assets are related to vk by equations

w1 = 1+ ∑
αi=1

vi− ∑
β j=1

v j, (2)

wk = ∑
αi=k

vi− ∑
β j=k

v j, for k = 2, . . . ,n, (3)

where the first asset represents the deposit currency.
An optimization portfolio problem

1
2

w′ C̄w→min, where Āin w≤ b̄in and Āeq w= b̄eq

(4)

can be transformed using

w = f+Mv

to the corresponding QP problem with the linear inequality
constraint (1) containing absolutes values of variables.

3. PROBLEM FORMULATION

Above we have arrived to the problem of the form:

minimize
x∈Rn

1
2

x′Cx+ c′x (5)

ISSN 1335-8243 (print) c© 2012 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:08 AM
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subject to Aeqx = beq, beq ∈ Rm,

Ainx≤ bin, bin ∈ Rl ,
n
∑
j=1

q j |x j| ≤ 1, where q j > 0

(6)

for all j = 1,n, and C = C′ > 0 is a symmetric positive def-
inite matrix of order n ( ′ denotes matrix transposition, > 0
stands for positive definitivity of a matrix).

Let us formulate a more general problem which we will
denote QPPLCAV:

minimize
x∈Rn

1
2

x′Cx+ c′x (7)

subject to Ax = b, b ∈ Rm,
n
∑
j=1

[qi j |x j|+ pi j x j]≤ si, where qi j ≥ 0
(8)

for all i = 1,k, j = 1,n, C = C′ > 0, and c ∈ Rn, x =
[x1,x2, . . . ,xn]

′ ∈ Rn, and b ∈ Rm are column vectors.
Further we will use vector notation for vectors of abso-

lute values: |x| = [ |x1|, . . . , |xn| ]′. So we may rewrite the
inequalities in (8) in a matrix form

Q |x|+Px≤ s, (9)

where Q and P are matrices od the size k× n, and s ∈ Rk.
All elements of matrix Q we consider nonnegative. Inequal-
ities from (6) can be included in (9) using zero rows in ma-
trix Q. Zero rows of matrix P correspond to the inequalities
containing only absolute values, corresponding right side
values si we consider positive.

Inequalities in both problems (5)–(6) and (7)–(8) could
be rewritten in form of linear inequalities without absolute
values (one inequality containing n absolute values could be
‘directly’ substituted by the system of 2n inequalities with-
out absolute values). But the number of such inequalities
will rapidly increase for large n even if k – the number of
inequalities – is small.

We will transform the problem QPPLCAV to the QP
problem of order 2n with the same number of equalities
and inequalities adding nonnegativity conditions.

Remark 3.1. If we allow the element qi j to be negative, the
inequality (9) may define a non-convex domain in Rn. For
example, consider inequality

Q |x| ≤ s, with Q = [1,−1], x = [x1,x2], s = [1],

or simply in a component form

|x1|− |x2| ≤ 1.

The solution to this inequality is a non-convex subset of R2,
see Fig. 1.

x1

x2

1 2 3−1−2−3

1

2

−1

−2 |x1| − |x2| ≤ 1

Fig. 1 Nonconvex domain defined by linear constraint with
absolute values

4. THEORETICAL PRELIMINARIES

In this section we will formulate and prove some auxil-
iary results from the matrix theory.

Lemma 4.1. Let C be a symmetric positive definite ma-
trix of order n, with the eigenvector v corresponding to the
eigenvalue λ . Denote Ĉ a block matrix of the form

Ĉ =

[
C −C
−C C

]
. (10)

Then the matrix Ĉ has an eigenvector [v′,−v′]′ correspond-
ing to the eigenvalue 2λ . All eigenvectors of the matrix Ĉ
corresponding to zero eigenvalues are of the form [w′,w′]′,
w ∈ Rn.

Proof. We only multiply matrix Ĉ by vector [v′,−v′]′ and
we get:

Ĉ
[

v
−v

]
=

[
C −C
−C C

]
·
[

v
−v

]
=

[
Cv+Cv
−Cv−Cv

]
= 2

[
λv
−λv

]
= 2λ

[
v
−v

]
.

