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ABSTRACT 
A simple analytically solvable model for description of dynamics of the domain wall depinning process from the closure domain 

structure in bistable microwires was proposed. In this model closure domain structure is modelled by a single domain wall located in 
quadratic potential well. Critical parameters of rectangular magnetic field pulse needed to release this wall from the potential well 
were calculated. Theoretical dependence obtained in this way was fitted to experimental data measured on glass-coated Fe77.5B15Si7.5 
microwire. Information about the order of closure domain structure dimension and about the mass of the domain wall, which is 
depinned from the wire end were obtained in this way. 
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1. INTRODUCTION 

Glass-coated amorphous ferromagnetic microwires are 
very promising materials for technical application as well 
as for basic research due to their magnetic properties and 
simple and cheap fabrication [1,2,3].  

A large single Barkhausen jump is typical for 
magnetization reversal process in Fe-based microwires. It 
is a result of strong axial anisotropy due to high positive 
magnetostriction, internal mechanical stresses originating 
from rapid quenching and presence of glass coating. Stray 
field causes that closure domain structures is formed at the 
wire ends. Axial magnetization reversal starts by 
depinning of domain wall from the wire end and 
subsequently the reversal continues by propagation of a 
single domain wall along the wire. Velocity of this 
domain wall can be very high and so this phenomenon can 
be very interesting for technical applications. On the other 
hand the study of a single domain wall dynamics can give 
important information for understanding the process of 
magnetization reversal [4-8] and about dynamic 
characteristics of a single domain wall [9,10]. 

In the presented paper a simple model, which gives 
possibility to obtain information about characteristic 
dimension of closure domain structure as well as about 
dynamic parameters of a domain wall, is described. Model 
is confronted with experiment results.  

2. MODEL 

A simple analytically solvable model is proposed for 
description of single domain wall depinning from the wire 
end. In the framework of this model closure domain 
structure at the wire end, in which the wall is initially 
trapped, is modelled by parabolic potential well. The wall 
is set into motion by applied homogeneous magnetic field 
pulse. If parameters of the field pulse (length and 
magnitude) are large enough, the wall is released from the 
potential well at the wire end. Inertial motion of the wall 
after switching off the pulse is taken into account.  

Free energy G of the wire is given by: 

Hp EEG +=  (1) 

HxMSEconstKxE sHp 0
2 μ2

2
1

−=+= , (2) 

where Ep is potential well energy (Taylor series of 
potential energy around its potential minimum at x = 0 up 
to the third term), EH is contribution of an external field H 
to the wire energy; K is a positive constant and x is a 
displacement of the wall from its equilibrium position, S is 
the area of the wall projection onto a plane perpendicular 
to the wire, μ0 is magnetic constant and Ms is saturation 
magnetization. It is also considered that the potential well 
has characteristic dimension x0. In other words the Eq. (1) 
describes G only in the interval (-x0, x0). For x ≥ x0 we 
assume that Ep ≤ Ep (x0). Free energy as function of the 
wall position x is depicted in Fig. 1. At the figure bottom 
corresponding position of the wire is plotted. 
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Fig. 1  Free energy as function of normalized horizontal 
coordinate x/x0 (x0 – position of right well border, i.e. half-width 

of the well), vertical axis unit equals to the depth of the well. 
Legend: the slope of function EH (see Eq. (2))  

 
As can be seen in Fig. 1 application of external field 
causes that the well depth with respect to its right border 
decreases. If magnitude of the field pulse is high enough 
the wall propagating under the action of this field to the 
right can reach the right well border. However, there is 
some minimum pulse magnitude under which it is not 
possible. If the wall does not rich the right border during 
the pulse there are two possibilities. The first one is the 
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case when at the instant when the pulse is switched off the 
wall velocity is high enough for the wall to travel to the 
right well border due to its inertial motion and the wall 
can be released from the well. If this is not the case the 
wall remains trapped in the well.  

