
70 Acta Electrotechnica et Informatica, Vol. 13, No. 4, 2013, 70–78, DOI: 10.15546/aeei-2013-0052

PROPERTIES OF INFERENCE SYSTEMS FOR FLOYD-HOARE LOGIC WITH
PARTIAL PREDICATES

Mykola NIKITCHENKO, Andrii KRYVOLAP
∗Department of Theory and Technology of Programming, Taras Shevchenko National University of Kyiv,

64/13, Volodymyrska Street, Kyiv, Ukraine, 01601, tel. +380 442 393 333,
e-mail: nikitchenko@unicyb.kiev.ua, krivolapa@gmail.com

ABSTRACT
The main object of research in this paper is extension of Floyd-Hoare logic on partial pre- and postconditions. Composition-

nominative approach is used to define this extension. According to this approach semantics of extended logic is represented by algebras
of partial quasiary mappings. Operations of these algebras are called compositions. Semantics of Floyd-Hoare triples (assertions)
is formalized with the help of a special monotone composition. Preimage predicate transformer composition – a counterpart of the
weakest precondition – is also defined. Sound modifications of inference systems with added constraints are presented. Properties of
extensional and intensional completeness of such inference systems are studied.
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1. INTRODUCTION

Floyd-Hoare logic [1, 2] is one of the formal systems
used for reasoning about program correctness. The basic
notion of this logic is Floyd-Hoare triple (assertion). It con-
sists of a precondition, a program, and a postcondition. The
idea of such triples stems from the following requirement
for programs: when the input meets the precondition the
program should return the output that meets the postcon-
dition (if the program terminates). Reasoning about pro-
gram properties in terms of Floyd-Hoare triples is conve-
nient and natural. Predicates in classical Floyd-Hoare logic
are assumed to be total. In general case predicates that are
used to describe the needed properties of programs can be
partial. In this case additional techniques are required to
transform partial predicates to total. Such transformations
complicate the use of Floyd-Hoare logic. This explains the
demand for extension of Floyd-Hoare logic on partial pred-
icates. For such extensions the results obtained for total
predicates should remain sound.

Special Floyd-Hoare composition is used to represent
semantics of assertions. This composition has three argu-
ments: a predicate as a precondition, a program function,
and a predicate as a postcondition. The output is a predi-
cate. The classical definition of Floyd-Hoare triple validity
leads to Floyd-Hoare composition that is not monotone [3].
Monotonicity is one of the key properties for reasoning
about programs. In particular, monotonicity is important
for acyclic (loop-free) programs used for approximations
of programs with cycles. This explains the need of a new
definition of Floyd-Hoare composition for the extension of
Floyd-Hoare logic on partial predicates. It should not only
be monotone, but also converge to the classical definition if
predicates are total. Such definition was presented in [3].

One of the possible ways to apply Floyd-Hoare logic
in program verification is to develop an inference system
depending on the language under consideration. It was
shown [3] that classical inference system for the simple
imperative language WHILE [4] is neither sound nor com-
plete if extended on partial predicates as it is. But sound-

ness and completeness are the main properties of an infer-
ence system that justify its applicability. With an infer-
ence system that is unsound there are no guarantees that
derived assertions are valid. In the case of incomplete in-
ference system, there is no derivation for some of the valid
assertions. In classical Floyd-Hoare logic with total pred-
icates the abovementioned inference system for the lan-
guage WHILE is sound and complete (in the extensional
approach) [4]. Completeness in the extensional approach
means that pre- and postconditions may be arbitrary pred-
icates. In the intensional approach pre- and postconditions
additionally should be presented by formulas of a given
language. The problem with soundness and completeness
arises when partial predicates are taken into consideration.
In order to adopt inference system for the language WHILE
in classical Floyd-Hoare logic to the extension of the logic
on partial predicates maintaining soundness of the system,
additional constraints on inference rules should be intro-
duced that correspond to the new definition of validity of
Floyd-Hoare assertions. When a sound inference system is
introduced, its extensional completeness is the subject of
further investigation. For this purpose a special composi-
tion is additionally defined. Inspired by the weakest pred-
icate transformer, introduced by Dijkstra, this composition
is called preimage predicate transformer composition.

To give the answer to the question, whether introduced
systems with added constraints are intensionally complete,
first only acyclic programs are considered. Acyclic pro-
grams are treated as approximations of the programs with
cycles. For acyclic programs, predicates obtained with the
preimage predicate transformer composition can be trans-
formed to formulas of first-order quasiary predicate logic,
thus the validity problem in extended Floyd-Hoare logic
can be reduced first to the validity problem in first-order
quasiary predicate logic, then to the validity problem in
classical predicate logic [6].

In this paper we continue our research of Floyd-Hoare
logics with partial predicates initiated in [3], concentrating
on such properties of inference systems as their extensional
and intensional completeness. The notions not defined here
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are understood in the sense of [3].

2. SEMANTICS OF FLOYD-HOARE LOGIC WITH
PARTIAL PREDICATES

We will use semantic-syntactic approach to define an
extended logic. It means first that algebras of partial map-
ping will be specified to present the semantics of the ex-
tended Floyd-Hoare logic. Then the syntax or the language
of the extended logic will result from the definition of se-
mantics and will be simply the set of terms of introduced
algebras. That is why for simplicity’s sake in this paper
we will use the same notation for predicates and terms that
represent predicates.