So the truth of the first part of claim is evident. Now, sup-
pose that matrix Ĉ has an eigenvector of the form [w′1,w

′
2]
′,

w1, w2 ∈ Rn, corresponding to the zero eigenvalue. Then
we have[

0
0

]
= Ĉ

[
w1
w2

]
=
[

C −C
−C C

]
·
[

w1
w2

]
=
[

C(w1−w2)
C(w2−w1)

]
.

So C(w2−w1) = 0 what implies w2 = w1 because C is the
positive definite matrix with kernel consisting of zero vec-
tor 0n only. �

Corollary 4.1. Let C be a symmetric positive definite ma-
trix of order n. Denote Ĉ a block matrix of the form (10).
Then matrix Ĉ has n zero eigenvalues and n positive eigen-
values that are eigenvalues of matrix C multiplied by 2. All
eigenvectors of Ĉ corresponding to the positive eigenval-
ues may be written in the form [v′,−v′]′, where v ∈ Rn are
corresponding eigenvectors of matrix C.
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Proof. It is evident from the form of the matrix C, that its
rows in the lower half are the rows from upper half mul-
tiplied by −1. So, because the rank of the matrix C is n,
the rank of the matrix Ĉ is n, too. Therefore it has n zero
eigenvalues. The second part of the statement is direct con-
sequence of Lemma 4.1. �

Corollary 4.2. Let C be a symmetric positive definite ma-
trix of order n. Denote Ĉ a block matrix of the form (10).
Then matrix Ĉ is symmetric positive semidefinite matrix.

Proof. The truth of the assertion is evident from (10) and
from Corollary 4.1. �

In the following we will work with special modifica-
tions of the matrix Ĉ. We will now study their properties.

Lemma 4.2. Let Ĉ be a matrix of the form (10) with sym-
metric positive definite matrix C. Let

C̃α = Ĉ+α I2n, α > 0, (11)

where I2n is the identity matrix of size 2n. Then C̃α is sym-
metric positive definite matrix with n minimal eigenvalues
equal to α .

Proof. From Corollary 4.2 it follows that Ĉ =
2n
∑

i=1
µi vi v′i,

where vectors vi ∈ R2n, i = 1,2n generate an orthonormal
basis of the space R2n, and µi are nonnegative eigenvalues

of the matrix Ĉ. Therefore we have I2n =
2n
∑

i=1
vi v′i. So

C̃α = Ĉ+α I2n =
2n

∑
i=1

µi vi v′i+α

2n

∑
i=1

vi v′i =
2n

∑
i=1

(µi+α)vi v′i.

n eigenvalues of matrix Ĉ are zero, say µi, i = 1,n. Corre-
sponding eigenvalues of matrix C̃α are then equal µi +α =
α , i = 1,n. �

Lemma 4.3. Let Cα be a matrix of the form

Cα =

[
C −C
−C C

]
+α

[
In In
In In

]
, α > 0, (12)

where C is a symmetric positive definite matrix of order
n with eigenvalues λi > 0 and corresponding eigenvectors
vi ∈Rn, i = 1,n, and In is the identity matrix of order n. Let
{wi ∈ Rn, i = 1,n} be an arbitrary basis of Rn. Then the
matrix Cα has:

(i) n eigenvectors of the form
[

vi
−vi

]
corresponding to

the eigenvalues 2λi, i = 1,n;

(ii) n eigenvectors of the form
[

wi
wi

]
corresponding to the

eigenvalues equal to 2α , i = 1,n.

Proof. (i) Direct substitution leads to

Cα

[
vi
−vi

]
=

([
C −C
−C C

]
+α

[
In In
In In

]) [
vi
−vi

]
=

=

[
2Cvi
−2Cvi

]
+α

[
In(vi− vi)
In(vi− vi)

]
= 2λi

[
vi
−vi

]
.

