
Acta Electrotechnica et Informatica, Vol. 12, No. 3, 2012, 27–31, DOI: 10.2478/v10198-012-0027-1 27

ON THE PACKING CHROMATIC NUMBER OF SEMIREGULAR POLYHEDRA
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ABSTRACT
Packing colouring of a graph G is a partitioning of the vertex set of G with the property that vertices in i-th class have pairwise

distance greater than i. The packing chromatic number of G is the smallest integer k such that the vertex set of G can be partitioned as
X1,X2, . . . ,Xk where Xi is an i-packing for each i. In the paper, the packing chromatic numbers for all Platonic solids as well as for all
prisms are given.
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1. INTRODUCTION

The concept of packing colouring comes from the area
of frequency planning in wireless networks. This model
emphasizes the fact that some frequencies might be used
more sparely than the others. In graph terms, we ask for
a partitioning of the vertex set of a graph G into disjoint
classes. Let G = (V,E) be a graph with vertex set V (G) and
edge set E(G) and let d(u,v) denote the distance between
vertices u and v in G. A packing k-colouring of a graph
G is a mapping c : V (G)→ {1,2, . . . ,k} such that any two
vertices u and v of a colour i satisfies d(u,v)> i. Thus, the
vertices of G are partitioned into different colour classes
X1,X2, . . . ,Xk, where every Xi is an i-packing of G. The i-
packing number of G, denoted by ρi(G), is the maximum
cardinality of an i-packing that occurs in G. The smallest
integer k for which there exists a packing k-colouring of G
is called the packing chromatic number of G and it is de-
noted by χp(G). The notion of the packing chromatic num-
ber was established by Goddard et al. [3] under the name
broadcast chromatic number. The term packing chromatic
number was introduced by Brešar et al. [2]. The deter-
mination of the packing chromatic number is computatio-
naly difficult. It was shown to be NP-complete for general
graphs in [3]. Fiala and Golovach [5] showed that the pro-
blem remains NP-complete even for trees. Recently, some
other aspects concerning the packing chromatic number of
graphs were studied in [4] and [6].

A polyhedron is a geometric solid in three dimensions
with flat faces and straight edges. A polyhedron P is called
semiregular if all its faces are regular polygons and there
exists a sequence σ = (p1, p2, . . . , pq) such that every ver-
tex of P is surrounded by a p1-gon, a p2-gon, . . . , a pq-gon,
in this order within rotation and reflection. A semiregular
polyhedron P is called the (p1, p2, . . . , pq)-polyhedron if it
is determined by the cyclic sequence σ = (p1, p2, . . . , pq).
The set of semiregular polyhedra consists of precisely
five Platonic solids, thirteen Archimedean solids, a single
(3,4,4,4)- polyhedron discovered by Ashkinuze [1], and
two infinite families: the prisms, i.e. (4,4,n)-polyhedra
for every n ≥ 3, n 6= 4, and the antiprisms, i.e. (3,3,3,n)-
polyhedra for every n≥ 4. The problems of colouring ver-
tices, edges or faces of semiregular polyhedra were studied
from several aspects, see for example [7]. The main pur-
pose of this paper is to determine the packing chromatic

number of all Platonic solids and of the infinite family of
prisms.

Instead of studying convex polyhedra it is enough to
study their graphs, i.e. graphs determined by vertices
and edges of polyhedra. This is allowed due to a fa-
mous theorem given by Steinitz that states that a graph is
the graph of a convex polyhedra if and only if it is pla-
nar and 3-connected. The diameter, diam(G), of a graph
G is the maximum distance between any two vertices of
G. For a vertex x ∈ V (G), by Ni[x] we denote the set
{u ∈V (G)|d(u,x)≤ i}.

2. PLATONIC SOLIDS

The set of Platonic solids consists of five members:
(i) the tetrahedron, or equivalently, the (3,3,3)-poly-
hedron,
(ii) the octahedron, or the (3,3,3,3)-polyhedron,
(iii) the cube, i.e. the (4,4,4)-polyhedron,
(iv) the icosahedron, i.e. the (3,3,3,3,3)-polyhedron,
(v) the dodecahedron, i.e. the (5,5,5)-polyhedron.

2.1. The tetrahedron

The tetrahedron consists of four vertices and also of four
triangular faces. The graph of the tetrahedron is K4, the
complete graph on four vertices. It immediately implies
that the following is true:

Theorem 2.1. Let T be the tetrahedron. Then χp(T ) = 4.

