
42 Acta Electrotechnica et Informatica, Vol. 12, No. 3, 2012, 42–46, DOI: 10.2478/v10198-012-0030-6

THE CROSSING NUMBER OF P2
N �C4

Daniela KRAVECOVÁ, Jana PETRILLOVÁ
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Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 2446, e-mail: daniela.kravecova@tuke.sk, jana.petrillova@tuke.sk

ABSTRACT
The exact crossing number is known only for few specific families of graphs. According to their special structure, Cartesian products

of two graphs are one of few graph classes for which the exact values of crossing numbers were obtained. Let Pn be a path with n+1
vertices and Pk

n be the k-power of the graph Pn. Very recently, some results concerning crossing numbers of Pk
n were obtained. For the

Cartesian product of P2
n with the cycle of length three, the value 3n−3 for its crossing number is given. In this paper, we extend this

result by proving that the crossing numbers of the Cartesian product P2
n �C4 is 4n−4.
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1. INTRODUCTION

Let G be a simple graph with vertex set V and edge set
E. A drawing of a graph is a mapping of a graph into a
surface. For simplicity, we assume that in a drawing (a) no
edge passes through any vertex other than its end-points,
(b) no two edges touch each other (i.e., if two edges have
a common interior point, then at this point they properly
cross), and (c) no three edges cross at the same point. It is
easy to see that a drawing with minimum number of cross-
ings (an optimal drawing) is always a good drawing, mean-
ing that no edge crosses itself, no two edges cross more
than once, and no two edges incident with the same ver-
tex cross. The crossing number cr(G) of a graph G is the
number of edge crossings in an optimal drawing of G in the
plane. The Cartesian product G1�G2 of two graphs G1
and G2 has vertices V (G1)×V (G2) and two vertices (u,u′)
and (v,v′) are adjacent in G1�G2 if and only if u = v and
u′v′ ∈ E(G2) or u′ = v′ and uv ∈ E(G1).

Let Cn be the cycle on n vertices and Pn be the path
on n + 1 vertices. Harary et al. [7] conjectured that
cr(Cm�Cn) = (m− 2)n, for all m,n satisfying 3 ≤ m ≤ n.
This has been proved only for m,n satisfying n≥m, m≤ 7.
It was proved by Glebsky and Salazar [6] that cr(Cm�Cn)
equals its long-conjectured value at least for n≥ m(m+1).
Besides of Cartesian products of two cycles, there are sev-
eral other exact results. Beineke and Ringeisen [1, 19]
started to study the crossing numbers of Cartesian products
of graphs of order at most four with paths and cycles. The
crossing numbers of G�Cn for all graphs G of order at most
four are given in [8, 9]. In addition, the crossing numbers
of G�Cn are known for some graphs G on five or six ver-
tices [4, 5, 14]. In [8, 12] the crossing numbers of G�Pn for
all graphs on at most five vertices are established and the
crossing numbers of Cartesian products of graphs of order
five or six with stars were studied in [2, 10, 11].

For any positive integer k, the k-power graph of a graph
G, denoted by Gk, is the graph having the same vertices as
G, and two vertices of Gk are adjacent if the distance be-
tween the corresponding vertices in G is at most k. In the
paper [18], Patil and Krishnnamurthy present a family of
graphs for which power graphs have crossing number one.
The crossing numbers of Cartesian products for some sec-
ond power P2

n of the path Pn with paths and cycles are deter-

mined in [15–17]. Specifically, it is proved that the crossing
number of the graph P2

n �C3 is 3n−3 for all n≥ 2. In this
paper, we extend this result by giving the crossing number
of the graph P2

n �C4.