(ii) Similarly

Cα

[
wi
wi

]
=

([
C −C
−C C

]
+α

[
In In
In In

]) [
wi
wi

]
=

=

[
C(wi−wi)
−C(wi−wi)

]
+α

[
In(wi +wi)
In(wi +wi)

]
= 2α

[
wi
wi

]
.

�

Corollary 4.3. Matrices C̃α and Cα are symmetric positive
definite matrices.

Proof. The claim follows from Lemma 4.2 and Lemma 4.3,
respectively. �

5. METHOD

5.1. Transformation of the QPPLCAV problem

As we have mentioned before, in the space Rn one in-
equality with absolute values may be written in a form of
2n inequalities without absolute values. Even for not very
large size n, the number of inequalities may be ultra large.

Therefore we will adopt an idea from [17], where each
value xi is considered as the difference of two values x+i −
x−i . Specifically, for given value xi let us denote two values:

x+i =
|xi|+ xi

2
≥ 0, x−i =

|xi|− xi

2
≥ 0. (13)

It is evident that both x+i and x−i are nonnegative. Moreover
for any value xi one of these values will be zero: if xi ≥ 0,
then x−i = 0, if xi ≤ 0, then x+i = 0. It is evident that from
Eq. (13) we have also

xi = x+i − x−i , |xi|= x+i + x−i . (14)

Remark 5.1. Equalities (14) hold only if at least one of the
values x+i and x−i is zero. For example, if we take x+i = 1
and x−i = 4, then x+i − x−i =−3 and x+i + x−i = 5. The sec-
ond number 5 is not the absolute value of the first number
−3.

If we calculate ‘positive’ and ‘negative’ parts for every
component of vector x, we will end up with the correspond-
ing vectors x+ and x−. Let us substitute in the problem
QPPLCAV for vectors x and |x| values:

x = x+−x−i , |x|= x++x−, x+ ≥ 0, x− ≥ 0.

We arrive at the problem:

minimize
x+∈Rn, x−∈Rn

1
2
[x+−x−]′C[x+−x−]+ c′[x+−x−]

subject to A[x+−x−] = b, b ∈ Rm,

Q[x++x−]+P[x+−x−]≤ s,

where s > 0k, Q≥ 0k×n,
x+ ≥ 0n, x− ≥ 0n.
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Remark 5.2. We will not add here the request x+i · x
−
i = 0

for every i = 1,n. We will discuss this problem later.

We have obtained the transformed problem TQPPLC
in the space R2n with linear constraints without absolute
values:

minimize[
x+

x−

]
∈R2n

1
2

[
x+
x−

]′ [ C −C
−C C

][
x+
x−

]
+[c′,−c′]

[
x+
x−

]

(15)

subject to
[

A −A
][x+

x−

]
= b, b ∈ Rm,[

(Q+P) (Q−P)
][x+

x−

]
≤ s,

where s > 0k, Q≥ 0k×n,[
x+
x−

]
≥ 02n.

(16)

Remark 5.3. According to the Corollary 4.1 Hessian ma-
trix Ĉ (10) of the problem TQPPLC is positive semidefinite,
so the problem TQPPLC may have more then one solution.

5.2. Equivalence of the problems QPPLCAV and TQP-
PLC

Problems QPPLCAV and TQPPLC are not completely
equivalent. The problem QPPLCAV has a unique solution,
if its feasible set is nonempty. In such a case the problem
TQPPLC may have several solutions. However, in this case
there always exists the solution of the problem TQPPLC
corresponding to the solution of the problem QPPLCAV.

Theorem 5.1.

(i) Any feasible solution x of the problem QPPLCAV
corresponds to the feasible solution of the problem
TQPPLC of the form [x+′,x−′]′, where x+ and x− are
defined by (13), with the same value of the objective
function.

(ii) For any feasible solution of the problem TQPPLC of
the form [x+′,x−′]′ vector x = x+− x− is the feasi-
ble solution of the problem QPPLCAV with the same
value of the objective function.

