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042 00 Košice, Slovak Republic, tel.: +421 55 602 2460, e-mail: oskar.ostertag@tuke.sk

ABSTRACT
In the paper a relatively simple yet powerful and versatile technique for forecasting time series data – simple exponential smoothing

is described. The simple exponential smoothing (SES) is a short-range forecasting method that assumes a reasonably stable mean in
the data with no trend (consistent growth or decline). It is one of the most popular forecasting methods that uses weighted moving
average of past data as the basis for a forecast. The procedure gives heaviest weight to more recent observations and smaller weight to
observations in the more distant past. The accuracy of the SES method strongly depends on the optimal value of the smoothing constant
α . To determine the optimal α value in the paper was used a traditional optimalization method based on the lowest mean absolute
error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE).
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1. INTRODUCTION

A time series is a sequence of observations indexed by
time, usually ordered in equally spaced intervals and cor-
related. In our days it is well known the importance of
time series studies. These studies provide indicators about
a country economy, the unemployment rate, the export and
import product rates, etc. The most interesting and ambi-
tious task in time series analysis is to forecast future values.
Models are commonly fitted in order to predict future val-
ues of a time series [4].

Exponential smoothing methods are the most widely
used forecasting methods. The formulation of exponential
smoothing forecasting methods arose in the 1950s from the
original work of Brown (1959, [2]) and Holt (1957, [6])
who were working on creating forecasting models for in-
ventory control systems.

Exponential smoothing is an intuitive forecasting
method that weights the observed time series unequally.
Recent observations are weighted more heavily than remote
observations. The unequal weighting is accomplished by
using one or more smoothing parameters, which determine
how much weight is given to each observation [9].

The simplest technique of this type, simple exponential
smoothing (SES), is appropriate for a series that moves ran-
domly above and below a constant mean (stationary series).
It has no trend and no seasonal patterns [16].

The Holt-Winters method, also referred to as dou-
ble exponential smoothing, is an extension of exponential
smoothing designed for trended and seasonal time series.
Holt-Winters smoothing is a widely used tool for forecast-
ing business data that contain seasonality, changing trends
and seasonal correlation [5].

Exponential smoothing model is a widely used method
in time series analysis. This popularity can be attributed to
its simplicity, its computational efficiency, the ease of ad-
justing its responsiveness to changes in the process being
forecast, and its reasonable accuracy [11].

Generally, exponential smoothing is regarded as an in-
expensive technique that gives good forecast in a wide va-

riety of applications. In addition, data storage and com-
puting requirements are minimal, which makes exponential
smoothing suitable for real-time application.

2. SIMPLE EXPONENTIAL SMOOTHING MODEL

The simple exponential smoothing (SES) model is usu-
ally based on the premise that the level of time series should
fluctuate about a constant level or change slowly over the
time [9].

2.1. Mathematical Formulation

The SES model is given by the model equation

y(t) = β (t)+ ε(t), (1)

where β (t) takes a constant at the time t and may change
slowly over the time; ε(t) is a random variable and is used
to describe the effect of stochastic fluctuation.

Let an observed time series be y1, y2, . . . , yn. In any
case, in this simple model, to predict yt is merely to pre-
dict (estimate) β . To estimate, it makes sense to use all the
past observations, but due to declining correlation as you
go back into the past, to down-weight older observations.

Formally, the simple exponential smoothing equation
takes the form of

Ft+1 = α yt +(1−α)Ft , (2)

where yt is the actual, known series value at the time t; Ft
is the forecast value of the variable Y at the time t; Ft+1
is the forecast value at the time t + 1; α is the smoothing
constant [3].

The forecast Ft+1 is based on weighting the most recent
observation yt with a weight α and weighting the most re-
cent forecast Ft with a weight of 1−α .

To get started the algorithm, we need an initial forecast,
an actual value and a smoothing constant.

Since F1 is not known, we can:

• Set the first estimate equal to the first observation.
Further we will use F1 = y1.
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• Use the average value of the first few observations of
the data series for the initial smoothed value.

Smoothing constant α is a selected number between
zero and one, 0 < α < 1.

Rewriting the model (2) we can see one of the neat
things about the SES model

Ft+1−Ft = α(yt −Ft), (3)

change in forecasting value is proportional to the forecast
error. That is

Ft+1 = Ft +αet , (4)

where residual

et = yt −Ft (5)

is the forecast error at the time t.
So, the exponential smoothing forecast is the old fore-

cast plus an adjustment for the error that occurred in the last
forecast [1, 12].