Eq. (1) can be used to derive corresponding force 
acting on the wall: 

( ) KxExF pp −=−= grad  (3) 

HMSEF SHH 02grad µ=−=  (4) 

For a moving wall also damping force has to be taken into 
account 

vF ββ −=  (5) 

where β is damping coefficient (it will be considered as 
constant in this model) and v is wall velocity. The net 
force acting on the wall is equal to Fp +  FH  + Fβ, so using 
Eqs. (3,4,5) the wall equation of motion can be expressed 
as 
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where m is inertial mass of the wall. 
After some rearrangements this equation can be 

written in the form  
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Using substitution 2
0ωhxy −=  equation for damped 

harmonic oscillator is obtained from Eq. (7). So solution 
of Eq. (7) for the domain wall position x and the wall 
velocity v as a functions of time are given by the 
expressions 
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Constants A and φ can be obtained from initial conditions. 

 
Two different situations should be considered: 

I. ω0 > b, for which 22
0 b−= ωω is real and solution of 

Eq. (7) can be expressed by harmonic functions, as written 
in Eqs. (8,9).  

II. ω0 < b, for which 22
0 bi −= ωω . The solution of Eq. 

(7) in this case can be expressed by hyperbolic functions. 
This expression can be obtained directly from Eqs. (8,9) 
substituting  iω (i is the imaginary unit, ω is real) for the 
square root expressions. Formulas are formally the same 
only harmonic functions sin and cos are replaced by 
hyperbolic function sinh and cosh. This holds for all 
relevant expressions in the article, if not mentioned 
otherwise. 

We do not know which kind of solution corresponds to 
our experiment; both possibilities will be discussed in the 
next section, in which the results obtained from the 
theoretical model will be compared with experimental 
data.  

Since the inertial motion of the wall after switching off 
the field pulse is taken into account the Eq. (7) was solved 
for two time intervals:  

1. ct τ,0∈  for which H = Hpc and initial 
conditions at t = 0 are x = 0 and v = 0. The wall reach a 
position xp (xp ≤ x0) with velocity vp at the time τc.  
The obtained solution is 
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2. cc tt ττ +∈ 0, , for which H = 0 and initial 
conditions at the beginning of this interval are      x = xp 
and v = vp. At the end of this time interval the wall just 
reaches the well border x0 with zero velocity.  
Solution obtained for this interval is 
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Using Eqs. (10, 11) we can obtain the lowest possible 
value of the field pulse magnitude Hpc min 

for which the 
wall can be released from the potential well if the length 
of this critical pulse τ0 is long enough. For Hpc min 

in the 
instant of its switching off τ0 the wall just reaches position 
x1 (t = τ0) = x0 with velocity v1 (t = τ0) = 0. (For higher field 
the velocity is higher than zero at the well border, for 
lower field with the same length of pulse the wall never 
reaches the right well border at position x = x0). So, from 
boundary conditions at time τ0:  x1 = x0 and v1 = 0 using 
Eqs (10,11) we obtain in the case:  

 

 
I. (ω0 > b) 
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where hpc min = Hpc min k / m.
 
For the pulse with the length τ 

satisfying condition τ < τ0 there exists some value of the 
field pulse magnitude Hpc > Hpc min for which the wall 
reaches position x0 

with zero velocity. In this case also the 
second solution (inertial motion after the field pulse) has 
to be taken into account.  
 

II. (ω0 < b) 
In this case, equations corresponding to Eqs. (10,11) are 
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Using Eqs. (16,17), the corresponding values of critical 
parameters satisfying the same boundary conditions are 

∞→0τ  (18) 

2
00min ωxhpc =  (19) 

Now it is possible for a given value of hpc to calculate 
the corresponding value of τc (i.e. to obtain function       
hpc = f (τc)) for which the wall just reaches the well border 
at x0.  

Conditions at time t0 after the end of pulse are:  x2 = x0 
and v2 = 0. From these conditions and using Eqs. (12,13) 
we can obtain expressions for t0 and hpc = Hpc k / m as 
function of τc. 