2.2. The octahedron

The octahedron O consists of six vertices and of eight
triangular faces. In the plane, it is represented by the regu-
lar graph with every vertex of degree four. As the diameter
of the graph O is two, the subset X1 of V (O) containing the
vertices labelled by the colour 1 can contain at most two
elements. Hence, ρ1(O) ≤ 2. Every other colour can be
used only once and therefore, χp(O) ≥ 5. The reader can
easy verify that there is a packing 5-colouring of the graph
O. This immediately implies:

Theorem 2.2. Let O be the octahedron. Then χp(O) = 5.
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2.3. The cube

In the plane, the cube Q is represented by the graph
shown in Fig. 1. The diameter of the graph Q is three,
which implies that ρ2(Q) = 2 and ρi(Q)≤ 1 for all integer
i≥ 3. In Fig. 1 one can easily verify that ρ1(Q) = 4. In the
graph Q there are four pairs of vertices in distance three.
Every such pair has one vertex labelled by 1, which im-
plies that for |X1| = ρ1(Q) = 4 we have |X2| = 1 < ρ2(Q).
Similarly, for |X2| = ρ2(Q) = 2 we have |X1| ≤ 3. Thus,
as |X1 ∪ X2| = 5, in a packing k-colouring of Q, at least
three other colours are necessary and χp(Q) ≥ 5. As there
is a packing 5-colouring of the graph Q, the next result is
obvious.

Theorem 2.3. Let Q be the cube. Then χp(Q) = 5.

1

1

1

1

Fig. 1 A drawing of Q with ρ1(Q) = 4

2.4. The icosahedron

The graph I of the icosahedron is drawn in Fig. 2. Its
diameter is three, thus ρ2(I) = 2 and ρi(I) ≤ 1 for all inte-
ger i ≥ 3. Due to symmetry, if one vertex of I is labelled
by the colour 1, then the six vertices in distance more than
1 from this vertex form a subgraph of I which is isomor-
phic to the wheel W5. In this case, at most two of these six
considered vertices can be labelled by the colour 1, because
ρ1(W5) = 2. So, ρ1(I) = 3. There is a packing k-colouring
of the graph I with |X1|= 3 and |X2|= 2, see Fig. 2. As for
every of the other seven vertices one new colour is neces-
sary, χp(I) = 2+7.

Theorem 2.4. Let I be the icosahedron. Then χp(I) = 9.

1

1 1

2

2

Fig. 2 A graph of the icosahedron

2.5. The dodecahedron

Theorem 2.5. For the dodecahedron D, χp(D) = 9.

Proof. In Fig. 3 there is the graph D of the dodecahedron.
As diam(D) = 5, ρi(D)≤ 1 for all integer i≥ 5. Consider

an arbitrary vertex x of the graph D. Only one vertex of D
is not contained in N4[x]. Thus, ρ4(D) = 2. Similarly, N3[x]
contains all vertices of D except of four vertices which in-
duce the subgraph K1,3 of D. This forces ρ3(D) = 2. Every
face of the dodecahedron is bounded by a cycle of length
five and at most one vertex of a cycle of length five can ob-
tain the colour 2. Moreover, every vertex is incident with
exactly three faces. Thus, at most 12

3 = 4 vertices can ob-
tain the colour 2. It is easy to find an assignment with four
colours 2 and therefore, ρ2(D) = 4. The colour 1 can ap-
pear on the boundary of every face only twice. As every
vertex is incident with three faces, at most 2·12

3 = 8 vertices
can be labelled by the colour 1. A simple verification shows
that ρ1(D) = 8.
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Fig. 3 A graph of the dodecahedron

We show that it is impossible to find a packing k-
colouring of the graph D with eight colours 1 and four
colours 2. Let us try to assign eight vertices of D in
Fig. 3 the colour 1. In such a case, every face contains
the colour 1 exactly twice. Hence, two vertices of the 5-
cycle Cv

5 induced by v1,v2,v3,v4, and v5 contain the colour
1. The same holds for the inner 5-cycle Cw

5 induced by
w1,w2,w3,w4, and w5. This immediately implies that exac-
tly four vertices of the middle cycle Cu

