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ABSTRACT
The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. Only few results

concerning crossing numbers of graphs obtained as join product of two graphs are known. There was collected the exact values of
crossing numbers for join of all graphs of at most four vertices and of several graphs of order five with paths and cycles. We extend
these results by giving the crossing numbers for join products of the special graph on six vertices with n isolated vertices as well as
with the path on n vertices and with the cycle on n vertices.
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1. INTRODUCTION

Let G be a graph with vertex set V (G) and edge set
E(G). A drawing of G is a representation of G in the plane
such that its vertices are represented by distinct points and
its edges by simple continuous arcs connecting the corre-
sponding point pairs. For simplicity, we assume that in a
drawing (a) no edge passes through any vertex other than its
end-points, (b) no two edges touch each other (i.e., if two
edges have a common interior point, then at this point they
properly cross each other), and (c) no three edges cross at
the same point. The crossing number cr(G) is the smallest
number of edge crossings in any drawing of G. It is easy to
see that a drawing with minimum number of crossings (an
optimal drawing) is always a good drawing, meaning that
no edge crosses itself, no two edges cross more than once,
and no two edges incident with the same vertex cross.

Finding the crossing number of a graph is useful
in many areas. The most prominent area is VLSI tech-
nology. The lower bound on the chip area is determined
by crossing number and by number of vertices of the graph
[2]. It plays an important role in various fields of dis-
crete/computational geometry [19]. Crossing number is
also parameter yielding the deviation of the graph from be-
ing planar. The crossing number influences significantly
readability and therefore it is the most important parameter
when aesthetics of the graph is considered. It is used mostly
in automated visualisation of graphs.

The investigation on the crossing numbers of graphs
is a classical and very difficult problem. It was proved
by Garey and Johnson [5] that finding the crossing num-
ber of a general graph is NP–hard and it remains NP–hard
even for cubic graphs [8]. Pioneering papers about cross-
ing numbers were published in the second half of the twen-
tieth century. Turán formulated The brick factory prob-
lem, which arose during World War II., by publishing in
the article [20]. Given problem was a graph problem where
kilns and storage yards are vertices and the rails between
kilns and storage yards are edges in the graph. Turán asked
whether the number of crossings of the rails could be min-
imized. He realized after several days that the actual situ-
ation could be improved, but the exact solution of the gen-
eral problem with m kilns and n storage yards seemed to be
very difficult. Using the construction of suitable diagram

of the complete bipartite graph Km,n, Zarankiewicz [22]
gave the upper bound of the crossing number of the graph
Km,n and conjectured that

cr(Km,n) =

⌊
m
2

⌋⌊
m−1

2

⌋⌊
n
2

⌋⌊
n−1

2

⌋
. (1)

The given problem has not been generally solved. Kleit-
man [10] confirmed Zarankiewicz’s conjecture for every
n and 1 ≤ m ≤ 6 . Woodall proved that for 7 ≤ m ≤ 8
and 7 ≤ n ≤ 10, the crossing number of Km,n is equal to
Zarankiewicz number, too [21].

The exact values of crossing numbers are known only
for several specific families of graphs. The Cartesian prod-
uct (the definition see in [1]) of two graphs is one of them.
Let Cn be the cycle of length n, Pn be the path of n ver-
tices, and Sn be the star isomorphic to K1,n. Harary et
al. [7] conjectured that the crossing number of the Carte-
sian product Cm�Cn of two cycles is (m− 2)n, for all
m,n satisfying 3 ≤ m ≤ n. It was proved by Glebsky and
Salazar [6] that for any fixed m, the conjecture holds for
all n≥ m(m+1). The conjecture has also been verified for
m ≤ 7. Besides of Cartesian product of two cycles, there
are several other exact results. In [1, 9], the crossing num-
bers of G�Cn for all graphs G of order at most four are
established. In addition, the crossing numbers of G�Cn are
known for some graphs G on five or six vertices [4, 16].
Bokal in [3] confirmed the general conjecture for cross-
ing numbers of Cartesian products of paths and stars for-
mulated in [9]. Crossing numbers of Cartesian products
of stars and paths with graphs of order at most five were
studied in [9, 11, 12]. The table in [13] shows the summary
of known crossing numbers for Cartesian products of path,
cycle and star with connected graphs of order five.