Composition-nominative approach [5] is used for defin-
ing semantics. All data are treated as nominative sets (nom-
inative data in general case). Nominative sets are defined as
partial mappings from a set of names (variables) to a set of
basic values. Such mappings do not have fixed arity and
are called quasiary. Nominative sets can be also treated
as states of program variables. More complex case of hi-
erarchical nominative data is not considered in this paper
and is a subject of separate investigation. Compositionality
means that complex functions and predicates are built from
simpler ones using compositions. Compositions are the op-
erations of respective algebras used in defining semantics.
Also all mappings are partial (can be undefined on some
data).

We start with definitions of the nominative sets,
quasiary predicates and functions.

The arrows
p−→ and t−→ specify the sets of partial and

total mappings respectively. Also for an arbitrary partial
mapping f : D

p−→D′:

• f (d) ↓ is used to denote that f is defined on data
d ∈ D;

• f (d) ↓= d′ is used to denote that f is defined on data
d ∈ D with a value d′ ∈ D′;

• f (d) ↑ is used to denote that f is undefined on data
d ∈ D;

• f [S] = { f (d) | f (d) ↓,d ∈ S} is used to denote the
image of S⊆ D under f ;

• f−1[S′] = {d | f (d) ↓, f (d) ∈ S′} is used to denote
the preimage of S′ ⊆ D′ under f .

Let V be a set of names (variables). Let A be a set of ba-
sic values. Then the class V A of nominative sets is defined
as the class of all partial mappings from the set of names V
to the set of basic values A. Thus,

V A =V
p−→A

Set-like notation for nominative sets is more conve-
nient in some cases. We will use the following notation:
[vi 7→ ai | i ∈ I] to describe a nominative set where variables
vi have values ai respectively. Thus, vi 7→ ai ∈n d denotes
that d(vi) ↓= ai or in other words that value of the variable
vi in nominative set d is ai (i ∈ I).

One of the main operations is overriding operation. It is
a binary total operation that joins two nominative sets tak-
ing into account names of the variables, and is defined in
the following way:

d1∇d2 = [v 7→ a | v 7→ a ∈n d2∨ (v 7→ a ∈n d1∧
∧¬∃a′(v 7→ a′ ∈n d2))]

(1)

Informally this means that all name-value pairs from d2
and those pairs from d1 whose names are not defined in d2
are present in the resulting nominative set.

Let Bool = {F,T} be the set of Boolean values. Let
PrV,A = V A

p−→Bool be the set of all partial predicates over
V A. Such predicates are called partial quasiary predicates.
They represent different conditions in programs.

Let FnV,A = V A
p−→A be the set of all partial functions

from V A to A. Such functions are called partial ordinary
quasiary functions. They represent different expressions in
programs. The term ‘ordinary’ is used to distinguish ordi-
nary functions from program functions (bi-quasiary func-
tions) that represent programs. This term will usually be
omitted.

Let FPrgV,A = V A
p−→V A be the set of all partial func-

tions from V A to V A. Such functions are called bi-quasiary
functions. They represent semantics of programs.

Algebras with three presented sets (partial quasiary
predicates, partial ordinary quasiary functions, and partial
bi-quasiary functions) as algebra carriers (sorts) can be used
to define semantics of the logics. We distinguish three log-
ics of different levels of abstraction:

• pure predicate logics based on algebras with one sort
PrV,A of quasiary predicates;

• quasiary predicate-function logics based on algebras
with two sorts: PrV,A of quasiary predicates and
FnV,A of quasiary functions;

• quasiary program logics based on algebras with three
sorts: PrV,A of quasiary predicates; FnV,A of quasiary
functions, and FPrgV,A of bi-quasiary functions.

At the level of pure predicate logics only predi-
cates are taken into consideration. Basic compositions
represent basic logic connectives such as disjunction
∨ : PrV,A×PrV,A t−→PrV,A and negation ¬ : PrV,A t−→PrV,A.
Also parametric quantification ∃x : PrV,A t−→PrV,A and
renomination Rv̄

x̄ : PrV,A t−→PrV,A compositions [5,6] should
be included to the basic compositions (here v̄ stands for
v1, . . . ,vn and x̄ for x1, . . . ,xn). Renomination is a spe-
cific new composition for quasiary predicates. Informally,
while evaluating Rv̄

x̄(p)(d) we construct a new nominative
set changing in d values of names from v̄ with values of
corresponding names from x̄; then p is evaluated on the ob-
tained nominative set.

In quasiary predicate-function logics we add or-
dinary quasiary functions to the scope. Basic com-
positions of the pure predicate logics are extended
with parametric compositions of superposition for
functions Sx̄

F : (FnV,A)n+1 t−→FnV,A and predicates
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Sx̄
P : PrV,A×(FnV,A)n t−→PrV,A [5,6]. Another basic compo-

sition that has to be added is null-ary parametric composi-
tion of denomination ′x : FnV,A. Renomination composition
can be given as a combination of superposition and denom-
ination compositions, thus Rv̄

x̄(p) = Sv̄
P(p,′ x1, . . . ,

′ xn). So,
renomination compositions can be omitted.

When bi-quasiary functions are taken into consideration
on the level of program logics there are many possible ways
to define compositions that provide means to construct
complex programs from simpler ones. We have chosen the
following compositions of the language WHILE to include
them as basic to the logics of program level: the paramet-
ric assignment composition ASx : FnV,A t−→FPrgV,A, which
corresponds to assignment operator := ; identity composi-
tion (function) id : FPrgV,A, which corresponds to the skip
operator of WHILE language; composition of sequential
execution • : FPrgV,A × FPrgV,A t−→FPrgV,A; conditional
composition IF : PrV,A × FPrgV,A × FPrgV,A t−→FPrgV,A,
which corresponds to the operator if then else; cyclic com-
position WH : PrV,A × FPrgV,A t−→FPrgV,A, which corre-
sponds to the operator while do.