By iterating formula (2) we get:

F1 = y1; F2 = α · y1 +(1−α) ·F1 = y1;

F3 = α · y2 +(1−α) ·F2 = α · y2 +(1−α) · y1 =

α · y2 +α(1−α) · y1 +(1−α)2 · y1;

F4 = α · y3 +(1−α) ·F3 =

αy3 +(1−α)(α · y2 +α(1−α) · y1 +(1−α)2 · y1) =

α
(
y3 +(1−α)y2 +(1−α)2y1

)
+(1−α)3 · y1; . . .

The forecast equation in general form is

Ft+1 = α

t−1

∑
k=0

(1−α)kyt−k +(1−α)ty1, t ∈ N, (6)

where Ft+1 is the forecast value of the variable Y at the time
t + 1 from knowledge of the actual series values yt , yt−1,
yt−2 and so on back in time to the first known value of the
time series, y1 [3, 13].

Therefore, Ft+1 is the weighted moving average of all
past observations.

The series of weights used in producing the forecast
Ft+1 is

α, α(1−α), α(1−α)2, . . . (7)

It is obviously from (7) that the weights are exponen-
tial; hence the name exponentially weighted moving aver-
age [1]. The exponential decline of the weights toward zero
is evident. This is shown in Figure 1.

The decay is slower for small values α , so we can con-
trol the rate of decay by choosing α appropriately.
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Fig. 1 Exponentially declining weights

2.2. Measuring Forecast Error

After the model specified, its performance characteris-
tics should be verified or validated by comparison of its
forecast with historical data for the process it was designed
to forecast.

This is no consensus among researchers as to which
measure is best for determining the most appropriate fore-
casting method. Accuracy is the criterion that determines
the best forecasting method; thus, accuracy is the most im-
portant concern in evaluating the quality of a forecast. The
goal of the forecast is to minimize error [14].

Some of the common indicators used to evaluate accu-
racy are MAE (Mean absolute error), MSE (Mean squared
error), RMSE (Root mean squared error) or MAPE (Mean
absolute percentage error):

MAE =
1
n

n

∑
t=1
|et |, (8)

MSE =
1
n

n

∑
t=1

e2
t , (9)

RMSE =
√

MSE (10)

MAPE =
1
n

n

∑
t=1

|et |
yt
·100%, (11)

where yt is the actual value at the time t; et is residual at the
time t; n is the total number of the time periods.

MAE is a measure of overall accuracy that gives an indi-
cation of the degree of spread, where all errors are assigned
equal weights. If a method fits the past time series data very
good, MAE is near zero, whereas if a method fits the past
time series data poorly, MAE is large. Thus, when two or
more forecasting methods are compared, the one with the
minimum MAE can be selected as most accurate [14].

MSE is also a measure of overall accuracy that gives
an indication of the degree of spread, but here large errors
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are given additional weight. It is a generally accepted tech-
nique for evaluating exponential smoothing and other meth-
ods [7].

Often the square root of MSE, RMSE, is considered,
since the seriousness of the forecast error is then denoted
in the same dimensions as the actual and forecast values
themselves.

MAPE is a relative measure that corresponds to MAE. It
is the most useful measure to compare the accuracy of fore-
casts between different items or products since it measures
relative performance. It is one measure of accuracy com-
monly used in quantitative methods of forecasting [10]. If
MAPE calculated value is less than 10 %, it is interpreted
as excellent accurate forecasting, between 10–20 % good
forecasting, between 20–50 % acceptable forecasting and
over 50 % inaccurate forecasting [8].

Selection of an error measure has an important effect on
the conclusions about which of a set of forecasting methods
is most accurate.

2.3. Choosing the Best Value for Smoothing Constant

The accuracy of forecasting of SES technique depends
on smoothing constant. Choosing an appropriate value of
exponential smoothing constant is very crucial to minimize
the error in forecasting.

Selecting a smoothing constant is basically a matter of
judgment or trial and error, using forecast errors to guide
the decision. The goal is to select a smoothing constant that
balances the benefits of smoothing random variations with
the benefits of responding to real changes if and when they
occur.

The smoothing constant serves as the weighting factor.
When α is close to 1, the new forecast will include a sub-
stantial adjustment for any error that occurred in the pre-
ceding forecast. When α is close to 0, the new forecast is
very similar to the old forecast.

The smoothing constant α is not an arbitrary choice but
generally falls between 0.1 and 0.5. Low values of α are
used when the underlying average tends to be stable; higher
values are used when the underlying average is susceptible
to change.

In practice, the smoothing constant is often chosen by
a grid search of the parameter space; that is, different solu-
tions for α are tried starting, for example, with α = 0.1 to
α = 0.9, with increments of 0.1 [1,12]. The value of α with
the smallest MAE, MSE, RMSE or MAPE is chosen for use
in producing the future forecasts.