The Join product Gi +G j of graphs Gi and G j is cre-
ated from vertex-disjoint copies of Gi and G j by adding
all edges between V (Gi) and V (G j). For |V (Gi)| = m and
|V (G j)|= n, the edge set of the graph Gi +G j is the union
of E(Gi), E(G j) and E(Km,n). Let us denote by Dn the dis-
crete graph on n vertices. The crossing numbers for join
of two paths, join of two cycles, and for join of path and
cycle were studied in [14]. Moreover, the exact values for
crossing numbers of G+Dn and G+Pn for all graphs G
of order at most four are given in [17]. The crossing num-
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bers of the graphs G+Pn and G+Cn are also known for
very few graphs G of order five and six, see [15, 18].

Let D (D(G)) be a good drawing of the graph G.
The number edge crossings of the graph G in D is denoted
by crD(G). For edge-disjoint subgraphs Hi and H j of G,
we denote by crD(Hi,H j) the number of crossings between
the edges of Hi and the edges of H j in D and by crD(Hi)
the number of crossings among edges of Hi in D. For any
three edge-disjoint subgraphs Hi, H j and Hk of the graph G
the following equations hold:

crD(Hi∪H j) = crD(Hi)+ crD(H j)+ crD(Hi,H j),

crD(Hi∪H j,Hk) = crD(Hi,Hk)+ crD(H j,Hk). (2)

In the proofs of the paper, we will often use the term
“region” also in nonplanar drawings. In this case, crossings
are considered to be vertices of the “map”.

Let G be a graph consisting of one cycle abcdea, one
additional vertex f and two edges a f and d f . For brevity,
let Ce

5(G), C f
5 (G), and C4(G) denote the cycles abcdea,

abcd f a and a f dea, respectively. The aim of this paper is to
give the crossing numbers of join products of the graph G
with the discrete graph Dn as well as with the path Pn and
the cycle Cn.

2. THE CROSSING NUMBER OF G+DN

The graph G + Dn consists of one copy of the graph
G and n vertices t1, t2, . . . , tn, where every vertex ti, i =
1,2, . . . ,n, is adjacent to six vertices of G, see Fig. 1. For
i = 1,2, . . . ,n, let T i denote the subgraph induced by six
edges incident with the vertex ti and let F i = G∪ T i. To
simplify the notation, let G(n) denote the graph G+Dn, in
this paper. In Fig. 1 one can easily see that

G+Dn = G(n) = G∪K6,n = G∪

(
n⋃

i=1

T i

)
. (3)

      

Fig. 1 A drawing of G+Dn with 6b n
2cb

n−1
2 c+n crossings.

Theorem 2.1. cr(G+Dn) = 6b n
2cb

n−1
2 c+n for n≥ 1.

Proof. The drawing in Fig. 1 shows that the inequality
cr(G+Dn) ≤ 6b n

2cb
n−1

2 c+ n holds. We prove the reverse
inequality by induction on n.

The graph G+D1 contains a subdivision of the com-
plete bipartite graph K3,3, and therefore cr(G+D1)= 1. For
n= 2, cr(G+D2)≥ 2 since removing any edge of the graph
G+D2 results in a graph containing a subdivision of K3,3.
Hence, the assertion of the Theorem is true for n = 1 and
n = 2.