Proof. (i) Using substitution (13)–(14) we get the problem
(15)–(16). Here for every i = 1,n one of the values x+i or
x−i is zero.

(ii) Let [x+′,x−′]′, x+ ≥ 0, x− ≥ 0 be the feasible so-
lution of TQPPLC. If x+i · x

−
i = 0 for all i = 1,n, then x =

x+−x− is the feasible solution of the problem QPPLCAV
with the same value of the objective function — it is suffi-
cient to use relations (13)–(14) to show it. If x+i > 0, x−i > 0
for some i, using (14) is not correct: |x+i − x−i | 6= x+i + x−i .
However in both cases we may use vector x̃ = x̃+− x̃− with

x̃+ = x+−min(x+,x−)≥ 0n,

x̃− = x−−min(x+,x−)≥ 0n,
(17)

where under min we understand component-wise mini-
mum. It is clear that now x̃+i · x̃

−
i = 0 for all i = 1,n. Be-

cause min(x+i ,x
−
i )≥ 0, x̃+i ≤ xi, x̃−i ≤ x−i , hence x̃+i + x̃−i ≤

x+i + x−i . We have

x̃+i − x̃−i = [x+i −min(x+i ,x
−
i )]− [x−i −min(x+i ,x

−
i )]

= x+i − x−i

for all i = 1,n, hence obviously the equalities

Ax̃ = A(x̃+− x̃−) = A(x+−x−) = b,

1
2

x̃′Cx̃+ c′x̃ =
1
2
(x+−x−)′C(x+−x−)+ c′(x+−x−),

hold true.
So, the equality constraints in the problem QPPLCAV

for the vector x̃ are satisfied, and the values of the objective
functions of TQPPLC for vector [x+′,x−′]′ and QPPLCAV
for vector x̃ are the same. Now let us consider the i-th row
of the inequality

Q(x̃++ x̃−)+P(x̃+− x̃−)≤ s.

For i = 1,k we have

n

∑
j=1

qi j(x̃+j + x̃−j )+
n

∑
j=1

pi j(x̃+j − x̃−j )
qi j≥0
≤

n

∑
j=1

qi j(x+j + x−j )+
n

∑
j=1

pi j(x+j − x−j )≤ si.

Because vector [x+′,x−′]′ is the feasible solution of the
TQPPLC, we get

Q|x̃|+Px̃≤ s,

and vector x̃ is a feasible solution of QPPLCAV. But

x̃ = x̃+− x̃− = [x+−min(x+,x−)]− [x−−min(x+,x−)]

= x+−x− = x.

So the claim (ii) is proven. �

Definition 5.1. The solution x̃ of the minimization problem
which minimizes some stabilization functional Ω(x) on the
set of all solutions to the minimization problem is called
Ω-normal solution of the problem, see [22]. The solution
[x̃+′, x̃−′]′ defined above is the Ω-normal solution of the
problem TQPPLC for stabilization functionals

Ω1(x+,x−) = ‖x+‖1 +‖x−‖1 , (18)

and

Ω2(x+,x−) =
[
‖x+‖2

2 +‖x−‖2
2
]1/2

. (19)
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x
+

i

x
−

i

c1 c2

x
+

i
− x

−

i
= c1 < 0

x
+

i
− x

−

i
= c2 > 0

x
+

i + x
−

i = c

Fig. 2 Normal solutions for ‖ · ‖1

Figs. 2 and 3 show normal solutions for both stabiliza-
tion functionals. Lines x+i −x−i = c represent feasible solu-
tions (it may be bounded) for the i-th component. Minimal
values of stabilization functional we achieve on the halfaxis
(at the point [0,−c1] resp. [c2,0] for c1 < 0 resp. for c2 > 0).
The normal solution will have at least one zero value for
each pair of components x+i and x−i .

x
+

i

x
−

i

c1 c2

x
+

i
− x

−

i
= c1 < 0

x
+

i
− x

−

i
= c2 > 0

(x+

i
)2 + (x−

i
)2 = c

Fig. 3 Normal solutions for ‖ · ‖2

Lemma 5.1. The normal solution of the problem TQPPLC
with non-empty feasibility set with respect to the stabiliza-
tion functional Ω1 or Ω2 is unique.