In particular cases we obtain: 
 
I. (ω0 > b) 

( )
( )










−
=

c
b

c
c

t
ωτ

ωτ
ω τ cose

sinarctan1
0  (20) 

( )( )
( )( )

( )
( )

( ) ( )[ ] 2
1

2

2
00

2
1

1

1
2
00

coscoshe2

cose
sinarctanexp

e1

e1

cc

b
c

b
c

i
b

ib

i
b

ib

pc

b

b

x

xh

c

c

c

c

ωττ

ωτ
ωτ

ω
ω

ω

τ

τ

ωτω

ωτω

−




















−

=

=
















−

−
=

−

+−−

−+−

 (21) 

II. (ω0 < b) 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

Glass-coated microwire Fe77.5B15Si7.5 prepared by 
Taylor-Ulitovski method with parameters: length 12 cm, 
diameter of metallic nucleus about 15 μm, thickness of 
glass coating about 9 μm was studied in the experiment 

Experimental setup is shown in Fig 2. Solenoid (So), 
15 cm long can generate homogeneous magnetic field 
along the wire.  The wire end is placed into a narrow coil 
(PC), 2 cm long with diameter of 1mm, which can 
generate local magnetic field pulse that can set the wall 
into motion. At some distance from this wire end a pick 
up coil (PuC), 1 cm long with diameter of 1mm, is located 
and gives possibility to obtain information about magnetic 
state of the wire. Detailed description of the experiment is 
given in [11]. 

 
 PuC PC So Magnetic 

wire 

 

Fig. 2  Schematic view of wire location in the experimental set 
up. So – solenoid, PC – pulse coil, PuC – pick up coil 

The dependence of critical pulse length vs. critical 
pulse magnitude obtained in experiment is shown in     
Fig. 3. As can be expected critical pulse magnitude 
increases with decreasing of critical length of the pulse. 
Experimental results can be analysed using the simple 
theoretical model presented in the previous section.   

 

 

Fig. 3  Dependence of critical pulse parameters magnitude Hpc 
vs. length τc  for wall depinning 

This model gives possibility to obtain parameters b and ω 
from experimental data using fitting procedure. As can be 
seen in Fig. 3 the value of minimum magnitude of the 
field pulse is Hpc min ≈ 70 A/m. For fitting we used 
dependence Hpc min / Hpc = hpc min / hpc. Fitting procedure 
for the case I (ω0 > b) was not successful (not 
convergent). For the case II (ω0 < b) fitting was successful 
and it was possible to obtain fitting parameters. The fitting 
function in this case was obtained using Eqs. (12,23) 
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Result of the fitting procedure is shown in Fig. 4.  

 

Fig. 4  Experimental dependence (points) and fitting curve      
hpc min / hpc as function of τc 

As can be seen the model curve in Fig. 4 is in good 
agreement with the experimental data. The obtained 
values for fitting parameters b and ω are 

1-
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In the discussed case II 22
0
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From these fitting parameters it is possible to obtain 
information about domain wall mass and about typical 
dimension of potential well.  

To obtain the mass of domain wall we express the wall 
mobility as a function of the wall mass. In the simplest 
model of the wall propagating under action of constant 
homogeneous magnetic field with constant velocity the 
equation of motion Eq. (7) has a form 2bv = h. The 
velocity as function of external field v = λH, where λ is 
mobility, can be measured. Using these equations the 
expression for wall mobility as function of domain wall 
mass is  

0

0

bm
M sµ

λ =  (27) 

where 0 /m m S= . Using the expressions for parameters 
defined in Eqs. (7,19,27), the following equations for the 
wall mass and the well half-width can be obtained 

λ
µ

b
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m s0
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0
2

pcHbx
ω
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Using the following experimentally obtained values of 
parameters Hpcmin ≈ 70 A/m (see Fig. 3), λ ≈ 3 m2A-1s-1, 
µ0Ms ≈ 1.56 T [6], Eqs. (25,26) and Eqs. (28,29), the 
characteristic values of m0 and x0 were calculated. 

kg1035,1 6
0

−=m  (30) 

mm23.20 =x  (31) 

These values are in qualitative agreement with known 
experimental results [9,10,2]. 

4. CONCLUSIONS 

A simple analytically solvable model for description of 
dynamics of the domain wall depinning process from the 
closure domain structure in bistable microwires was 
proposed. In the model the closure domain structure is 
modelled by quadratic potential well. A comparison with 
results of experiment, in which critical parameters of the 
field pulse for which the wall is just released from the 
closure domain structure, gave possibility to obtain 
important information about the order of closure domain 
structure dimension and about the mass of the domain 
wall which is depinned from the wire end.  
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