Suppose now that for n≥ 3

cr(G(n−2))≥ 6
⌊n−2

2

⌋⌊n−3
2

⌋
+n−2 (4)

and consider such a drawing D of the graph G(n) that

crD(G(n))< 6
⌊n

2

⌋⌊n−1
2

⌋
+n. (5)

Assume first that there are two different subgraphs T i

and T j that do not cross each other in D. Without loss
of generality, let crD(T 1,T 2) = 0. The subdrawing of D in-
duced by T 1∪T 2 divides the plane in such a way that there
are two vertices of G on the boundary of every region. The
graph G contains two edge disjoint stars Sa

3 and Sd
3 induced

by the vertices a,b,e, f and d,c,e, f , respectively. As each
region of D(T 1 ∪ T 2) contains exactly two vertices of G
on its boundary, crD(Sx

3,T
1∪T 2)≥ 1, x = a,d, and there-

fore crD(G,T 1∪T 2)≥ 2. Moreover, as cr(K6,3) = 6, in D,
every subgraph T k, k = 3,4, . . . ,n, crosses T 1∪T 2 at least
six times. Since G(n) = G+Dn = G(n−2)∪(T 1∪T 2) and
G(n−2) = K6,n−2∪G, using (2) and (4) we have

crD(G(n)) = crD(G(n−2))+ crD(T 1∪T 2)+

+ crD(K6,n−2,T 1∪T 2)+ crD(G,T 1∪T 2)

≥ 6
⌊

n−2
2

⌋⌊
n−3

2

⌋
+(n−2)+

+ 0+6(n−2)+2≥ 6
⌊

n
2

⌋⌊
n−1

2

⌋
+n.

This contradicts (5).
Thus, crD(T i,T j) 6= 0 for all i, j = 1,2, . . . ,n, i 6=

j. Moreover, using (2) and (3) together with cr(K6,n) =
6b n

2c
⌊ n−1

2

⌋
we have

crD(G(n)) = crD(K6,n)+ crD(G)+ crD(K6,n,G)

≥ 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ crD(G)+ crD(K6,n,G).

This, together with the assumption (5), implies that

crD(G)+ crD(K6,n,G)< n (6)

and hence, there is at least one subgraph T i which does not
cross G in D. Moreover, it implies that G contains at least
one internal crossing since G is not outerplanar graph and
furthermore, crD(G,K6,n)≤ n−2.

Without loss of generality, let crD(G,T 1) = 0. There
exists T i, i ∈ {2,3, . . . ,n} such that

crD(G∪T 1,T i)≤ 3. (7)
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If otherwise, the inequality crD(G∪ T 1,T i) ≥ 4 holds for
every i = 2,3, . . . ,n, then

crD(G(n)) = crD(K6,n−1)+ crD(G∪T 1)+

+ crD(K6,n−1,G∪T 1)

≥ 6
⌊

n−1
2

⌋⌊
n−2

2

⌋
+1+4(n−1)

= 6
⌊

n
2

⌋⌊
n−1

2

⌋
+n+

(
3n−3−6

⌊
n−1

2

⌋)
.

As 3n−3−6
⌊ n−1

2

⌋
≥ 0, in D there are at least 6b n

2cb
n−1

2 c+
n crossings. This contradicts (5).

Assume now the subdrawing D(F1) of the subgraph
F1 = G∪T 1 induced by D. Since crD(G,T 1) = 0, all edges
of T 1 are placed in one region of D(G) with all six ver-
tices of G on its boundary, say outside G. Hence, in D(F1),
on the boundary of every region outside G there are ex-
actly two vertices of G. It implies from (7) and the fact
crD(T 1,T i) 6= 0 that, in D, a vertex ti, i ≥ 2, can be placed
only in a region of D(F1) with at least four vertices of G on
its boundary, i.e. inside G. For the case crD(Ce

5(G)) 6= 0,
inside the crossed 5-cycle Ce

5(G) there are regions with at
most three vertices of Ce

5(G). This immediately implies
that there is no region with more than three vertices on its
boundary in D(F1). The same holds if the edges of C f

5 (G)

cross each other. So, crD(Ce
5(G)) = 0 and crD(C

f
5 (G)) = 0

and the necessary internal crossing in G is forced among
the edges of C4(G). There are only two possible draw-
ings of C4(G) with one crossing yielding only two possible
drawings of G: the edge ae is crossed by the edge d f or
the edge de is crossed by the edge a f , see Fig. 2.