2. THE GRAPH P2
5 �C4

Assume n≥ 2. We find it convenient to regard the graph
P2

n �C4 in the following way: it has 4(n+ 1) vertices and
edges that are the edges in n+1 copies C(i)

4 , i = 0,1, . . . ,n,
of the cycle C4 and in four copies of P2

n .
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Fig. 1 The graph P2
5 �C4 with sixteen crossings

In Fig. 1 there is the drawing of the graph P2
5 �C4, in

which every cycle C(i)
4 with vertices ai,bi,ci,di, i= 1,2,3,4,

is crossed exactly four times and there are no other cross-
ings in this drawing. So, Fig. 1 shows the drawing of the
graph P2

5 �C4 with sixteen crossings. The extension of this
drawing to the drawing of P2

n �C4 with four crossings on
the edges of every cycle C(i)

4 , i = 1,2, . . . ,n− 1, implies
that the crossing number of the graph P2

n �C4 is at most
4(n−1).

In the next section we will discuss some properties of
drawings of the graph P2

5 �C4 pertaining some special sub-
graphs of it. Using these properties, in the last section of
the paper we give the exact value of the crossing number
for the graph P2

n �C4.
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3. DRAWINGS OF THE GRAPH P2
N �C4

In the graph P2
n �C4, every of four copies of P2

n is
induced by the vertices xi, i = 0,1, . . . ,n, for some x ∈
{a,b,c,d}. For i = 1,2, . . . ,n, let P(i) denote the subgraph
of P2

n �C4 consisting of the edges ai−1ai, bi−1bi,ci−1ci, and
di−1,di joining the cycles C(i−1)

4 and C(i)
4 . Similarly, for

i = 1,2, . . . ,n− 1, let H(i) denote the subgraph of P2
n �C4

consisting of the edges ai−1ai+1, bi−1bi+1,ci−1ci+1, and
di−1di+1 joining the cycles C(i−1)

4 and C(i+1)
4 . Thus, the

subgraph P(1) ∪P(2) ∪ ·· · ∪P(n) consists of four copies of
Pn, and two vertices of Pn at distance two are adjacent with
an edge of some H(i), see the drawing of P2

5 �C4 in Fig. 1.
For i = 0,1, . . . ,n−2, let Gi,i+2 denote the subgraph of the
graph P2

n �C4 induced by the vertices of the cycles C(i)
4 ,

C(i+1)
4 , and C(i+2)

4 . Clearly, every subgraph Gi,i+2 is iso-
morphic to the Cartesian product C3�C4. Especially, the
subgraph G0,2 =C(0)

4 ∪P(1)∪C(1)
4 ∪P(2)∪C(2)

4 ∪H(1). For
x ∈ {a,b,c,d}, let C(x)

3 be the 3-cycle of the subgraph G0,2

induced by the vertices x0,x1, and x2.
Let D be a good drawing of the graph G. We denote

the number of crossings in D by crD(G). For a subgraph Gi
of the graph G, let D(Gi) be the subdrawing of Gi induced
by D. For edge disjoint subgraphs Gi and G j of G, we de-
note by crD(Gi,G j) the number of crossings of edges in Gi
with edges in G j, and by crD(Gi) the number of crossings
among edges of Gi in D. In a good drawing D of the graph
G, we say that a cycle C separates the cycles C′ and C′′

(the vertices of a subgraph Gi not containing vertices of C)
if C′ and C′′ (the vertices of Gi) are contained in different
components of R2 \C.

Let D be a good drawing of the graph P2
n �C4. Consider

the subgraphs C(0)
4 ∪P(1)∪H(1) and C(1)

4 ∪P(2) of the graph
P2

n �C4 drawn by solid lines in Fig. 2(a) and Fig. 2(b), re-
spectively. Let us call the edges of C(0)

4 ∪P(1) ∪H(1) red
and let the edges of C(1)

4 ∪P(2) be called blue. We say that
a crossing in D is red if it involves at least one edge of
C(0)

4 ∪P(1) ∪H(1). Similarly, let a crossing on an edge of
C(1)

4 ∪ P(2) be blue. Clearly, a crossing between an edge
of C(0)

4 ∪P(1) ∪H(1) and an edge of C(1)
4 ∪P(2) is both red

and blue. Such a crossing we call red-blue. Let α and β

denote the numbers of red and blue crossings, respectively,
and let (α,β ) be the number of red-blue crossings. Let us
dissect the numbers α and β into two parts. Namely, let
α = α i+αe and β = β i+β e, where α i and β i be the num-
bers of red and blue crossings, respectively, which appear
among the edges of the subgraph G0,2. Clearly, αe and β e

are the numbers of crossings between red and blue edges of
G0,2, respectively, and edges not belonging to G0,2.