10 induced by ten ver-
tices u1,u2, . . . ,u10 must be assigned the colour 1. Without
loss of generality, let c(v1) = 1. Only one of the vertices
v3 and v4 can be assigned the colour 1. Due to symmetry,
both possibilities are equivalent. Let us consider c(v3) = 1.
As, in this case, c(v4) 6= 1 and c(v5) 6= 1, the necessary as-
signment for the face with the vertices v4,v5,u9,u8, and u7
on its boundary is c(u7) = c(u9) = 1. Now, two other as-
signments the colour 1 on the cycle Cu

10 are possible only on
the vertices u2, u3, and u4 and therefore, c(u2) = c(u4) = 1.
For the 5-cycle Cw

5 we have c(w1) = c(w4) = 1. A possible
labelling of four vertices by the colour 2 forces that every
5-cycle contains the colour 2 only once. Thus, this colour
appears on the cycle Cu

10 exactly twice. For c(v2) = 2, only
two of the vertices u6, u7, u8, u9, and u10 can be assigned
the colour 2. As c(u7) = c(u9) = 1, the only possibility is
c(u6) = c(u10) = 2. In this case, none of the vertices of
the cycle Cw

5 can be assigned the colour 2. For c(v4) = 2,
c(u3) = c(u10) = 2 is forced on the cycle Cu

10. But, in
this case, in the inner cycle Cw

5 the only one vertex w4
is in distance more than two from both u3 and u10. But,
c(w4) = 1 and the colour 2 can be used at most three times
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again. The similar result is obtained also for the last pos-
sibility c(v5) = 2 in the outer cycle Cv

5. This implies that
|X1∪X2| ≤ 11 in any case. Thus, as ρ3(D) = 2, ρ4(D) = 2,
and ρi(D) ≤ 1 for i ≥ 5, at least five other colours i ≥ 5
must be used and χp(D) ≥ 9. On the other hand, the pac-
king 9-colouring c(v1) = c(v3) = c(u2) = c(u4) = c(u7) =
c(u9) = c(w1) = c(w4) = 1, c(v2) = c(u6) = c(u10) = 2,
c(u3) = c(w5) = 3, c(v4) = c(w2) = 4, c(u1) = 5, c(v5) = 6,
c(u8) = 7, c(u5) = 8, and c(w3) = 9 confirms that χp(D)≤
9. This completes the proof.

3. PRISMS

The n-side prism Hn, i.e. the (4,4,n)-polyhedron,
n ≥ 3, is a generalization of the cube. In the plane,
it can be represented by the graph with the vertex set
V = {u1,u2, . . . ,un,v1,v2, . . . ,vn} end the edge set E =
{{ui,ui+1}∪{vi,vi+1}∪{ui,vi}}, indices taken modulo n.
The set of faces of Hn consists of two n-gonal faces
α = [u1u2 . . .un] and β = [v1v2 . . .vn] and n quadrangles
[uiui+1vi+1vi] for any i = 1,2, . . . ,n, indices modulo n.

Lemma 3.1. Let c be a packing k-colouring of the graph
Hn, n≥ 4. For some i, let c(ui) 6= 1, c(ui+1) 6= 1, c(vi) 6= 1,
and c(vi+1) 6= 1, indices taken modulo n. Then k ≥ 6.

Proof. As none of the vertices ui,ui+1,vi, and vi+1 can be
assigned a colour other than 1 more than once, k ≥ 5. If
the vertices ui,ui+1,vi, and vi+1 are assigned the colours 2,
3, 4, and 5, at least one of the vertices ui−1 and vi−1 or at
least one of the vertices ui+2 and vi+2 must obtain a colour
different from 1,2, 3, 4, and 5. Hence, at least six colours
are necessary.

Lemma 3.2. Let c be a packing k-colouring of the graph
Hn, n≥ 6. For some i, let c(vi−1)= c(ui+1)= 1 or c(ui−1)=
c(vi+1) = 1, indices taken modulo n. Then k ≥ 6.
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Fig. 4 The forced assignments of Hn