Fig. 2 Two possible drawings of F1 containing a region with
four vertices of the graph G.

Consider now the subdrawing of G∪ T 1 ∪ T i induced
by D and let us count the necessary crossings between
the edges of G∪ T 1 and the edges of T i. Recall that ti
cannot be placed outside the graph G and hence ti can
be placed only in one of three possible regions. For
the case of placing the vertex ti in the region with four
vertices of G on its boundary, crD(G ∪ T 1,T i) = 3 with
crD(G,T i) = 2, or crD(G∪T 1,T i) = 4 with crD(G,T i) = 2,
or crD(G ∪ T 1,T i) ≥ 5. In the other cases, ti is placed
in a region with two vertices on its boundary (there are
only two such regions). Then T i crosses the boundary
of the region at least four times and therefore, cr(G,T i)≥ 4.
Hence, crD(G∪T 1,T i) ≥ 5, because crD(T 1,T i) 6= 0. As-
sume that r is the number of T i with crD(G∪ T 1,T i) = 3
and crD(G,T i) = 2 and that s is the number of T i with

crD(G∪T 1,T i) = 4 and crD(G,T i) = 2. The following in-
equality immediately follows:

crD(G(n)) = crD(K6,n−1)+ crD(G∪T 1)+

+ crD(K6,n−1,G∪T 1)

≥ 6
⌊

n−1
2

⌋⌊
n−2

2

⌋
+ 1+3r+4s+5(n− r− s−1)

= 6
⌊

n
2

⌋⌊
n−1

2

⌋
+n

+

(
4n−2r−4− s−6

⌊
n−1

2

⌋)
.

This together with (5) implies

4n−2r− s−4−6
⌊

n−1
2

⌋
< 0

and hence, 2r+ s > n+2 for even n and 2r+ s > n−1 for
odd n. On the other hand, G contains at most n− 1 cross-
ings and the inequality 2r + 2s < n− 1 must hold. This
contradiction completes the proof.

3. THE CROSSING NUMBER OF G+PN

The graph G+Pn contains G+Dn as a subgraph. Let us
denote the path t1t2 . . . tn by Pn. So, it is easy to see that

G+Pn = G∪K6,n∪Pn = G∪Pn∪

(
n⋃

i=1

T i

)
. (8)

For n = 1, the graph G+P1 is isomorphic to the graph G+1
and therefore, cr(G+P1) = 1.

Theorem 3.1. cr(G+Pn) = 6b n
2cb

n−1
2 c+n+1 for n≥ 2.

Proof. The graph G+Pn can be created from G+Dn shown
in Fig. 1 by adding the edges of Pn in such way that only
the edge bc of G is crossed by the edge tb n

2 ctb n
2 c+1 of Pn.

This implies that cr(G + Pn) ≤ 6b n
2cb

n−1
2 c+ n + 1. On

the other hand, G+Pn contains G+Dn as a subgraph and
hence, by Theorem 2.1, cr(G+Pn)≥ 6b n

2cb
n−1

2 c+n.
Suppose that there is a drawing D of the graph G+Pn

with 6b n
2cb

n−1
2 c+ n crossings. Then no edge of the path

Pn is crossed in D. In addition, as the graph G+Pn con-
tains K6,n as a subgraph with at least 6b n

2cb
n−1

2 c crossings,
at most n crossings appear on the edges of G.