The edges of a 4-cycle cross each other at most once in
a good drawing. Except for a possible crossing among the
edges of C(2)

4 , in D, every other crossing among the edges
of G0,2 appears on a red or on a blue edge. So, α +β ≥ 3,
because the crossing number of the graph C3�C4 is four,
see [1]. For the considered drawing D, several propositions
hold.
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Fig. 2 The subgraphs C(0)
4 ∪P(1)∪H(1) and C(1)

4 ∪P(2)

Proposition 3.1. For i = 0,1,2, . . . ,n − 1, crD(C
(i)
4 ∪

P(i+1)∪C(i+1)
4 ) 6= 1, as well as crD(C

(i)
4 ∪H(i+1)∪C(i+2)

4 ) 6=
1 for all i = 0,1,2, . . . ,n−2.

Proof. Both subgraphs C(i)
4 ∪ P(i+1) ∪ C(i+1)

4 and C(i)
4 ∪

H(i+1) ∪C(i+2)
4 of the graph P2

n �C4 are isomorphic to the
Cartesian product P1�C4. This graph is planar. For any
graph P1�Cn, n ≥ 4, there is no good drawing with ex-
actly one crossing, because for any two edges which cross
each other one can find two vertex-disjoint cycles such that
crossed edges are in different cycles. Two vertex-disjoint
cycles cannot cross only once.

If, in D, the edges of some 4-cycle of the graph P2
5 �C4

cross each other, we say that this 4-cycle has an internal
crossing. As the drawing D is good, the edges of a 4-cycle
cannot cross more than once, and the edges of every 3-cycle
are pairwise non-crossing.

Proposition 3.2. Let p be the number of the 4-cycles C(i)
4 ,

i ∈ {0,1,2}, with internal crossings and q be the number
of crossings on the edges of a 3-cycle C(x)

3 , x ∈ {a,b,c,d}.
Then there are at least 3+ p+q crossings among the edges
of the subgraph G0,2 .

Proof. The subgraph G0,2 of the graph P2
n �C4 is isomor-

phic to C3�C4. Let D(G0,2) be the subdrawing of G0,2 in-
duced by D. By the removal of all edges of some 3-cycle
C(x)

3 , x ∈ {a,b,c,d}, with q crossings on its edges, a sub-
division of the graph C3�C3 is obtained, and the resulting
subdrawing has at least q crossings less than the drawing
D(G0,2). As cr(C3�C3) = 3, see [19], D(G0,2) must con-
tain at least 3+ q crossings. Moreover, no 3-cycle has an
internal crossing in a good drawing of a graph. Assume
that some 4-cycle C(i)

4 , i ∈ {0,1,2}, has an internal cross-
ing in D(G0,2). Then in the subdrawing of D(G0,2) ob-
tained by deleting the edges of some C(x)

3 , x ∈ {a,b,c,d},
the edges of the corresponding 4-cycle C(i)

4 in the subdivi-
sion of C3�C3 cross each other. But, this subdrawing is
not optimal, because the edges of a 3-cycle do not cross
each other in any optimal drawing of C3�C3. This forces
that the original drawing D(G0,2) has at least one cross-
ing more than the minimum number of crossing in a draw-
ing of the graph C3�C3. If p 4-cycles have internal cross-
ings in D(0,2, by deleting one of them the subdrawing of
a subdivision of C3�C3 with at least one crossing less is
obtained. Moreover, p−1 3-cycles have internal crossings
in this sudrawing. These crossings are not necessary in an
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optimal drawing of C3�C3. Thus, if there are p 4-cycles
C(i)

4 , i ∈ {0,1,2}, with internal crossings and some 3-cycle
C(x)

3 , x ∈ {a,b,c,d}, has q crossings on its edges, then there
are at least 3+ p+ q crossings in the subdrawing D(G0,2)
induced by D.