Proof. Without loss of generality, let c(vi−1) = c(ui+1) = 1
and let c be a packing k-colouring of the graph Hn with
k ≤ 5 . Assume first that some of the vertices ui and vi,
say ui, is assigned by the colour 2. In this case, three other
colours 3, 4, and 5 must be used on the vertices ui−1, vi,
and vi+1. But, as d(ui+1,ui+2) = 1, d(ui,ui+2) = 2, and
d(x,ui+2) ≤ 3 for x ∈ {ui−1,vi,vi+1}, the vertex ui+2 must
obtain a colour different from all 1, 2, 3, 4, and 5. This
forces that, for k≤ 5, c(ui−1) = c(vi+1) = 2, because other-
wise if only one vertex ui−1 (vi+1) is assigned by 2, other

three colours are necessary on the vertices ui, vi, and vi+1
(ui−1,ui, and vi) and the vertex vi−2 (ui+2) needs one new
colour. In Fig 4(a) it is easy to see that, for c(ui−1) =
c(vi+1) = 2, c(vi−2) /∈ {1,2} and c(ui+2) /∈ {1,2}. More-
over, as d(vi−2,ui+2) = 5, the case c(vi−2) = 5 (c(ui+2) = 5)
forces at least three other colours on the vertices vi,ui, and
ui+2 (ui,vi, and vi−2). Hence, c(ui) = 5 or c(vi) = 5. Due
to symmetry, assume c(ui) = 5. Now, in Fig. 4(b) it is pos-
sible to see that c(vi) ∈ {3,4} and c(ui+2) ∈ {3,4}, which
forces c(vi+2) = 1 and c(vi+3) /∈ {1,2,3,4,5}. So, at least
six colours are necessary, which completes the proof.

Lemma 3.3. χp(Hn)≥ 5 for n≥ 9.

Proof. Assume the vertices u j,u j+1,u j+2,v j,v j+1, and
v j+2 of the graph Hn. If three of the considered vertices
obtain the colour 1, then at most one can be assigned
the colour 2. On the other hand, if two of the vertices
u j,u j+1,u j+2,v j,v j+1, and v j+2 obtain the colour 2, then at
most two other can be assigned the colour 1. This forces at
least two new colours on the vertices u j,u j+1,u j+2,v j,v j+1,
and v j+2, which implies that χp(Hn)≥ 4.

Without loss of generality, let c(ui) = 4. An assignment
of the vertices ui−1,ui,ui+1,vi−1,vi, and vi+1 with only four
colours requires that both colours 1 and 2 are used twice
or the colour 1 is used three times. If the colour 2 is used
twice, then c(vi−1) = c(ui+1) = 2 or c(ui−1) = c(vi+1) = 2.
Without loss of generality, let c(vi−1) = c(ui+1) = 2. Then,
by Lemma 3.2, c(ui−1) = 1 and c(vi) = 1. So, c(vi+1) = 3
and at least one of the vertices ui+2 and vi+2 must be as-
signed the colour 5, see Fig. 5(a).
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Fig. 5 The forced assignments of Hn with only four colours

Thus, at least three of the vertices ui−1,ui+1,vi−1,vi,
and vi+1 are coloured by 1 and the unique possibility is
shown in Fig 5(b). Now, it is easy to verify that on the ver-
tices vi−3, . . . ,vi+3,ui−4, . . . ,ui+4, the colour 1 can be used
at most seven times, the colour 2 at most four times, and the
colour 3 at most three times. This, together with the fact
that the colour 4 can be used only once, requires the fifth
colour on the considered sixteen vertices. This completes
the proof.

Lemma 3.4. Let k ≥ 5 and let c be a packing k-colouring
of the graph Hn, n≥ 6, with c(ui) = 5, c(vi) = c(ui+1) = 1,
c(vi+1) = 3, and c(vi−1) 6= 4, indices taken modulo n. Then
for every positive integer r there is a packing k-colouring of
the graph Hn+6r.
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Proof. In Fig. 6(a) there is a part of packing k-colouring of
the graph Hn with c(ui) = 5, c(vi) = c(ui+1) = 1, c(vi+1) =
3, and c(vi−1) 6= 4. Let us insert the segment F6 drawn
in Fig. 6(b) by dotted lines between the edges {ui,vi} and
{ui+1,vi+1}. It is easy to verify that the resulting colouring
of the graph Hn+6 is also packing k-colouring. The assign-
ment of the last four vertices on the right side in Fig. 6(b)
is in compliance with the assumption the Lemma. So, the
inserting of the segment F6 can be repeated, and the proof
is done.
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Fig. 6 The inserting of the segment F6

Theorem 3.1. Let Hn, n ≥ 3, n 6= 4, be the n-side prism.
For s = 8,9,10, . . . , χp(H2s) = 5. Moreover, χp(H3) =
χp(H6) = χp(H10) = χp(H12) = 5.
For s = 5,6,7, . . . , χp(H2s+1) = 6, and also χp(H5) =
χp(H14) = 6.
χp(H7) = χp(H8) = χp(H9) = 7.