Proof. If the feasibility set of the problem TQPPLC is non-
empty, then it is convex. Let us consider two different
normal solutions x̃1 = [x̃+′1 , x̃−′1 ]′ and x̃2 = [x̃+′2 , x̃−′2 ]′ with
Ωi(x̃1) = Ωi(x̃2) = Ω∗, i = 1, 2. Then x̃ = [x̃1+ x̃2]/2 is the
solution too, because the matrix Ĉ is non-negative semidef-
inite. But

Ωi([x̃1 + x̃2]/2)< [Ωi(x̃1)+Ωi(x̃2)]/2 = Ω
∗,

i = 1, 2 if the vectors x̃1 and x̃2 are different. We get the
contradiction, because both normal solutions should min-
imize the functional Ωi, i = 1, 2, on the set of solutions.

�

5.3. Stabilization of the solution of the TQPPLC prob-
lem

Using Theorem 5.1 first we may find some solution
[x+′,x−′]′ to the problem TQPPLC, and then we get the
solution x = x+ − x− to the original problem QPPLCAV
corresponding to the normal solution of the problem TQP-
PLC. However, since Hessian matrix Ĉ of the form (10) of
the problem TQPPLC is only positive semidefinite, it may
cause problems by the numerical solution of the problem.
We would like to get a good enough approximation to the
Ω-normal solution of the problem TQPPLC.

Let us consider the problem TQPPLC with modified
Hessian matrix. We arrive to the problem MTQPPLC if
we use in (15) the matrix C̃α of the form (11) instead of the
matrix Ĉ, α > 0. Let us denote the solution to the problem
MTQPPLC by [x+α ′,x−α ′]′, and the corresponding approxi-
mation of the solution to the original problem QPPLCAV
by xα = x+α −x−α .

Theorem 5.2. Let x̃ ∈ Rn be the solution of the problem
QPPLCAV. Then

x̃ = lim
α→0+

xα .

Remark 5.4. Here we suppose, that the feasible set of the
problem QPPLCAV is not empty, and so it has a unique so-
lution x̃ ∈ Rn. If the feasible set of the original problem is
empty and the solution x̃ does not exist, the problem MTQP-
PLC with the same (empty) feasible set has no solution too.

Proof. Because the feasible set of the problem QPPLCAV is
nonempty, the feasible sets of both problems TQPPLC and
MTQPPLC are nonempty, too. So from Corollary 4.3 it fol-
lows that the problem MTQPPLC has a unique solution for
any α > 0.

The solution x̃ = x̃+− x̃− corresponds to the normal so-
lution [x̃+′, x̃−′]′ to the problem TQPPLC with respect to
the stabilization functional Ω2 defined by (19).

For any α > 0 we have

1
2

[
x+α
x−α

]′
Ĉ
[

x+α
x−α

]
+[c′,−c′]

[
x+α
x−α

]
+

α

2

∥∥∥∥[x+α
x−α

]∥∥∥∥2

2
≤

1
2

[
x̃+

x̃−
]′

Ĉ
[

x̃+

x̃−
]
+[c′,−c′]

[
x̃+

x̃−
]
+

α

2

∥∥∥∥[ x̃+

x̃−
]∥∥∥∥2

2
≤

1
2

[
x+α
x−α

]′
Ĉ
[

x+α
x−α

]
+[c′,−c′]

[
x+α
x−α

]
+

α

2

∥∥∥∥[ x̃+

x̃−
]∥∥∥∥2

2
. (20)

Comparing the first and the third parts of (20) we con-
clude, that ‖[x+α ′,x−α ′]′‖2 ≤ ‖[x̃+′, x̃−′]′‖2, or Ω2(x+α ,x−α )≤
Ω2(x̃+, x̃−). So, all solutions [x+α ′,x−α ′]′ ∈R2n belong to the
compact set defined as

{[x+′,x−′]′ ∈ R2n|Ω2(x+,x−)≤Ω2(x̃+, x̃−)}.