We also need compositions that could provide possibil-
ity to construct predicates describing some properties of
programs. The main composition of this kind is Floyd-
Hoare composition FH : PrV,A×FPrgV,A×PrV,A t−→PrV,A.
It takes precondition, postcondition, and program as in-
puts and yields a predicate that represents respective Floyd-
Hoare assertion.

Now we will give formal definitions of the composi-
tions of these algebras. In the following definitions d ∈ V A,
f ,g1, . . . ,gn ∈ FnV,A, p,q,r ∈ PrV,A, x̄ = (x1, . . . ,xn) ∈ V n,
x ∈V , pr1, pr2, pr ∈ FPrgV,A.

(p∨q)(d) =

 T, if p(d) ↓= T or q(d) ↓= T,
F, if p(d) ↓= F and q(d) ↓= F,
undefined in other cases.

(2)

(¬p)(d) =

 T, if p(d) ↓= F,
F, if p(d) ↓= T,
undefined in other cases.

(3)

(∃xp)(d) =

 T, if p(d∇x 7→ a) ↓= T for some a ∈ A,
F, if p(d∇x 7→ a) ↓= F for each a ∈ A,
undefined in other cases.

(4)

Sx̄
P(p,g1, . . . ,gn)(d) =
= p(d∇[x1 7→ g1(d), . . . ,xn 7→ gn(d)])

(5)

Sx̄
F( f ,g1, . . . ,gn)(d) =
= f (d∇[x1 7→ g1(d), . . . ,xn 7→ gn(d)])

(6)

′x(d) = d(x) (7)

ASx( f )(d) = d∇[x 7→ f (d)] (8)

id(d) = d (9)

pr1 • pr2(d) = pr2(pr1(d)) (10)

IF(r, pr1, pr2)(d)=

 pr1(d), if r(d) ↓= T and pr1(d) ↓,
pr2(d), if r(d) ↓= F and pr2(d) ↓,
undefined in other cases.

(11)

WH(r, pr)(d) = dn, if r(d) ↓= T, f (d) ↓= d1,
r(d1) ↓= T, f (d1) ↓= d2, . . . , f (dn−1) ↓= dn,r(dn) ↓= F

(12)

FH(p, pr,q)(d)=

 T, if p(d) ↓= F or q(pr(d)) ↓= T,
F, if p(d) ↓= T and q(pr(d)) ↓= F,
undefined in other cases.

(13)

Floyd-Hoare composition was proved to be not only
monotone but also continuous [3]. Formal definition of
monotonicity of Floyd-Hoare composition can be given as
follows:

p⊆ p′,q⊆ q′, pr ⊆ pr′⇒
⇒ FH(p, pr,q)⊆ FH(p′, pr′,q′) (14)

Inclusion relation ⊆ is understood here as inclusion of
the graphs of the functions or predicates. Monotonicity of
other compositions can be defined in the same manner. Def-
inition of continuity is omitted in this paper. Defined pro-
gram algebras form semantic basis of the Floyd-Hoare logic
extension on partial predicates.

Thus, the following basic algebras (for different A) rep-
resent semantics of basic program logics:

BA(V,A) =< PrV,A,FnV,A,FPrgV,A;∨,¬,∃x,Sx̄
P,S

x̄
F ,

′x,ASx, id,•, IF,WH,FH >

Such basic program logics are used to formulate pro-
gram assertions but they are expressively weak to spec-
ify proofs of such properties. Therefore we should define
more expressive algebras, and, consequently, more expres-
sive languages. These algebras will be used to study com-
pleteness of the constructed logics. The expressive power
of such algebras is specified by their compositions.

First, we introduce a new composition which is inspired
by the weakest precondition introduced by Dijkstra [7].
The main idea of the weakest precondition predicate trans-
former was to define a predicate that would be a valid pre-
condition, when two other arguments of Floyd-Hoare as-
sertion are given. It is obvious that there are different pre-
conditions that stem from this idea, but not all of them are
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of a practical importance. That is why only the weakest
precondition is taken into consideration. Usually “weak-
est” is specified in terms of logical consequence. But at
the same time for partial predicates different definitions of
logical consequence can be applied to define the notion of
weakest precondition. Therefore we will not put much em-
phasis on these notions but specify the required composi-
tion as preimage predicate transformer composition (PC)
that makes the assertions of the form {PC(pr,q)}pr{q} to
be valid for every pr ∈ FPrgV,A and every q ∈ PrV,A.

This binary composition

PC : FPrgV,A×PrV,A t−→PrV,A

is simply referred to as preimage composition and is de-
fined by the following formula (q∈ PrV,A,pr ∈ FPrgV,A and
d ∈ V A):

PC(pr,q)(d) =

 T, if pr(d) ↓ and q(pr(d)) ↓= T,
F, if pr(d) ↓ and q(pr(d)) ↓= F,
undefined in other cases.

(15)

It is easy to see that that this composition is Glushkov
prediction operation (sequential execution of a function and
a predicate) [8] and that it is also related (in the determinis-
tic case) to the possibility/necessity operations of dynamic
logic [9]. We called this composition (defined for partial
predicates) as preimage predicate transformer composition
in order to relate it to the weakest precondition predicate
transformer.

The following equality can be easily proven using defi-
nitions of the preimage composition and Floyd-Hoare com-
position: FH(p, pr,q) = p→ PC(pr,q).

Next, we define a unary composition T R of predicate
restriction on its truth domain (composition of deleting the
falsity domain), defined by the formula

T R(q)(d) =
{

T, if q(d) ↓= T,
undefined in other cases. (16)

At last, we specify a nowhere defined predicate⊥P such
that ⊥P(d) is undefined for any d ∈ V A.