Proof. In the proof, a packing k-colouring of the graph Hn
will be described by the matrix C(Hn) with the colours
c(ui), c(ui+1), . . . , c(ui+n−1) of the vertices ui, ui+1, . . . ,
ui+n−1 in the first row and with the colours c(vi), c(vi+1),
. . . , c(vi+n−1) of the vertices vi, vi+1, . . . , vi+n−1 in the se-
cond row, where the indices are taken modulo n. That is,

C(Hn) =

(
c(ui) c(ui+1) . . . c(ui+n−1)
c(vi) c(vi+1) . . . c(vi+n−1)

)
.

First we describe the packing k-colourings of six graphs
H6, H10, H11, H13, H15, and H20 which, together with
Lemma 3.4, enable us to estimate the packing chromatic
numbers for an infinite family of graphs Hn.
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Fig. 7 A packing 5-colouring of H6

For the graph H6, the packing 5-colouring in Fig. 7
shows that χp(H6) ≤ 5. This packing 5-colouring can be
described by the matrix

C(H6) =

(
2 1 3 1 5 1
1 4 1 2 1 3

)
.

Similarly, from the next packing 5-colourings

C(H10) =

(
4 1 3 1 2 1 3 1 5 1
1 2 1 5 1 4 1 2 1 3

)
and

C(H20) =

(
4 1 3 1 2 1 3 1 5 1
1 2 1 5 1 4 1 2 1 3

4 1 3 1 2 1 3 1 5 1
1 2 1 5 1 4 1 2 1 3

)
of the graphs H10 and H20 we have χp(H10) ≤ 5 and
χp(H20)≤ 5. For the graphs H11, H13, and H15, the packing
6-colourings

C(H11) =

(
2 1 3 1 6 2 1 3
1 4 1 2 5 1 4 1

1 5 1
2 1 3

)
,

C(H13) =

(
2 1 6 3 1 4 1 2
1 4 2 1 5 1 3 1

1 3 1 5 1
6 1 2 1 3

)
and

C(H15) =

(
2 1 3 1 6 1 2 5
1 4 1 2 1 3 1 4

1 3 1 4 1 5 1
2 1 6 1 2 1 3

)
give χp(H11) ≤ 6, χp(H13) ≤ 6, and χp(H15) ≤ 6. As
all above packing k-colourings, k = 5,6, satisfy the as-
sumptions of Lemma 3.4, for every non negative inte-
ger r the inequalities χp(H6+6r) ≤ 5, χp(H10+6r) ≤ 5,
χp(H20+6r) ≤ 5, χp(H11+6r) ≤ 6, χp(H13+6r) ≤ 6, and
χp(H15+6r)≤ 6 are obvious .

The graph H6 contains twelve vertices and, as the dia-
meter of H6 is four, ρ2(H6) = ρ3(H6) = 2, and ρi(H6) ≤ 1
for all integers i ≥ 4. As ρ1(H6) = 6, every packing k-
colouring of the graph H6 requires at least k = 5 colours.
This, together with the packing 5-colouring in Fig. 7, con-
firms that χp(H6) = 5. By Lemma 3.3, χp(Hn) ≥ 5 for
n≥ 9, which immediately implies that χp(Hn) = 5 for eve-
ry even n except of n = 8 and n = 14.

Eight vertices may obtain the colour 1 in a packing k-
colouring of the graph H8. The diameter of the graph H8
is five, which implies that ρi(H6) ≤ 1 for i ≥ 5. Morever,
ρ2(H8) = 4, ρ3(H8) = ρ4(H8) = 2. It is easy to verify that
|X2∪X4| ≤ 3 in a packing k-colouring with |X1|= ρ1(G8) =
8. Similarly, |X1∪X4| ≤ 7 if |X2|= 4 as well as |X1∪X2| ≤ 9
if |X4|= 2. This implies that in any packing k-colouring of
the graph H8 the inequality |X1 ∪X2 ∪X4| ≤ 11 holds. So,
at most 13 vertices can be assigned the colours 1, 2, 3, and
4. This requires at least three other colours and therefore,
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χp(H8) ≥ 7. On the other hand, the reader can easy find
a packing 7-colouring of the graph H8. This proves that
χp(H8) = 7.

