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∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
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ABSTRACT
We introduce security protocols by analyzing and verifying their properties. We use spi-calculus, an extension of the π-calculus,

that enables us to consider cryptographic issues in more details. In this work we represent the security protocol as a process and we
use the behavioral equivalences for describing secrecy and authenticity properties. Our goal is to design the practical procedure for
verification of security protocols.
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1. INTRODUCTION

Cryptographic protocols are used today to provide se-
curity in various applications. Cryptographic protocols are
rules for exchange of messages between participants, and
rely on cryptographic algorithms like encryption and de-
cryption. Experience has shown that even very simple pro-
tocols which seem secure may have subtle flaws, even if the
underlying cryptographic algorithms are secure. An exten-
sion of the π-calculus, the spi-calculus [1], was proposed as
a formal notation for describing and reasoning about cryp-
tographic protocols.

The objective of our work is to find a practical method
of modeling and verifying cryptographic protocols using
spi-calculus and validate it on specific communicating pro-
tocols. We analyze cryptographic protocols and their secu-
rity properties. By means of basic knowledge about pro-
cess algebras we use spicalculus for specification of cryp-
tographic protocols. We develop and evaluate common for-
mal method for the verification of cryptographic protocols.

2. CALCULUS OF SECURITY PROTOCOL

A protocol P =C∗∪C, where clauses in C use symbols
from Σ, predicates from P∗∪P, and contain predicates from
P∗ only in the body. We can write c̄〈M〉.P to denote a pro-
cess that sends the message M on channel c after which it
executes the process P. Then c(x)M denotes a process that
is listening on the channel c and if it receives some message
M on this channel then it will execute the process Q[M/x].
We may compose these two processes in parallel to get a
bigger process, denoted as c̄〈M〉.P | c(x).Q. Now the two
smaller processes may communicate on the channel c after
which they will execute the process P | Q[M/x] [2]. The
cryptographic protocol is communicating protocol, which
uses the cryptography to achieve security goals. Basic cryp-
tographic algorithms are DES, RSA, and DSA, and may be
vulnerable if key is too short.

2.1. Abstract Syntax of the Calculus

The abstract syntax of the spi-calculus [1] is divided
into two parts, terms and processes.

L,M,N ::= Terms
| n Name
| (M,N) Pair
| 0 Zero
| suc(M) Successor
| x Variable
| {M}N Shared key encription

P,Q,R ::= Processes
| M〈N〉.P Output - process is ready

to output on channel m
| M(x).P Input - process is ready

to input from channel m
| P | Q Composition - behaves

as process P and Q
running in parallel

| (vn)P Restriction is a process
that makes a new, private
name n, which may
occur in P

| !P Replication behaves as a
finite number of copies
of P running in parallel

| [M is N]P Match behaves as P if the
terms M and N are the
same; otherwise it is
stuck (it does nothing)

| 0 Nil process does nothing
| let (x,y) = M in P Pair splitting processes

let (x,y) = M in P
behaves as P[N/x][L/y]
if the term M is the pair
(N,L)

| case M of 0 : P suc(x) : Q Integer case behaves as
P if the term M is 0, as
Q[N/x] if M is suc(N)

| case L of {x}N in P Shared key decryption

2.2. Semantic of the Calculus

Let f n(M) and f n(P) be a set of free names in term
M and process P. Let f v(M) and f v(P) be the set of free
variables in term M and process P. Closed processes are
processes without any free variables. [3]
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Reaction relation; P→ Q means that there exists a re-
action between subprocesses of P such that the whole can
step to process Q:

m̄〈N〉.P | m(x).Q→ P | Q[N/x] Interaction

Then we define the reduction relation > on closed
processes:

!P > P |!P Replication
[M is M]P > P Match
let (x,y) = (M,N) isP > P[M/x][N/y] Let
case 0 o f 0 : P suc(x) : Q > P Zero
case suc(M) o f 0 : P suc(x) : Q > Q[M/x] Successor
case {M}N o f {x}N in P > P[M/x] Decrypt

Structural equivalence is a relation on closed pro-
cesses that satisfies the following rules and equation:

P | 0≡ P Nil
P | Q≡ Q | P Commitment
P | (Q | R)≡ (P | Q) | R Association
(vm)(vn)P≡ (vn)(vm)P Switch
(vn)0≡ 0 Drop
(vn)(P | Q)≡ P | (vn)Q if n /∈ f n(P) Extrusion

Reduction Reflection Symmetry
P > Q
P≡ Q P≡ P

P≡ Q
Q≡ P

Transitivity Parameterization Restriction
P≡ Q Q≡ R

P≡ R
P≡ P′

P | Q≡ P′ | Q
P≡ P′

(vm)P≡ (vm)P′

With these rules we can complete reaction rules as fol-
low:

P≡ P′ P′→ Q′ Q′ ≡ Q
P→ Q

P→ P′

P | Q→ P′ | Q
P→ P′

(vn)P→ (vn)P′

Abadi and Gordon [1] use testing equivalence as the
notion of equivalence. Two processes are testing equiv-
alent, written P ' Q, if they are indistinguishable to any
other process. For specification of testing equivalence [4]
we first define barbs. Barbs define a predicate describing
the channels, where output process can communicate. A
barb β is an input or an output channel, where output chan-
nels are marked by a barb m̄. P exhibits barb β , written
P ↓ β , is defined:

m(x).P ↓ m Input
m̄〈M〉.P ↓ m̄ Output

Barb Parametrization Barb Restriction Barb Structural
P ↓ β

P | Q ↓ β

P ↓ β β /∈ {m, m̄}
(vm)P ↓ β

P≡ Q Q ↓ β

P ↓ β

Test is a closed process R and a barb β . The process R
is trying to see if the tested process can be made to exhibit
barb β :

PvQ = f or any test (R,β ), Testing Preorder
i f (P |R)⇓β then(Q |R⇓β )

P'Q = Pv Q and Qv P Testing Equivalence

The idea about testing equivalence builds De Nicola and
Hennesy [5].

3. SECURITY PROPERTIES AND VERIFICATION
PROCEDURE

For the verification of cryptographic protocols it is use-
ful first define security properties [6] of these protocols.

Secrecy: M is secret if a session that contains M is in-
distinguishable from any session containing some data M0
in place of M (observational equivalence property). Global
secrecy is when a message is secret all the time. Local se-
crecy is when a message is secret till the corresponding ses-
sion has not ended.

Authenticity: If A accepts a message M as coming from
B then B actually sent M. If A received a message of form
M1 then B sent a message of form M2. If A got a message
of form M then B was active. If A has got a message M n
times then B sent it n times.

In this project we want to proceed verification of cryp-
tographic protocols by means of validation of the secrecy
and the authenticity. We define the safety property.

Definition 4.1: Safety

• Authenticity: B always replies F to the message M
that A sends; an attacker cant cause B to apply F to
some other message.

• Secrecy: The message M can’t be read in transit from
A to B; if F doesn’t reveal M, then the whole protocol
doesn’t reveal M.

Protocol is safe only if both conditions, authenticity and
secrecy, are satisfied. In summary, we have:

Inst(M)' Instspec(M), f or all M Authenticity
Inst(M)' Inst(M′) i f F(M)' F(M′), Secrecy

f or all M,M′

3.1. Verification Procedure

We designed following procedure to verify the safety
properties of the communication protocols:

1. Write the protocol into convenient form. The best is
writing it with messages.

2. Make the spi-calculus description of this protocol.

3. Make specification from description of this protocol.

4. Verify authenticity:

• Make specification for authenticity.
• Verify authenticity by exhibiting auxiliary

equivalences (strong bisimilarity, barbed equiv-
alence, and barbed congruence).
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5. Verify secrecy:

• Prove restricted version of secrecy property
Inst(M)' Inst(M′) i f F(x) is c̄〈∗〉.
• Prove full secrecy property Inst(M) '

Inst(M′) i f F(M) ' F(M′) using auxiliary
equivalences.