Thus, we obtain the following extended algebras (for
different A) used to present more expressive assertions:

EA(V,A) =< PrV,A,FnV,A,FPrgV,A;∨,¬,∃x,Sx̄
P,S

x̄
F ,

′x,ASx, id,•, IF,WH,FH,PC, T R, ⊥P >

Logics constructed over such algebras are called ex-
tended logics.

Now we define a syntactical component of the con-
structed logics: their languages and inference systems.

3. INFERENCE SYSTEMS FOR FLOYD-HOARE
LOGIC WITH PARTIAL PREDICATES

The language of logic as well as interpretation mappings
for formulas emerge naturally from presented algebras (a
semantic component of logics).

For a given sets of function symbols Fs, predicate sym-
bols Ps, and variables V the sets of formulas Fr(Ps,Fs,V )
and terms Tr(Ps,Fs,V ) are inductively defined as follows:

• if P ∈ Ps then P ∈ Fr(Ps,Fs,V );

• if Φ,Ψ ∈ Fr(Ps,Fs,V ) then Φ∨Ψ,Φ∧Ψ,Φ→Ψ,
¬Φ ∈ Fr(Ps,Fs,V );

• if Φ ∈ Fr(Ps,Fs,V ) and v ∈ V then
∃vΦ ∈ Fr(Ps,Fs,V );

• if P ∈ Ps, t1, . . . , tn ∈ Tr(Ps,Fs,V ) and
v1, . . . ,vn ∈ V are distinct variables then
Sv1,...,vn

P (P, t1, . . . , tn) ∈ Fr(Ps,Fs,V );

• if F ∈ Fs then F ∈ Tr(Ps,Fs,V ) ;

• if v ∈V then ′v ∈ Tr(Ps,Fs,V );

• if F ∈ Fs, t1, . . . , tn ∈ Tr(Ps,Fs,V ) and
v1, . . . ,vn ∈ V are distinct variables then
Sv1,...,vn

F (F, t1, . . . , tn) ∈ Tr(Ps,Fs,V ).

Formulas and terms specify quasiary predicates and ordi-
nary functions respectively.

Assertions are expressions of the form {p}pr{q} (or
FH(p, pr,q)) where p,q ∈ Fr(Ps,Fs,V ), and pr is a pro-
gram.

Let us recall that in this paper we use the same nota-
tion for predicates and formulas. This is explained by the
fact that for extensional completeness any predicate can be
considered as pre- or postcondition.

A formula interpretation mapping is defined by an alge-
bra EA(V,A) and interpretations of function and predicate
symbols in EA(V,A). We denote an arbitrary interpretation
as J [3].

We will use the following notations to give the defini-
tion of validity of the formula and of logical consequence:

• pT = {d | p(d) ↓= T} to denote the truth domain of
predicate p;

• pF = {d | p(d) ↓= F} to denote the falsity domain
of predicate p;

• pJ to denote the predicate that corresponds to the for-
mula p under the interpretation J. For simplicity’s
sake we often omit J when it is clear from the con-
text.

Validity of the formulas is considered as irrefutability. In
other words, for every interpretation J the falsity domain of
the respective predicate is empty:

|= p⇔ pF
J = /0 for every J (17)

Having definition of validity we will define p |= q as
|= p→ q. Also we need two special logical consequence
relations. They will be used in specifying constraints of the
inference systems:

• p |=T q⇔ pT
J ⊆ qT

J for every interpretation J;

• p |=F q⇔ qF
J ⊆ pF

J for every interpretation J.
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These definitions also give examples that there can be
more than one adequate logical consequence relation.

More detailed explanations are given in [3].
In order to apply a logic for verification, one should de-

fine an inference system.
The inference system for the language WHILE that was

presented for classical Floyd-Hoare logic with total pred-
icates [4] is not sound for the case of partial predicates.
Therefore additional constraints have to be added to achieve
a sound inference system. It could be done in several ways
thus yielding different inference systems. Validity and com-
pleteness of such inference systems should be studied.

To denote that a formula p is derived in an inference sys-
tem IS the notation `IS p is used. The subscript is omitted
when it is clear from the context.

Inference system is said to be sound iff every derived
formula is valid, formally ` p⇒|= p for every formula p.

Inference system is said to be complete iff every valid
formula can be derived, formally |= p⇒` p for every for-
mula p.

Completeness can be treated in extensional or inten-
tional approaches. In the extensional approach pre- and
postconditions can be arbitrary predicates. In the inten-
tional approach pre- and postconditions should be presented
by formulas of a given language.

Classical inference system CI for the language WHILE
[4] (presented here in semantic form) is the following:

R AS {Sx
P(p,h)}ASx(h){p}

R SKIP {p} id {p}

R SEQ {p} f {q},{q} g {r}
{p} f•g {r}

R IF {r∧p} f {q},{¬r∧p}g {q}
{p} IF(r, f ,g) {q}

R WH {r∧p} f {p}
{p}WH(r, f ) {¬r∧p}

R CONS {p′} f {q′}
{p} f {q} , p→ p′,q′→ q

Such inference system is sound and extensionally com-
plete for total predicates, but for partial predicates it is not
sound. Rules R SEQ, R WH, and R CONS do not guarantee
a valid derivation from valid premises. One of the solutions
of the problem is introduction of additional constraints for
the mentioned rules [3].