Let us assume that no two edges of the subgraph G
cross each other. The subdrawing of G induced by D di-
vides the plane into one quadrangular and two pentagonal
regions and, as no edge of the path Pn is crossed, all ver-
tices ti, i = 1,2, . . .n, are placed in one of the pentagonal
regions. Assume now a subdrawing D(F i) of the subgraph
F i = G∪T i. The edges of T i joining the vertex ti with the
vertices of G on the boundary of the considered pentagonal
region divide this region into five new regions. A vertex
t j, j 6= i, must be placed in one of them. One can easy
verify that the edges of T j joining t j with the vertices of
G on the boundary of the pentagonal region of D(G) must
cross T i at least four times. Hence, crD(T i,T j) ≥ 4 for
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i, j = 1,2, . . . ,n, i 6= j. Moreover, as G is not outerplanar
graph, every T i crosses G at least once and therefore, at
least 4

(n
2

)
+n > 6b n

2cb
n−1

2 c+n crossings appear in D.

Fig. 3 The considered drawing of G∪T1.

This contradiction implies that the edges of G cross each
other and that at least one subgraph T i, say T 1, does not
cross the edges of G. So, all vertices of G must appear on
the boundary of one region in the view of the subdrawing
of G, say outside G, and the subdrawing of G∪T 1 induced
by D divides the plane in such a way that on the bound-
ary of every region outside G there are two vertices of G,
see Fig. 3, in which the possible crossings among the edges
of G are inside the disc bounded by dotted cycle. As no
edge of Pn is crossed, all vertices ti, i = 2,3, . . . ,n, are
placed outside G in D. It is easy to verify in Fig. 3 that
every T i crosses G∪ T 1 at least four times, but the case
crD(G∪T 1,T i) = 4 forces that T i crosses G at least twice.
Thus, as crD(G) 6= 0 and on the edges of G there are at most
n crossings, at least one subgraph T i crosses G∪T 1 more
than four times. This implies that

crD(G+Pn) ≥ crD(K6,n−1)+ crD(G+T 1)

+ crD(K6,n−1,G∪T 1)

≥ 6
⌊

n−1
2

⌋⌊
n−2

2

⌋
+1+4(n−2)+5

> 6
⌊

n
2

⌋⌊
n−1

2

⌋
+n.

This contradiction completes the proof.

4. THE CROSSING NUMBER OF G+CN

The graph G +Cn contains both G + Pn and G + Dn
as subgraphs. Let us denote by Cn the cycle t1t2 . . . tnt1
of the graph G+Cn. For x = a,b,c,d,e, f , let T x denote
the subgraph of D6+Cn induced on the edges incident with
the vertex x. One can easily see that

G+Cn = G∪K6,n∪Cn = G∪

(
n⋃

i=1

T i

)
∪Cn = (9)

= G∪

(
f⋃

x=a
T x

)
∪Cn.

The proof of the main result of this section is based
on the next lemma and its corollary which appeared in [14].

Lemma 4.1. ( [14]) Let D be a good drawing of the
graph Dm +Cn, m ≥ 2, n ≥ 3, in which no edge of Cn
is crossed and Cn does not separate the other vertices
of the graph. Then, for all i, j = 1,2, . . . ,m, two different
subgraphs T i and T j cross each other at least b n

2cb
n−1

2 c
times in D.

Corollary 4.1. ( [14]) Let D be a good drawing of the
graph Dm+Cn, m≥ 2, n≥ 3, in which the edges of Cn cross
each other and none of r subgraphs T i1 ,T i2 , . . .T ir , 2≤ r≤
m, crosses the edges of Cn. Then, for all j,k = 1,2, . . . ,r,
two different subgraphs T i j and T ik cross each other at least
b n

2cb
n−1

2 c times in D.

Theorem 4.1. cr(G+Cn) = 6b n
2cb

n−1
2 c+n+3 for n≥ 3.