Proposition 3.3. If two different 3-cycles C(x)
3 and C(y)

3 ,
x,y ∈ {a,b,c,d}, of the subgraph G0,2 cross each other in
D, then at least one of them has at least three crossings on
its edges. If two 4-cycles C(i)

4 and C(i+1)
4 , i = 0,1, . . . ,n−1,

cross each other in D, then at least one of them has at least
three crossings on its edges.

Proof. Every two 4-cycles C(i)
4 and C(i+1)

4 belong to some
subgraph of P2

n �C4 isomorphic to C3�C4. Without loss
of generality, consider the subgraph G0,2 isomorphic with
C3�C4. If two 4-cycles cross each other in the good sub-
drawing D(G0,2) of G0,2, then they cross at least twice. As-
sume two 4-cycles which are crossing each other and none
of them has more than two crossings. Then none of them
has an internal crossing. The subdrawing of D(G0,2) in-
duced by the edges of the considered two 4-cycles divides
the plane into four regions. Since, in D(G0,2), none of the
other edges of C3�C4 crosses an edge of the considered
two 4-cycles, all other edges of G0,2 are placed in D(G0,2)
within one region formed by these two 4-cycles and such a
drawing is not good. The same arguments we can use for
the 3–cycles of G0,2. This completes the proof.

Proposition 3.4. If crD(C
(0)
4 ,C(1)

4 ) = 0 and every 3-cycle

C(x)
3 of the subgraph G0,2 has at most one crossing on its

edges, then α > 3 or β > 3.

Proof. Consider the 3-cycles in G0,2. By Proposition 3.3,
crD(C

(x)
3 ,C(y)

3 ) = 0 for all pairs x,y ∈ {a,b,c,d}. Moreover,
none of the 3-cycles separates two other, otherwise it is
crossed by all three edges joining the separated 3-cycles.
Assume, without loss of generality, that some 3-cycle C(x)

3

crosses the 4-cycle C(0)
4 in D. If C(0)

4 is crossed once by
some edge of P(2), then C(0)

4 separates C(1)
4 and C(2)

4 or C(0)
4

is crossed by C(2)
4 twice. In the first case, C(0)

4 is crossed by
all four edges of P(2) and (α,β ) ≥ 4. In the second case,
C(0)

4 is crossed by P(2) ∪C(2)
4 at least three times and also

by the path x2x3x1 joining the end-vertices x1 and x2 of the
edge, which crosses C(0)

4 . Thus, α ≥ 4. If C(0)
4 is crossed

by an edge of P(1) (H(1)) belonging to C(x)
3 , then, as C(x)

3
does not separate two other 3-cycles and two 3-cycles do
not cross each other, the edge of H(1) (P(1)) belonging to
C(x)

3 crosses the same edge of C(0)
4 , too. Hence, C(0)

3 can-
not be crossed by some 3-cycle of G0,2. The same fact can
be shown for the 4-cycle C(1)

4 . This, together with the re-
striction crD(C

(0)
4 ,C(1)

4 ) = 0 implies that there are only two
possible subdrawings D(C(0)

4 ∪P(1) ∪C(1)
4 ) induced by D.

Both are shown in Fig. 3.

(a) (b)

C
(1)

4 C
(1)

4C
( )0

4 C
( )0

4

Fig. 3 The subdrawings of C(0)
4 ∪P(1)∪C(1)

4

Assume first the subdrawing of C(0)
4 ∪ P(1) ∪C(1)

4 in
Fig. 3(a). If C(0)

4 separates the 4-cycles C(2)
4 and C(1)

4 , then
C(0)

4 is crossed by all four edges of P(2) and (α,β ) ≥ 4.
Similarly, (α,β ) ≥ 4, if C(1)

4 separates C(2)
4 and C(0)

4 . If
the 4-cycle C(0)

4 separates two adjoint vertices x2 and y2 of
C(2)