Inference system AC with added constraints is presented
below:

R AS’ {Sx
P(p,h)} ASx(h) {p}

R SKIP’ {p} id {p}

R SEQ’ {p} f {q},{q} g {r}
{p} f•g {r} , p |= PC( f •g,r)

R IF’ {r∧p} f {q},{¬r∧p}g {q}
{p} IF(r, f ,g) {q}

R WH’ {r∧p} f {p}
{p}WH(r, f ) {¬r∧p} , p |= PC(WH(r, f ),¬r∧ p)

R CONS’ {p′} f {q′}
{p} f {q} , p |=T p′,q′ |=F q

Inference system AC with added constraints is sound
but constraints are rather complicated. Therefore simpli-
fications of constraints are required. One of such simpli-
fications stems from the following observation for proper-
ties of assertion validity for total predicates. In this case
|= {p} f{q} implies p |=T PC( f ,q) and p |=F PC( f ,q) [3].
This observation permits to consider a special class of asser-
tions satisfying only the property p |=T PC( f ,q). Such as-
sertions are called T-increasing assertions because the truth
domain of p is included in the preimage of the truth domain
of q under f. Note that for partial predicates p |=T PC( f ,q)
implies |= {p} f{q}.

The dual class of F-decreasing assertions consists of as-
sertions having the property p |=F PC( f ,q).

It is important to admit that all rules of the classical in-
ference system CI except the rule R CONS preserve the
class of T-increasing assertions. Moreover, this property
grants satisfaction of the constraints for rules R SEQ’ and
R WH’ of the inference system AC. Thus, constraints can
be omitted if we modify the rule R CONS. One of the in-
ference systems that can be obtained in such manner is the
following [3]:

R AS {Sx
P(p,h)}ASx(h){p}

R SKIP {p} id {p}

R SEQ {p} f {q},{q} g {r}
{p} f•g {r}

R IF {r∧p} f {q},{¬r∧p}g {q}
{p} IF(r, f ,g) {q}

R WH {r∧p} f {p}
{p}WH(r, f ) {¬r∧p}

R CONS” {p′} f {q′}
{p} f {q} , p |=T p′,q′ |=T q

This inference system is called a T-increasing system
and is denoted by TI. There is another sound inference sys-
tem based on the property p |=F PC( f ,q) that is dual to the
above mentioned system TI.

Now we consider properties of the constructed inference
systems concentrating on their completeness.

4. EXTENSIONAL AND INTENSIONAL COM-
PLETENESS OF INFERENCE SYSTEMS

Let us start with the inference system TI which has con-
straints only for rule R CONS”.

First, we should admit that there are Floyd-Hoare as-
sertions that are valid but do not belong to the class of T-
increasing assertions. For example, consider a predicate
p that is true on every data, and a predicate q that is un-
defined on every data. The triple {p} id {q} is valid, but
p 6|=T PC(id,q). This example demonstrates that the infer-
ence system TI is incomplete for the general class of valid
assertions. Still, for T-increasing assertions the following
result will be proved.

Theorem 4.1. The inference system TI is extensionally
complete for the class of T-increasing assertions.

To prove this theorem we will first prove
`T I {PC(pr,q)} pr {q} for every program pr and every
predicate q by induction over the program structure.

Base of the induction.
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For `T I {PC(ASx(h),q)} ASx(h) {q} we have to show
that PC(ASx(h),q) = Sx

P(q,h). Thus the rule R AS will give
the required result.

To prove this equality we use the definition of preimage
composition

PC(ASx(h),q)(d) =

 T, if q(ASx(h)(d)) ↓= T,
F, if q(ASx(h)(d)) ↓= F,
undefined in other cases.

and by the definition of assignment composition we obtain

PC(ASx(h),q)(d) =

 T, if q(d∇[x 7→ h(d)]) ↓= T,
F, if q(d∇[x 7→ h(d)]) ↓= F,
undefined in other cases.

This gives PC(ASx(h),q)(d) = q(d∇[x 7→ h(d)]). But
also by the definition of superposition composition
Sx

P(q,h) = q(d∇[x 7→ h(d)]). Hence, we obtain

PC(ASx(h),q) = Sx
P(q,h).

Therefore `T I {PC(ASx(h),q)} ASx(h) {q}.
For `T I {PC(id,q)} id {q} the proof is obvious. If we

look at the definition of preimage composition, it is not
hard to check that PC(id,q) = q for an arbitrary predicate
q. Thus, `T I {q} id {q} follows by rule R SKIP.

Inductive step.
Consider the case of sequential execution. We need to

prove that `T I {PC(pr1 • pr2,q)} pr1 • pr2 {q} given

`T I {PC(pr2,q)} pr2 {q}

and

`T I {PC(pr1,PC(pr2,q))} pr1 {PC(pr2,q)}.

Applying the rule R SEQ to both premises we will ob-
tain `T I {PC(pr1,PC(pr2,q))} pr1 • pr2 {q}.

If we show that

PC(pr1,PC(pr2,q))T = PC(pr1 • pr2,q)T

then

PC(pr1 • pr2,q) |=T PC(pr1,PC(pr2,q)).

After that we can apply the rule R CONS” to
`T I {PC(pr1,PC(pr2,q))} pr1• pr2 {q} and get the follow-
ing assertion proved:

`T I {PC(pr1 • pr2,q)} pr1 • pr2 {q}.

If d ∈ PC(pr1,PC(pr2,q))T then pr1(d) ↓ and
PC(pr2,q)(pr1(d)) ↓= T .

Thus, pr2(pr1(d)) ↓ and q(pr2(pr1(d))) ↓= T . Using
the definition of sequential execution composition this can
be rewritten as pr1 • pr2(d) ↓ and q(pr1 • pr2(d)) ↓= T .
Hence d ∈ PC(pr1 • pr2,q)T .