For the graph H14 we have ρ2(H14) = 6, ρ3(H14) = 4,
ρ4(H14) = 3, and ρ5(H14) = ρ6(H14) = 2. It is easy to
verify that |X1 ∪ X2| ≤ 18 in any packing k-colouring of
the graph H14. Thus, for the other ten vertices at least
the colours 3, 4, 5, and 6 are necessary. The packing 6-
colouring

C(H14) =

(
1 2 1 6 1 3 1 2
4 1 3 1 2 1 5 1

1 4 1 3 1 5
3 1 6 1 2 1

)
confirms that χp(H14) = 6. Thus, the packing chromatic
number χp(Hn) is given for all even n.

Now, let us turn to the graphs Hn with odd n. We start
with giving the packing chromatic number of the graphs Hn
for n = 3,5,7, and 9. χp(H3) = 5, because diam(H3) = 2
and only the colour 1 can be used twice in a packing k-
colouring of the graph H3 with six vertices. As diam(H5) =
3, ρ1(H5) = 4, ρ2(H5) = 2 and ρi(H5)≤ 1 for i≥ 3. Thus,
any packing k-colouring of ten vertices of the graph H5
needs at least four colours other than 1 and 2. Since there
is a packing 6-colouring of H5, the packing chromatic num-
ber of the prism H5 is six. The graph H7 has fourteen ver-
tices and diameter four. In a packing k-colouring of H7,
the colour 1 can be used at most six times. Moreover,
ρ2(H7) = 3, ρ3(H7) = 2, and ρi(H7) ≤ 1 for i ≥ 4. But,
if |X1| = ρ1(H7) = 6, at most two vertices can be assigned
by the colour 2. This forces that the colours 1, 2, and 3 can
appear on at most ten vertices and at least four other colours
are necessary. A there is a packing 7-colouring of the graph
H7, χp(H7) = 7. The colour 1 appears at most eight times
in any packing k-colouring of the graph H9 with eighteen
vertices. Moreover, ρ2(H9) = 4, ρ3(H9) = 2, ρ4(H9) = 2,
and ρi(H9) ≤ 1 for i ≥ 5. The reader can easy verify that
|X1 ∪X2| ≤ 11 and therefore, the minimal number of used
colours is seven and χ(H9)≥ 7. It is easy to find a packing
7-colouring of the graph H9. This implies that χp(H9) = 7.

For s = 5,6,7, . . . , the set of graphs H2s+1 is the same
as the set of the graphs H11+6r, H13+6r, and H15+6r,
r = 0,1,2, . . . . Thus, χp(H2s+1) ≤ 6 for all s = 5,6,7, . . . .
It remains to show that for s ∈ {5,6,7, . . .}, every packing
k-colouring of the graph H2s+1 requires at least six colours.
By Lemma 3.3, χp(H2s+1) ≥ 5. To prove the inequality
χp(H2s+1)≥ 6 assume that, for some integer s≥ 5, there is
a packing 5-colouring of the graph H2s+1. Among all such
packing 5-colourings of the graph H2s+1, consider a pac-
king 5-colouring c with maximal number of vertices la-
belled by the colour 1. As the number 2s+1 is odd, there is
a pair ui, ui+1 with c(ui) 6= 1 and c(ui+1) 6= 1, indices taken
modulo 2s+ 1. In such a case, at most one of the vertices
vi and vi+1 can be assigned the colour 1. In other words,
c(u j) 6= 1 and c(v j) 6= 1 holds for at least one pair u j, v j.
Lemma 3.1 forces that one vertex of both pairs u j−1,v j−1
and u j+1,v j+1 must obtain the colour 1. By Lemma 3.2, the
possibilities c(u j−1) = c(v j+1) = 1 or c(v j−1) = c(u j+1) =
1 require at least six colours, a contradiction. Hence,
c(u j−1) = c(u j+1) = 1 or c(v j−1) = c(v j+1) = 1. With-
out loss of generality assume that c(u j−1) = c(u j+1) = 1. In

this case, the vertex v j can be reassigned the colour 1 and,
because of Lemma 3.3, the resulting colouring is a packing
5-colouring again. This contradiction with the assumption
that c is a packing 5-colouring of the graph H2s+1 with ma-
ximal number of colours 1 completes the proof.
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Košice. He received his PhD. degree in discrete mathemat-
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