Proof. In Fig. 1, it is possible to add the cycle Cn =
t1t2 . . . tnt1 in such way that the edge tb n

2 ctb n
2 c+1 crosses

the edge bc and edge t1tn crosses the edges d f and ae.
So, cr(G+Cn) ≤ 6b n

2cb
n−1

2 c+n+3. Assume that there is
a drawing D of the graph G+Cn with at most 6b n

2cb
n−1

2 c+
n+ 2 crossings. Theorem 3.1 implies that, in D, no edge
of Cn is crossed more than once, otherwise deleting an
edge with two crossings from Cn results in the drawing
of the graph G + Pn with fewer than 6b n

2cb
n−1

2 c+ n + 1
crossings. Theorem 2.1 implies that there are at most two
crossings on the edges of Cn. Moreover, as G +Cn =
G∪K6,n ∪Cn and cr(K6,n) = 6b n

2cb
n−1

2 c, in D there are at
most n+2 crossings on the edges of G∪Cn.

Assume first that the cycle Cn crosses G in D. As Cn has
at most two crossings, it separates a) one vertex of degree
two, or b) two vertices of degree two of G from the other
and, as every edge of Cn is crossed at most once, the graph
G separates the vertices of Cn. Moreover, crD(Cn) = 0. Us-
ing (9) and the assumption crD(G,Cn) = 2 we have:

crD(G+Cn) = crD(G)+ crD(K6,n)+ crD(Cn)+

+ crD(K6,n,Cn)+ crD(K6,n,G)+ crD(G,Cn)

= crD(G)+ crD(K6,n)+ crD(K6,n,G)+2.

In the case a), crD(K6,n) ≥
(5

2

)
b n

2cb
n−1

2 c since, by Corol-
lary 4.1, at least

(5
2

)
pairs of subgraphs T x and T y, x,y ∈

{a,b,c,d,e, f}, cross each other at least b n
2cb

n−1
2 c times.

Similarly, in the case b), crD(K6,n) ≥
(4

2

)
b n

2cb
n−1

2 c +
b n

2cb
n−1

2 c since at least
(4

2

)
pairs of T x and T y cross each

other at least b n
2cb

n−1
2 c times and moreover, the rest two

subgraphs in the other region in the view of Cn cross each
other at least b n

2cb
n−1

2 c times.
Suppose now that crD(G) = 0. Since G is not out-

erplanar graph, G is crossed by all subgraphs T i, i =
1,2, . . . ,n, giving crD(K6,n,G) ≥ n. Hence, for the case
a) crD(G +Cn) ≥

(5
2

)
b n

2cb
n−1

2 c+ n + 2 and for the case
b) crD(G+Cn) ≥

(4
2

)
b n

2cb
n−1

2 c+ b
n
2cb

n−1
2 c+ n+ 2. Both

cases contradict the assumption of the drawing D. This
forces that crD(G) 6= 0 and, as crD(G,Cn) = 2, the restric-
tion of at most n = 2 crossings on the edges of G ∪Cn
requires that crD(G,T i) = 0 for at least one subgraph T i.
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So, in the subdrawing D(G), all vertices of G are placed
on the boundary of one, say outside, region. Moreover,
as G separates the vertices of Cn, at least one vertex of Cn
lies in the region of D(G) with at most four vertices of G
on its boundary. This implies that there exists T i such that
crD(G,T i)≥ 2. So, crD(G,K6,n)≥ 2. Thus, for the case a)
crD(G+Cn)≥ 1+

(5
2

)
b n

2cb
n−1

2 c+2+2 and for the case b)
crD(G+Cn) ≥ 1+

(4
2

)
b n

2cb
n−1

2 c+ b
n
2cb

n−1
2 c+2+2. This

contradiction with our assumption implies that Cn does not
cross the subgraph G in D.