If d ∈ PC(pr1 • pr2,q)T then pr1 • pr2(d) ↓
and q(pr1 • pr2(d)) ↓= T , or pr2(pr1(d)) ↓ and
q(pr2(pr1(d))) ↓= T .

Hence, PC(pr2,q)(pr1(d)) ↓= T and pr1(d) ↓. Thus,
d ∈ PC(pr1,PC(pr2,q))T .

We have shown that

PC(pr1,PC(pr2,q))T = PC(pr1 • pr2,q)T ,

hence,

`T I {PC(pr1 • pr2,q)} pr1 • pr2 {q}.

In the case of the conditional composition,
` T I{PC(IF(r, pr1, pr2),q)} IF(r, pr1, pr2) {q} have
to be proved, given `T I {PC(pr1,q)} pr1 {q}
and `T I {PC(pr2,q)} pr2 {q}. If we show
that r ∧ PC(IF(r, pr1, pr2),q) |=T PC(pr1,q) to-
gether with ¬r ∧ PC(IF(r, pr1, pr2),q) |=T PC(pr2,q),
then using R CONS” rule we obtain the follow-
ing `T I {r ∧ PC(IF(r, pr1, pr2),q)} pr1 {q} and also
`T I {¬r∧PC(IF(r, pr1, pr2),q)} pr2 {q}. Using R IF with
these derived assertions as premises we will get the needed
result, which means

`T I {PC(IF(r, pr1, pr2),q)} IF(r, pr1, pr2) {q}.

Let us prove

¬r∧PC(IF(r, pr1, pr2),q) |=T PC(pr2,q).

If d ∈ (¬r ∧ PC(IF(r, pr1, pr2),q))T then
r(d) ↓= F, IF(r, pr1, pr2)(d) ↓, together with
q(IF(r, pr1, pr2)(d)) ↓= T.

Since r(d) ↓= F and IF(r, pr1, pr2)(d) ↓ it follows
that IF(r, pr1, pr2)(d) ↓= pr2(d). Thus pr2(d) ↓ and
q(pr2(d)) ↓= T . In other words, PC(pr2,q)(d) ↓= T ,
which means d ∈ PC(pr2,q)T . Thus,

¬r∧PC(IF(r, pr1, pr2),q) |=T PC(pr2,q).

The property r ∧ PC(IF(r, pr1, pr2),q) |=T PC(pr1,q)
can be proved in the same way. Having both premises
proved we obtain the needed result

`T I {PC(IF(r, pr1, pr2),q)} IF(r, pr1, pr2) {q}.

Let us show that `T I {PC(WH(r, pr),q)}WH(r, pr){q}
for every pr, q, r. Let p = PC(WH(r, pr),q). By in-
duction we have that `T I {PC(pr, p)} pr {p}. If we
show that r ∧ p |=T PC(pr, p) then by R CONS” we
will have `T I {r ∧ p} pr {p}. After that by R WH,
we get `T I {p} WH(r, pr) {¬r ∧ p}. If ¬r ∧ p |=T q
then `T I {p} WH(r, pr) {q} can be obtained by the rule
R CONS”, what was required to be proved.

Let us first prove ¬r ∧ p |=T q. For an arbitrary d if
(¬r∧ p)(d) ↓= T then r(d) ↓=F . Thus WH(r, pr) (d) ↓= d
and q(d) ↓= q(WH(r, pr) (d)). Also from p(d) ↓= T and
p = PC(WH(r, pr),q) we have q(WH(r, pr) (d)) ↓= T .
Hence q(d) ↓= T and ¬r∧ p |=T q.

To prove r ∧ p |=T PC(pr, p) we need to re-
call that p = PC(WH(r, pr),q). If (r ∧ p)(d) ↓= T
then p(d) ↓= T which gives q(WH(r, pr)(d)) ↓= T .
Together with r(d) ↓= T the definition of
cyclic composition gives that there exists such
d′ = pr(d) that WH(r, pr)(d′) ↓= WH(r, pr)(d)
and q(WH(r, pr)(d′)) ↓= T . By the defi-
nition of preimage composition we have that
p(d′) = PC(WH(r, pr),q)(d′) ↓= T . Since p(d′) ↓= T and
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d′ = pr(d) we have p(pr(d)) ↓= T and PC(pr, p)(d) ↓= T .
Hence, r∧ p |=T PC(pr, p).

We proved both needed logical consequences thus
`T I {PC(WH(r, pr),q)}WH(r, pr) {q}.

We have considered all compositions, so,
`T I {PC(pr,q)} pr {q} for every pr and q.

Based on this property we will prove `T I {q} pr {q}
for any T-increasing assertion {p} pr {q}. To do this
we consider predicate q′′ = T R(q). It can be shown that
q′′ |=T q since q′′T = qT . Also p |=T PC(pr,q′′), because
p |=T PC(pr,q) and q′′T = qT . Previously it was proven
that `T I {PC(pr,q′′)} pr {q′′}. By R CONS” we obtain
`T I {p} pr {q}. Thus, the inference system TI is exten-
sionally complete for the class of T-increasing assertions.

Now let us consider completeness of the inference sys-
tem AC with added constraints.

Theorem 4.2. The inference system AC is extensionally
complete for the general class of assertions.

To prove the theorem we will first prove by induction
over the program structure the following property:
`AC {PC(pr,q)} pr {q} for every pr and q.
Base of the induction.
Rules R AS’ and R AS are identical as well as rules

R SKIP’ and R SKIP. Thus, the proof is similar to the
proof for the previous inference system TI and is omit-
ted here. So, `AC {PC(ASx(h),q)} ASx(h) {q} and
`AC {PC(id,q)} id {q}.