4 , then crD(C
(0)
4 ,C(2)

4 ) ≥ 2 and at least one edge of P(2)

joining C(2)
4 with C(1)

4 crosses C(0)
4 , too. Moreover, in D,

the path x2x3y3y2 crosses C(0)
4 and therefore, α ≥ 4. The

same analysis for the case when C(1)
4 separates two ver-

tices of C(2)
4 shows that β ≥ 4. Hence, if both α ≤ 3 and

β ≤ 3, the whole 4-cycle C(2)
4 is placed in D outside the 4-

cycles C(0)
4 and C(1)

4 in the view of the subdrawing shown in
Fig. 3(a). If all vertices of C(2)

4 are placed in one quadran-
gular region or in two neighbouring quadrangular regions
of D(C(0)

4 ∪P(1) ∪C(1)
4 ), then at least two vertices x0 and

x1 are not placed on the boundaries of these considered re-
gions. But, in this case, the 3-cycle C(x)

3 crosses the edges

of C(0)
4 ∪ P(1) ∪C(1)

4 at least twice, a contradiction. The
last possibility is that the vertices of C(2)

4 are placed in at
least two quadrangular regions of D(C(0)

4 ∪P(1)∪C(1)
4 ) out-

side C(0)
4 and C(1)

4 and two of these regions are not neigh-
bouring regions. Thus, the cycle C(2)

4 crosses the edges of
C(0)

4 ∪P(1)∪C(1)
4 at least four times. If crD(C

(1)
4 ,C(2)

4 ) = 0,
then α ≥ 4. Otherwise crD(C

(1)
4 ,C(2)

4 )≥ 2 and α i +β i ≥ 4.
Consider now the subgraph C(3)

4 ∪P(4)∪C(4)
4 . If this 3-

connected graph crosses the 3-connected graph C(0)
4 ∪P(1)∪

C(1)
4 , then it crosses it at least three times and αe +β e ≥ 3,

which forces α ≥ 4 or β ≥ 4. Otherwise it is placed in
one region of D(C(0)

4 ∪ P(1) ∪C(1)
4 ). If no vertex of C(2)

4
is placed in the same region, then all four edges of P(3)

joining C(3)
4 with C(2)

4 cross the edges of C(0)
4 ∪P(1) ∪C(1)

4

and αe + β e ≥ 4. If C(3)
4 ∪ P(4) ∪C(4)

4 is placed in a re-
gion with a vertex of C(2)

4 , then at least one vertex of C(2)
4

and at least two vertices of C(1)
4 are not placed in this re-

gion or on its boundary. In this case, at least two paths
x2x3y3y2 and x2x4y4y2 joining two separated vertices x2 and
y2 of C(2)

4 cross the edges of C(0)
4 ∪P(1) ∪C(1)

4 . Moreover,
the edges of H(2) joining C(3)

4 with C(1)
4 cross the edges of

C(0)
4 ∪P(1)∪C(1)

4 . Thus, αe +β e ≥ 3 again. This confirms
that α +β ≥ 7 in all possible cases and therefore, α ≥ 4 or
β ≥ 4.

In the subdrawing of C(0)
4 ∪P(1)∪C(1)

4 in Fig. 3(b) there
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is one red crossing and one blue crossing. The same analy-
sis as in the previous case states that α ≥ 4 or β ≥ 4. This
completes the proof.

4. THE MAIN RESULT

Theorem 4.1. cr(P2
n �C4) = 4(n−1) for n≥ 2.

Proof. In Fig. 1 it is easy to see that cr(P2
n �C4)≤ 4(n−1)

for n ≥ 2. As P2
2 is isomorphic to the cycle C3 and

cr(C3�Cm) = m [19], the crossing number of the graph
P2

2 �C4 is four. The graph P2
3 is isomorphic to the tripar-

tite complete graph K1,1,2 and contains C4 as a subgraph.
So, the graph P2

3 �C4 contains C4�C4 as a subgraph and,
as cr(C4�C4) = 8 [3], the crossing number of the graph
P2

3 �C4 is at least eight. Hence, cr(P2
3 �C4) = 8 and the re-

sult is true for n = 3. In [13], some crossing numbers of
Cartesian products of graphs on five vertices with cycles
are collected. For the graph P2

4 of order five, it is shown
that cr(P2

4 �Cm) = 3m. This implies that cr(P2
4 �C4) = 12.