3. EXAMPLE FROM TECHNICAL PRACTICE

The simple exponential smoothing model can be illus-
trated by using data about primary production of electricity
(yt ) in terajoules (TJ) in Slovakia over the years 2001–2009
that are in the Table 1 [17].

We want to forecast primary production of electricity in
Slovakia for the year 2010.

We can see from the plot that there is roughly constant
level. Thus, we can make forecasts using SES method. It is
illustrated in Figure 2.

Table 1 Observed values of primary production of electricity

Time t Observed values yt

1 17496
2 18965
3 12535
4 14781
5 16722
6 15858
7 16053
8 14565
9 15747
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Fig. 2 Observed time series data

In this study were adopted to assess the accuracy of
forecasting methods three accuracy models – MAE, MAPE
and RMSE.

These error measures were calculated using equations
(2), (5) and (8)–(11) for different values of exponential
smoothing constant using MATLAB. Table 2 shows the val-
ues of MAE, MAPE and RMSE for different α .

Table 2 MAE, MAPE, RMSE for different values of α

α MAE MAPE RMSE
0.25 1405.09 9.97 2139.29
0.26 1402.04 9.95 2138.86
0.27 1399.27 9.93 2138.99
0.28 1396.76 9.91 2139.63
0.29 1394.53 9.89 2140.74
0.30 1396.23 9.90 2142.30

Values of MAE, MAPE, and RMSE depend on the choice
of the smoothing constant.

MAE and MAPE are decreased with increasing α up to
0.29 and after that MAE and MAPE are increased. Variation
of MAE with α is shown in Figure 3 and variation of MAPE
with α is shown in Figure 4.
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Fig. 3 Variation of MAE for different values of α
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Fig. 4 Variation of MAPE for different values of α
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Fig. 5 Variation of RMSE for different values of α

RMSE is decreased with increasing α up to 0.26 and af-
ter that RMSE is increased. Variation of RMSE with α is
shown in Figure 5.

To find the optimal value of smoothing constant, min-
imum values of MAE, RMSE and MAPE are selected and
corresponding value of smoothing constant is the optimal
value for this problem [13].

By calculating the forecast values using equation (1) for
α = 0.29 and α = 0.26, we obtain the values presented in
the columns 3–4 in the Table 3.

In the last line in the Table 3 are forecast results for the
time period 10, therefore for year 2010.

So the forecast of primary production of electricity in
Slovakia for year 2010 by using α = 0.29 is about 15660
TJ and by using α = 0.26 it is about 15717 TJ.

For both values of alpha was obtained result value of
MAPE less than 10 % and it means the excellent accurate
forecasting.

Table 3 Forecast values for minimum MAE, MAPE and RMSE

Period Observed values Forecast Ft Forecast Ft

t yt (α = 0.29) (α = 0.26)
1 17496 17496.00 17496.00
2 18965 17496.00 17496.00
3 12535 17922.01 17877.94
4 14781 16359.78 16488.78
5 16722 15901.93 16044.75
6 15858 16139.75 16220.84
7 16053 16058.04 16126.50
8 14565 16056.58 16107.39
9 15747 15624.02 15706.37
10 – 15659.69 15716.93

This concept is illustrated in Figure 6 which shows a
time series observed for periods 1 to 9 and correspond-
ing forecast values for period 10 by using α = 0.29 and
α = 0.26.
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Fig. 6 Comparison of observed values and forecast values using
α = 0.29 and α = 0.26
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4. RESULTS

The purpose of this paper was to evaluate forecast ac-
curacy by using data of primary production of electricity in
Slovakia. It is therefore aimed to analyse SES forecasting
method. To estimate optimal value of smoothing constant,
forecasts are computed with α = 0.1 to α = 0.9, with in-
crements of 0.01. Three forecasting accuracy techniques,
such as MAE, MAPE, and RMSE are used to select the most
accurate forecast for one year ahead forecast.

5. DISCUSSION/CONCLUSIONS

The exponential smoothing provides an idea that the
most recent observations usually give the best guide to the
future, therefore we want a weighting scheme with de-
creasing weights for older observations. The choice of the
smoothing constant is important in determining the operat-
ing characteristics of exponential smoothing. The smaller
the value of α , the slower the response. Larger values of
α cause the smoothed value to react quickly – not only to
real changes but also random fluctuations [11]. Simple ex-
ponential smoothing model is only good for non-seasonal
patterns with approximately zero trend and for short-term
forecasting because if we extend past the next period, the
forecasted value for that period has to be used as a surro-
gate for the actual demand for any forecast past the next
period. Consequently, there is no ability to add corrective
information (the actual demand) and any error grows expo-
nentially.
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