Inductive step.
Rules R IF and R IF’ are identical. If q = q′, rules

R CONS’ and R CONS” are also identical. Thus the proof
for the rule R IF’ is similar to the proof for the rule R IF
for the previous inference system and is also omitted. This
gives us

`AC {PC(IF(r, pr1, pr2),q)} IF(r, pr1, pr2) {q}

Rules R SEQ and R SEQ’ differ only in the added con-
straint, but with PC(pr1,PC(pr2,q))T = PC(pr1 • pr2,q)T

that was proven earlier, we have needed property
PC(pr1,PC(pr2,q)) |= PC(pr1 • pr2,q) and the con-
strain is satisfied given `AC {PC(pr2,q)} pr2 {q}
and `AC {PC(pr1,PC(pr2,q))} pr1 {PC(pr2,q)} as
premises. Rest of the proof for this rule is similar
to the proof for rule R SEQ and is omitted. Hence,
`AC {PC(pr1 • pr2,q)} pr1 • pr2 {q}.

Let us show that `AC {PC(WH(r, pr),q)}WH(r, pr) {q}
for every pr, q, r. Let p = PC(WH(r, pr),q) . Consider the
following predicate:

p′(d) =
{

T, if p(d) ↓= T,
F, otherwise.

We have that `AC {PC(pr, p′)} pr {p′}. If we show
that r ∧ p′ |=T PC(pr, p′) then by R CONS’ we will
have `AC {r ∧ p′} pr {p′}. After that by R WH’, if
p′ |= PC(WH(r, pr),¬r∧ p′), we get

`AC {p′}WH(r, pr) {¬r∧ p′}.

If ¬r∧ p′ |=F q and p |=T p′ then by the rule R CONS’
`AC {p}WH(r, pr) {q} can be obtained, what was needed
to be proved.

Proof of the p |=T p′ is obvious by the definition of p′.
To prove r ∧ p′ |=T PC(pr, p′) we need to re-

call that p = PC(WH(r, pr),q) and pT = p′T . If
(r ∧ p′)(d) ↓= T then p′(d) ↓= p(d) = T that gives
q(WH(r, pr)(d)) ↓= T . Together with r(d) ↓= T the def-
inition of cyclic composition gives that there exists such
a state d′ = pr(d) that WH(r, pr)(d′) ↓= WH(r, pr)(d)
and q(WH(r, pr)(d′)) ↓= T . By the definition
of preimage condition composition we have that
p′(d′) ↓= p(d′) = PC(WH(r, pr),q)(d′) = T . By
p′(d′) ↓= T and d′ = pr(d) we have PC(pr, p′)(d) ↓= T .
Hence r∧ p′ |=T PC(pr, p′).

Let us prove ¬r∧ p′ |=F q. If q(d) ↓= F then there can
be three cases.

If r(d) ↓= T then (¬r∧ p′)(d) ↓= F .
If r(d) ↓= F then p(d) = PC(WH(r, pr),q)(d) ↓= F .

Thus p′(d) = p(d) ↓= F and (¬r∧ p′)(d) ↓= F .
If r(d) ↑ then p(d) = PC(WH(r, pr),q)(d) ↑. Thus

p′(d) ↓= F and (¬r∧ p′)(d) ↓= F .
In all cases (¬r∧ p′)(d) ↓= F . Hence, ¬r∧ p′ |=F q.
Property p′ |= PC(WH(r, pr),¬r ∧ p′) is obvi-

ous. If p′(d) ↓= T then p(d) ↓= T by the
definition of p′. Thus there exists such d′

that WH(r, pr)(d) ↓= d′ and q(d′) = T , because
p = PC(WH(r, pr),q). The definition of the cyclic compo-
sition gives us that r(d′) ↓= F and WH(r, pr)(d′) ↓= d′.
Since WH(r, pr)(d′) ↓= d′ and q(d′) = T we have
p(d′) ↓= T = PC(WH(r, pr),q)(d′). Hence p′(d′) ↓= T
and (¬r ∧ p′)(d′) ↓= T . And with WH(r, pr)(d) ↓= d′

we have PC(WH(r, pr),¬r ∧ p′)(d) ↓= T . This proves
p′T ⊆ PC(WH(r, pr),¬r∧ p′)T that grants the needed logi-
cal consequence.

We proved all needed logical consequences, thus
`AC {PC(WH(r, pr),q)}WH(r, pr) {q}.

We have considered all compositions, therefore
`AC {PC(pr,q)} pr {q} for every program pr and predicate
q.

If we have some valid assertion |= {p} pr {q}, we
can find such q′ that p |=T PC(pr,q′) and q′ |=F q. Then
`AC {PC(pr,q′)} pr {q′}, and `AC {p} pr {q} by R CONS’.
Consider q′ such that:

q′(d) =

 T, if p(pr−1(d)) ↓= T,
F, if q(d) ↓= F,
undefined in other cases.

It is not hard to show that qF ⊆ q′F and
pT ⊆ PC(pr,q′)T . Property |= {p} pr {q} im-
plies that such a predicate exists because the valid-
ity of assertion implies that there is no such d that
FH(p, pr,q)(d) ↓= F . By the definition of Floyd-Hoare
composition, FH(p, pr,q)(d) ↓= F gives p(d) ↓= T
and q(pr(d)) ↓= F . This implies that there is no such
d′ = pr(d) that q′(d′) ↓= T and q′(d′) ↓= F . Thus, the
extensional completeness of the inference system AC is
proved.