Now, let us take any sequence 0 < αk → 0. For the
corresponding sequence of solutions [x+′αk

,x−′αk
]′ there ex-

ists subsequence [x+′αkl
,x−′αkl

]′ convergent in R2n. Denote
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[x+∗ ′,x−∗ ′]′ = lim
kl→∞

[x+′αkl
,x−′αkl

]′. Using continuity of the ma-

trix product, and taking αkl → 0 in (20) we get

1
2

[
x+∗
x−∗

]′
Ĉ
[

x+∗
x−∗

]
+ ĉ′

[
x+∗
x−∗

]
≤

1
2

[
x̃+

x̃−
]′

Ĉ
[

x̃+

x̃−
]
+ ĉ′

[
x̃+

x̃−
]
≤ (21)

1
2

[
x+∗
x−∗

]′
Ĉ
[

x+∗
x−∗

]
+ ĉ′

[
x+∗
x−∗

]
,

where ĉ′ = [c′,−c′], together with

Ω2(x+∗ ,x
−
∗ )≤Ω2(x̃+, x̃−).

Since vector [x̃+′, x̃−′]′ is the normal solution of the
problem TQPPLC, we conclude, using Lemma 5.1, that
[x+∗ ′,x−∗ ′]′ = [x̃+′, x̃−′]′. Since all convergent subsequences
of the sequence [x+′αk

,x−′αk
]′ belonging to the compact in R2n

have the same limit, the sequence [x+′αk
,x−′αk

]′ is convergent
with the same limit. We may conclude that lim

α→0+
xα = x∗ =

x̃. �

Remark 5.5. We can use in (15) the matrix Cα of the form
(12) instead of the matrix Ĉ, α > 0. Then we obtain the
problem with positive definite matrix, too. This is another
stabilization possibility, which is related with using the sta-
bilization functional of the form (18).

Remark 5.6. Theorem 5.2 claims that regularized solution
xα converges to the normal solution x̃ as α tends to zero.
However, it is not possible to write an upper bound for
the discrepancy between these two solutions for the general
problem.

Let us consider next example:

minimize
x∈R2

x′
[

1 0
0 0

]
x = x2

1 (22)

subject to
x1

a1
+

x2

a2
≥ 1,

x≥ 0
(23)

The set of feasible solutions is shown in Fig. 4. The seg-
ment [a2,∞] of the x2-axis is the set of all solutions with the
normal solution at the point x̃ = [0,a2].

x1

x2

a1

a2 x̃

x0.1

x0.01

x0.001

Fig. 4 The sequence of regularized solution
for a1 = 0.3 and a2 = 3

Consider the regularized problem, changing the func-
tional (22) to

x′
[

1+α 0
0 α

]
x = (1+α)x2

1 +α x2
2. (24)

Regularized solutions xα are

xα =
a1a2 [αa2,(1+α)a1]

(1+α)a2
1 +αa2

2
(25)

with the difference

xα − x̃ =
α a2

2 [a1,−a2]

(1+α)a2
1 +αa2

2
(26)

One can easily see, that the norm of the difference tends
to zero as parameter α tends to zero. For a given value α

we can choose the value a2 sufficient large making the dis-
tance between regularized solution and the normal solution
as large as we like.

The sequence of the reqularized solutions for different
values α and for a1 = 0.3 and a2 = 3 is shown in Fig. 4
and in the second and the third column of Tab. 1. Columns
four and five contain the absolute values of the components
differences between regularized solutions for chosen values
α and the normal solution.