The crossing number of the graph P2
5 �Cm is 4m, see [15],

and therefore, cr(P2
5 �C4) = 16. It remains to show that in

any good drawing of the graph P2
n �C4, n ≥ 6, there are at

least 4(n−1) crossings. We prove this by induction on n.
Assume that for n ≥ 6 there is a good drawing D of

the graph P2
n �C4 with less than 4n− 4 crossings and let

cr(P2
k �C4) = 4k − 4 for every 2 ≤ k ≤ n− 1. Hence,

in D, there are at most three crossings on red edges of
C(0)

4 ∪ P(1) ∪ H(1) and at most three crossings on blue
edges of C(1)

4 ∪P(2). Otherwise, by deleting the edges of
C(0)

4 ∪P(1)∪H(1) from D, a drawing of the graph P2
n−1�C4

with fewer than 4(n− 1)− 4 crossings is obtained. Sim-
ilarly, the removing of the edges of C(1)

4 ∪ P(2) results in
a drawing of the subdivision of P2

n−1�C4 with fewer than
4(n− 1)− 4 crossings. This contradicts the induction hy-
pothesis and therefore, α ≤ 3 and β ≤ 3 in D.

Consider now the subgraph G0,2 = C(0)
4 ∪P(1) ∪H(1) ∪

C(1)
4 ∪P(2)∪C(2)

4 and let D(G0,2) be its subdrawing induced
by D. As α ≤ 3, at least one crossing appears among the
edges of C(1)

4 ∪ P(2) ∪C(2)
4 . Thus, by Proposition 3.1 we

have that crD(C
(1)
4 ∪P(2) ∪C(2)

4 ) ≥ 2. This implies that in
D there are at most two red-blue crossings. We show that
the 4-cycles C(0)

4 and C(1)
4 do not cross each other. Oth-

erwise, if crD(C
(0)
4 ,C(1)

4 ) 6= 0, then both crossings between
C(0)

4 and C(1)
4 are red-blue crossings and at least one of the

considered 4-cycles separates the vertices of the other. As-
sume first that C(0)

4 separates the vertices x1 and y1 of C(1)
4 .

As α ≤ 3, the cycle C(2)
4 cannot cross C(0)

4 . Then the path
x1x2y2y1 crosses the cycle C(0)

4 in such a way that C(0)
4 is

crossed by the edge x1x2 or by the edge y1y2. This cross-
ing is also a red-blue crossing, a contradiction with our
observation above. The same analysis for the case when
the cycle C(1)

4 separates the vertices of C(0)
4 confirms that

crD(C
(0)
4 ,C(1)

4 ) = 0.
By Proposition 3.4, at least one 3-cycle C(x)

3 , x ∈
{a,b,c,d}, has more than one crossing on its edges in
D(G0,2). Thus, by Proposition 3.2, in D(G0,2) there are

at least five crossings when the edges of C(2)
4 do not cross

each other, and at least six crossings when crD(C
(2)
4 ) 6= 0.

The restriction α + β ≤ 6 implies that in the first case
5 ≤ crD(G0,2) ≤ 6, and 6 ≤ crD(G0,2) ≤ 7 in the second
case. This forces that, in D, at most one of the numbers
(α,β ) and αe + β e is equal to one, and the other is zero.
We show that this is impossible.