Now let us consider intensional completeness of infer-
ence systems TI and AC. Here intensional completeness is
understood in the following way: 1) predicates in asser-
tions, inference rules, and constraints are represented as
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formulas of the class Fr(Ps,Fs,V ); 2) constraints are rep-
resented as formulas derived in the inference system un-
der consideration. For example, the constraints for the rule
R CONS” should be presented in the form p `T I p′ and
q′ `T I q.

For the inference system TI there are two main diffi-
culties in proving its intensional completeness: 1) formu-
las of the form PC(pr, p) and T R(p) should be reduced to
formulas of the class Fr(Ps,Fs,V ); 2) we should have in-
tensionally complete inference system to prove formulas of
the form p `T I p′.

As to the first difficulty we should admit that the re-
quired reduction of PC(pr, p) is possible for acyclic pro-
grams, but the reduction for programs with cycles re-
quires more expressive languages with, say, the least fixed
point operators. Reduction of T R(p) is trivial because
T R(p) = p∨⊥P. As to the second difficulty, the inten-
sional completeness of the inference system in hand was
proved in [10, 11].

Therefore we consider here only intensional complete-
ness of TI for acyclic programs.

We have the following reductions:

PC(id,q) = q (18)

PC(ASx(h),q) = Sx(q,h) (19)

PC(pr1 • pr2,q) = PC(pr1,PC(pr2,q)) (20)

PC(IF(r, pr1, pr2),q) = (r→ PC(pr1,q))∧
∧(¬r→ PC(pr2,q))∧ (r→ r) (21)

Correctness of the first three reductions was proved ear-
lier. For the fourth formula we will prove that for every data
d

PC(IF(r, pr1, pr2),q)(d) = ((r→ PC(pr1,q))∧
∧(¬r→ PC(pr2,q))∧ (r→ r))(d)

Let us consider three cases, depending on the value of
r(d).

If r(d) ↓= T then (r → r)(d) ↓= T , with
(¬r → PC(pr2,q))(d) ↓= T and the following
(r→ PC(pr1,q))(d) = PC(pr1,q)(d). Thus the right side
is equal to PC(pr1,q)(d)PC(pr1,q)(d). Also

PC(IF(r, pr1, pr2),q)(d) = PC(pr1,q)(d), since
IF(r, pr1, pr2)(d) = pr1(d).

Hence both sides of the equality are equal to
PC(pr1,q)(d).

In the case when r(d) ↓= F the proof is similar.
If r(d) ↑ then PC(IF(r, pr1, pr2),q)(d) ↑ and

(r → r)(d) ↑. Expressions (¬r → PC(pr2,q))(d) and
(r → PC(pr1,q))(d) can be either true or undefined, de-
pending on the values of PC(pr2,q)(d) and PC(pr1,q)(d)
respectively. In either case by the right side of the equality
will be undefined by the definition of the conjunction com-
position. But without the conjunct (r→ r) in the case when

r(d) ↑ the right side of the equality could be true, and not
undefined as required.

Let us note that all proofs are correct for any interpreta-
tion J considered here implicitly. This permits us to formu-
late the following result.

Theorem 4.3. The inference system TI is intensionally
complete for the class of T-increasing assertions with
acyclic programs.

Intensional completeness of the inference system AC re-
quires additional investigations.

5. RELATED WORK

The first attempts to use logical approach to define spec-
ification of the programs and reason about their proper-
ties were made by Glushkov [8], Floyd [1], and Hoare [2].
Viktor Glushkov developed algorithmic algebras based on
three-valued logics while Robert Floyd and Tony Hoare
were oriented to axiomatic systems with total predicates.
Simple idea to represent program specifications as triples
that consist of precondition, program, and postcondition
turned out to be very powerful and found many implemen-
tations.

With time it appeared that in more and more cases data
or predicates can be undefined. It became evident that par-
tiality of predicates and functions have to be taken into
consideration and proper formalisms should be developed.
This give rise to the special three-valued logics, where the
fact that predicate is undefined is represented by special
third value. Numerous variants of such logics were pre-
sented and studied in the works of Lukasiewicz, Kleene,
Bochvar and others.

At the same time evolution of the programming lan-
guages, emergence of the new features as pointers, dynamic
typing caused the need of the tools to define more complex
specifications. This led to the development of the numerous
extensions of Floyd-Hoare logic that have proved to be ef-
fective basis for program verification. The most known and
studied extensions of Floyd-Hoare logic are Dynamic logic
and Separation logic.

Dynamic logic [9] is an attempt to redefine Floyd-
Hoare logic using modalities that permit usage of program
texts and specifications alongside. Floyd-Hoare assertion
{p}pr{q} can be substituted with formula p→ [pr]q where
[pr]q means that program pr if it terminates has to satisfy
formula q. It is not hard to check that if pr is single-valued
(deterministic) this formula is equal to the preimage com-
position presented in this paper and it is also possible to use
specifications and program texts together.

Separation logic [12] was introduced as a response to
broad usage of heap and pointers in programming. New
special implications provide terms to specify different prop-
erties of the heap. But only heap function that mapped
memory addresses to values assumed to be partial. In all
other aspects only total predicates are considered. The main
goal was to introduce means to deal with pointers but gen-
eral case of partial data is omitted.

Logics describing various properties of programs form
a basis for formal software system development [13].
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6. CONCLUSIONS

In this paper extensions of Floyd-Hoare logic for par-
tial predicates have been presented. Different inference sys-
tems have been defined. Problems of extensional and inten-
tional completeness have been studied for the introduced
systems. Special cases of program logics have been consid-
ered for which completeness problems can be reduced to
the similar problem in first-order predicate logics.

Further directions of research include extensions of con-
structed logics for more powerful classes of programs with
structured data and compositions of parallel execution.
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