Table 1 Regularized solutions and the distance between the
regularized and the normal solution for a1 = 0.3 and a2 = 3

α xα,1 xα,2 |∆xα,1| |∆xα,2|

0.1 0.27027 0.2973 0.27027 2.7027

0.01 0.14925 1.5075 0.14925 1.4925

0.001 0.02725 2.7275 0.027248 0.27248

0.0001 0.0029700 2.9703 0.0029700 0.029700

0.00001 0.0002997 2.9970 0.0002997 0.002997

6. NUMERICAL EXAMPLE

Let us consider a problem QPPLCAV with

C =


4 3 2 1

3 4 3 2

2 3 4 3

1 2 3 4

 , c =


0

0.01

0

−1

 ,

with the linear inequalities containing absolute values

|x1|+2|x2| ≤ 4, 2|x1|+3|x4| ≤ 3,

and with equality constraints

x1 + x2 + x3 + x4 = 1,

0.2x1 +0.3x2 +0.2x3 +0.4x4 = 0.15.
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We have first rewrite 2 constraints with absolute values into
8 constraints without absolute values. As the result we get
the optimal solution of the original problem QPPLCAV –
x = [0.92,−0.84,0.75,0.17]′ – and the corresponding min-
imal value of the objective function fmin = 1.5333:

Next we have solved the problem TQPPLC directly,
without regularization. Further we have solved the prob-
lem MTQPPLC for values α = 10−1, 10−2, . . . , 10−14.

Even for large value α = 0.1 obtained regularized
approximation to the normal solution x0.1 = [0.87503,
−0.75615,0.75305,0.12808]′ is close to the solution x =
[0.92,−0.84,0.75,0.17]′ of the original problem. Tab. 2
shows the components of the regularized solutions and the
corresponding functional values for different values of pa-
rameter α . In the first row the normal solution and its func-
tional value is given, the second row corresponds to the
numerical solution of the problem TQPPLC without regu-
larization using MATLABr function quadprog with zero
compoments of the initial vector (the solution does not meet
the first equality constraint). Tab. 3 shows the differences
between components of the normal solution and the regular-
ized solutions, and the differences fα − f̃ between the cor-
responding functional values. Choosing α = 10−6÷ 10−5

seems to be reasonable giving the sufficient high precision.

Table 2 Regularized solutions and functional value
for chosen values α

α xα,1 xα,2 xα,3 xα,4 fα

– 0.92 −0.84 0.75 0.17 1.5333

0a −0.03047 −0.36477 0.03715 −0.06762 0.3781

0b 0.92 −0.84 0.75 0.17 1.5333

0.1 0.87503 −0.75615 0.75305 0.12808 1.6346

0.01 0.91502 −0.83086 0.75041 0.16543 1.5440

0.001 0.9195 −0.83908 0.75004 0.16954 1.5344

0.0001 0.91995 −0.83991 0.75 0.16995 1.5334

0.00001 0.91999 −0.83999 0.75 0.17 1.5333
a: using MATLABr function quadprog with zero

compoments ofthe initial vector
b: using Octave function qp with zero compoments

of the initial vector

Table 3 The components difference between the regularized and
the normal solution and between corresponding functional values

for chosen α values

α |∆xα,1| |∆xα,2| |∆xα,3| |∆xα,4| ∆ fα

0.1 0.044973 0.083847 0.0030494 0.041923 0.101340

0.01 0.004982 0.009141 0.0004115 0.004570 0.010653

0.001 0.000504 0.000922 0.0000424 0.000461 0.001071

0.0001 0.000051 0.000092 0.0000042 0.000046 0.000107

0.00001 0.000005 0.000009 0.0000004 0.000004 0.000011

7. CONCLUSIONS

Quadratic programming problem with linear constraints
containing absolute values of variables may lead to very

large number of inequalities. Direct solution of the trans-
formed problem TQPPLC with double number of variables
and adding nonnegativity constraints may lead and often
leads to the correct solution. However, as it is clear from our
example, it may be better to use regularized solution solv-
ing the regularized problem MTQPPLC with small value
α . If given data C, c, A, b, P, Q, and s are not exact, more
sophisticated method for choosing the appropriate value of
the parameter α should be considered.
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