(a) (b)

C
(1)

4 C
(1)

4 C
( )

4

3

C
( )

4

3

Fig. 4 The subdrawings of C(1)
4 ∪H(2)∪C(3)

4

If β e = 0, then only the edges of the subgraph G0,2

can cross the edge of C(1)
4 and the subdrawing of C(1)

4 ∪
H(2) ∪C(3)

4 induced by D divides the plane in such a way
that on the boundary of every region there are at most two
vertices of C(1)

4 . According to the numbers of crossings
among the edges of C(1)

4 , Fig. 4 shows both subdrawings
D(C(1)

4 ∪H(2) ∪C(3)
4 ), where possible crossings among the

edges of H(2) ∪C(3)
4 are considered in the dotted cycle.

As crD(C
(0)
4 ,C(1)

4 ) = 0 and αe ≤ 1, crD(C
(0)
4 ,C(1)

4 ∪H(2) ∪
C(3)

4 ) = 0 and, in D, the cycle C(0)
4 is placed in one region in

the view of the subdrawing D(C(1)
4 ∪H(2)∪C(3)

4 ). No vertex
of C(2)

4 can be placed in the region with all four vertices of
C(1)

4 on its boundary, otherwise some edge of P(3) crosses
C(1)

4 and β e 6= 0. This implies that C(0)
4 is also outside C(1)

4 ,
otherwise all four edges of H(1) cross C(1)

4 and β ≥ 4. Now,
as C(0)

4 is placed in a region with at most two vertices of
C(1)

4 on its boundary, at least two edges of P(1) joining C(0)
4

with C(1)
4 cross the edges of C(1)

4 ∪H(2) ∪C(3)
4 . But, if an

edge of P(1) crosses C(1)
4 , then (α,β ) = 1. The restriction

of (α,β ) ≤ 1 forces that αe = 0, which is impossible, be-
cause the other edge of P(1) crosses an edge of H(2)∪C(3)

4 ,
and this crossing contributes at least one to αe.

Hence, β e = 1 and αe = 0 in the drawing D of the
graph P2

n �C4. Moreover, in D, there is no red-blue cross-
ing and α i + β i ≤ 5. This implies that crD(G0,2) = 5 if
crD(C

(2)
4 ) = 0, and for the case crD(C

(2)
4 ) = 1 we have

crD(G0,2) = 6. Thus, by Proposition 3.2, every 3-cycle C(x)
3

of G0,2 has at most two crossings on its edges and therefore,
no 3-cycle of G0,2 separates two other 3-cycles. In addi-
tion, by Proposition 3.3, two different 3-cycles C(x)

3 and C(y)
3

does not cross each other. It was discussed above that, by
these restrictions, two red edges of H(1) do not cross each
other and no edge of H(1) crosses C(0)

4 . Hence, according to
the number of internal crossings in C(0)

4 , all subdrawings of
C(0)

4 ∪H(1)∪P(3)∪C(3)
4 induced by D are shown in Fig. 5,
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where possible crossings among the edges of P(3)∪C(3)
4 are

considered in the dotted cycles.

(a) (b)

C
( )0

4 C
( )0

4 C
( )

4

3

C
( )

4

3

a2

b2

c2

d2

Fig. 5 The subdrawings of C(0)
4 ∪H(1)∪P(3)∪C(3)

4

As (α,β ) = 0 and β e = 1, the cycle C(1)
4 does not cross

the edges of C(0)
4 ∪H(1) or the edges of P(3) ∪C(3)

4 twice.
So, C(1)

4 is placed in D in one region in the view of the sub-
drawing D(C(0)

4 ∪H(1) ∪ P(3) ∪C(3)
4 ). As every region of

the considered subdrawing has at most two of the vertices
a2,b2,c2, and d2 on its boundary, in D, at least two edges
of P(2) joining C(1)

4 with the vertices a2,b2,c2, and d2 cross
the edges of C(0)

4 ∪H(1) ∪P(3) ∪C(3)
4 . But, the restriction

(α,β ) = 0 does not allow a crossing between red edges of
C(0)

4 ∪P(1) and blue edges of P(2), and the restriction β e = 1
does not allow two crossings between blue edges and the
edges of P(3) ∪C(3)

4 . This confirms that there is no good
drawing of the graph P2

n �C4 with less than 4(n−1) cross-
ings. This completes the proof.
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