6. If both authenticity and secrecy are valid, then the
protocol is secure.

4. EXAMPLES

Two principals A and B share the key KAB, we assume
there is a public channel cAB that A and B use for commu-
nication. The protocol is simply that A sends a message M
under KAB to B, on cAB.

To verify the safety properties of the protocol we use the
above procedure.

1. Message 1 A→ B : {M}KAB on cAB

2. Specification in spi-calculus

A(M) = cAB〈{M}KAB〉
Bspec = cAB(x).case x o f {y}KAB in F(y)

Instspec(M) = (vKAB)(A(M) | Bspec(M))

3. The main definitions are:

Inst(M) = (vcAB)(cAB〈M〉.0 | cAB(x).F(x))

Instspec(M) = (vcAB)(cAB〈M〉.0 | cAB(x).F(M))

4. Proposition 5.1: For any closed term M, Inst(M)'
Instspec(M).
Only commitments of Inst(M) and Instspec(M) are:

Inst(M)
τ−→ (vcAB)(0 | F(M))

Instspec(M)
τ−→ (vcAB)(0 | F(M))

From definition of barbed congruence we know, that
strong bisimilarity implies barbed congruence and
barbed congruence implies testing equivalence.

Inst(M) ∼s Instspec(M)

Inst(M) ∼ Instspec(M)

Inst(M) ' Instspec(M)

5. First we prove restricted version of secrecy property.
Lemma 5.2: Inst(M) ' Inst(M′) i f F(M′) is c〈∗〉,
for any closed terms M and M′. Only commit-
ment of Inst(N) is: Inst(N)

τ−→ (vcAB)(0 | c〈∗〉) and
so clearly Inst(M) ∼s Inst(M′). Like in previous,
Inst(M) ' Inst(M′). Now we can make calcula-
tion of full secrecy property, Inst(M) ' Inst(M′) if
F(M) ' F(M′). In special case, where F(x) is c〈∗〉
we can write Inst(M,
(x)c〈∗〉). We assume that c is a fresh name and y

fresh variable and we write τ.F(N) for (vc)(c〈∗〉 |
c(y).F(N)). Only commitments are:

(vc)(cAB(x).c〈∗〉 | c(y).F(N))
cAB−→ (x)τ.F(N)

cAB(x).τ.F(N)
cAB−→ (x)τ.F(N)

From these, we have: (vc)(cAB(x).c〈∗〉 |
c(y).F(N))∼s cAB(x)τ.F(N).

As follows using proposition F(N) ' τ.F(N), facts
that testing equivalence is congruence and that strong
bisimilarity implies testing equivalence, we have:

Instspec(N) = (vcAB)(cAB〈N〉.0 | cAB(x).F(N))

' (vcAB)(cAB〈N〉.0 |
cAB(x).(τ.F(N)))

' (vcAB)(cAB〈N〉.0 | (vc)(cAB(x).c〈∗〉
| c(y)F(N)))

≡ (vc)((vcAB)(cAB〈N〉.0 |
(vc)(cAB(x).c〈∗〉) | c(y)F(N))

= (vc)(Inst(N,(x)c〈∗〉) | c(y).F(N))

And we obtain equation: Instspec '
(vc)(Inst(N,(x)c〈∗〉) | c(y).F(N)). With this equa-
tion, Lemma 5.2, Proposition 5.1 and assumption
F(M)' F(M′) we can make following calculation.

Inst(M) ' Instspec(M)

' (vc)(Inst(M,(x)c〈∗〉) | c(y).F(M))

' (vc)(Inst(M′,(x)c〈∗〉) | c(y).F(M′))

' Instspec(M′)

' Inst(M′)

6. Authenticity and secrecy property are valid, protocol
is secure.

5. CONCLUSIONS

This work describes verification of cryptography proto-
cols with emphasis on authenticity and secrecy properties
using spi-calculus. The main task was to design a com-
mon procedure of the verification, which can be applied
on any cryptographic protocol. Presented results are based
on Abadi’s and Gordon’s testing equivalence and auxiliary
equivalences [3]. This approach is more suitable for au-
tomation than solution designed by Woo and Lam [2]. Fu-
ture extension of this work may be a software implementa-
tion of designed procedure.
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