If crD(Cn) 6= 0, then n ≥ 4 and, in the view of the sub-
drawing of Cn, all vertices of G are placed in the unique re-
gion with all vertices of Cn on its boundary. In this case, at
least five subgraphs T x, x∈ {a,b,c,d,e, f}, do not cross Cn
and, by Corollary 4.1, crD(K6,n)≥

(5
2

)
b n

2cb
n−1

2 c. For n≥ 4,
the number of crossings in D is at least

(5
2

)
b n

2cb
n−1

2 c+ 1.
This contradicts our assumption again.

So, crD(Cn) = 0 and the subdrawing of Cn induced
by D divides the plane into two regions and all vertices
of G are placed in one of them. If none of the subgraphs
T x, x ∈ {a,b,c,d,e, f}, crosses Cn, then, by Lemma 4.1,
in the drawing D there are at least

(6
2

)
b n

2cb
n−1

2 c crossings,
a contradiction with the assumption. If only one subgraph
T x, x∈{a,b,c,d,e, f}, crosses Cn once or twice, then using
the fact that G has at least one internal crossing, the num-
ber of crossings in D is at least

(5
2

)
b n

2cb
n−1

2 c+1+1. This
exceeds the considered number of crossings again. If two
subgraphs T x and T y, x,y ∈ {a,b,c,d,e, f}, cross Cn, both
T x and T y cross every T q, q ∈ {a,b,c,d,e, f}, q 6= x,y,
at least b n−1

2 cb
n−2

2 c times and therefore, there are at least(4
2

)
b n

2cb
n−1

2 c+ 8b n−1
2 cb

n−2
2 c+ 2 crossings in D. This is

more than 6b n
2cb

n−1
2 c+n+2 for n≥ 4.

The last possibility is that n = 3 and two subgraphs T x

and T y cross the cycle C3 in the drawing D. Recall that
for crD(K6,3,Cn) = 2 and n = 3 the inequality

crD(G+C3) = crD(G)+ crD(K6,3)+ crD(K6,3,G)+2
≥ crD(G)+ crD(K6,3,G)+6+2
= crD(G)+ crD(K6,3,G)+8 (10)

holds. Thus, for the considered drawing D with at most
eleven crossings we have that crD(G) + crD(K6,3,G) ≤ 3.
Assume first that crD(G) = 0. The subdrawing of G in-
duced by D divides the plane into one quadrangular and two
pentagonal regions and, as crD(G,C3) = 0, all vertices ti,
i = 1,2,3, are placed in one of the pentagonal regions. The
simple modification of Lemma 4.1 implies that the edges of
T 1, T 2, and T 3 joining the vertices t1, t2, and t3 with the ver-
tices on the boundary of this pentagonal region cross each
other at least

(3
2

)
b 5

2cb
5−1

2 c = 12 times. This contradict the
assumption of the drawing.

Now, if crD(G) 6= 0, then, by (10), crD(G,K6,n) ≤ 2.
This forces that at least one subgraph T i, say T 1, does
not cross the edges of G. Without loss of generality, as-
sume that the vertex t1 is placed outside G in the view
of the subdrawing of G. In this case, the subdrawing
of G∪T 1 induced by D divides the plane in such a way that
on the boundary of every region outside G there are two
vertices of G, see Fig. 3, in which the possible crossings
among the edges of G are inside the disc bounded by dot-

ted cycle. All other vertices ti, i = 2,3, must be placed
in the same region outside G. It is easy to see in Fig. 3
that the case crD(T i,G ∪ T 1) = 4 forces crD(T i,G) ≥ 2
and crD(T j,G ∪ T 1) ≥ 6 for j 6= i. Similarly, the case
crD(T i,G∪T 1) = 5 forces crD(T i,G)≥ 1 and crD(T j,G∪
T 1) ≥ 5 for j 6= i. Thus, crD(T 1,T 2 ∪T 3) ≥ 10 in all pos-
sible cases, which, together with crD(K6,3,C3) = 2 con-
tradicts the assumption of at most eleven crossings in the
drawing of G+C3. This completes the proof.
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