
28 Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014, 28–35, DOI: 10.15546/aeei-2014-0014

A TERSE STRING-EMBEDDED LANGUAGE FOR TREE SEARCHING
AND REPLACING

Matúš SULÍR∗, Slavomı́r ŠIMOŇÁK∗∗
∗Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, e-mail:

matus.sulir@student.tuke.sk
∗∗Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,

Letná 9, 042 00 Košice, Slovak Republic,tel. +421 55 602 3021, e-mail: slavomir.simonak@tuke.sk

ABSTRACT
Treepace is a new library and a domain specific language for tree pattern matching and replacing, implemented in Python. Selected

concepts resemble the well-known application programing interface (API) for string regular expressions. The language is terse since
it is possible to write a simple transformation consisting of a pattern and a replacement in one row. Objects of any types can be used
as node values. Calling host language constructs, e.g., functions, in the embedded language is straightforward. Node class inheritance
allows for mapping tree nodes to external objects like GUI (graphical user interface) components.

Keywords: tree transformation, application programming interface, domain-specific language, pattern matching, string embedding

1. INTRODUCTION

Many applications operate on tree-like data structures,
consisting of nodes and edges. Compilers and other com-
puter language processing applications use abstract syntax
trees (ASTs) as one of intermediate representations of pro-
grams. Data processing applications convert information
from semantic to visual representations, e.g., an address
book containing items to an HTML document. More ex-
amples can be found in [1].

In this paper, we consider all tress rooted (one node is
declared a root), node-labeled (each node can be assigned a
value) and ordered – the order of nodes is important.

1.1. The purpose

The purpose of the library Treepace, presented in this
paper, is to extract parts of trees according to a pattern and
optionally replace them by another subtrees.

Examples of effects possible to achieve with Treepace
include: mathematical expression simplification and solv-
ing, XML to HTML transformation, execution of a simple
program in a form of an AST, etc.

1.2. Existing XML solutions

First, we will focus on languages operating on XML
documents – which are inherently tree structured. XPath [2]
is one of the most used existing languages to address tree
parts. An XPath query selects a set of nodes from the
tree according to a series of location steps [3]. In essence,
each location step contains an axis determining the search-
ing direction (e.g., children, following siblings) and con-
ditions which the searched nodes must meet [4]. The re-
sulting node set corresponds to the last location step. For
instance, the following XPath expression selects all head-
ings of an article saved in a form of an XML document:
/child:article/descendant:heading.

While XPath is a succinct and expressive language, it
does not support the modification of trees. There exist lan-
guages like XSLT and XQuery Update for this purpose.
The former does not fully preserve the simplicity and terse-

ness of XPath. It is based on rules; each rule consists of
a pattern and a template used to build a new tree [5]. An
excerpt from a simple transformation changing headings to
HTML “H1” tags follows:
<xsl:template match="/article//heading">

<h1><xsl:apply-templates/></h1>

</xsl:template>

XQuery Update [6] is a bit more succinct, but some
shortcomings of XML persist. Because XML documents
must be serializable to strings, their node values cannot be
arbitrary objects (e.g., open file handles or network sock-
ets). In addition, it is difficult to react on node changes
because the only output of a transformation is a resulting
tree.

1.3. Other solutions

Two more candidates are not general enough to be suit-
able for all mentioned uses. JastAdd, a system based on
Rewritable reference attributed grammars [7] is focused on
AST transformations. Tsurgeon is specialized for linguistic
applications [8].

A tree is a special case of a graph, so it is worth mention-
ing a graph manipulation language Gremlin [9]. It provides
a succinct way of graph traversal and data filtering through
a series of steps, utilizing the Java Virtual Machine. How-
ever, it operates on a graph database, so it is more suitable
for persistent data manipulation and less for an AST trans-
formation or document transformation.

2. THE APPLICATION PROGRAMMING INTER-
FACE

Treepace is designed as a domain-specific language em-
bedded in Python, so it offers the programmer a convenient
Python API.

The basic building block of trees in Treepace is an ob-
ject of class Node. A tree (of class Tree) is defined by a
reference to the root node. When matching against the tree,
subtrees (Subtree) are returned. Each subtree is defined by
a set of node references pointing to the main tree.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 29

Table 1 An analogy between regex and Treepace API calls

Action Python regex API call example Treepace API call example

search anywhere re.search(’pattern’, text) tree.search(’pattern’)[0]

search from the start (root) re.match(’pattern’, text) tree.match(’pattern’)

match the whole text / tree re.fullmatch(’pattern’, text) tree.fullmatch(’pattern’)

replace a part of the text / tree re.sub(’pattern’,

’replacement’, text)

tree.replace(’pattern’,

’replacement’)

transform a tree (replace using rules
in a loop while matches are found)

– tree.transform(’’’

pattern1 -> replacement1

pattern2 -> replacement2

’’’)

Trees can be manually constructed or loaded from a for-
mat like XML, parenthesized or indented text. After a tree
is loaded in the memory, we can perform operations like
searching an replacing. The API of Treepace library was
designed to be conceptually similar to the standard Python
regular expression library. The comparison is in Table 1.

Like regex, our language is string-embedded [10] –
the embedded language (Treepace) programs are written
as strings in the host language (Python) programs. Pat-
terns, replacements and rules are passed as arguments to
the API methods. However, Treepace modifies the original
tree while a regular expression replacement returns a new
string.

Values of nodes in our library can be of any type – from
simple strings and numbers through structured data (e.g.,
associative arrays) to complicated objects bound to exter-
nal entities like open file descriptors or computer display
areas. Thus, the transformations can perform actions on
these objects according to patterns – for example, delete all
files matching a condition.

It is possible to inherit from the basic node class. This
is useful to add various side effects to each node change.
In Treepace, there are two examples included – a logging
node and a GUI node (see Fig. 1 for a class diagram). The
former writes an information about each changed node to
the standard output. The latter displays a visualization of
the transformation process in a GUI window – see Fig. 2.
Every time a node is changed, the corresponding GUI com-
ponent part is updated. We can say that each node in the
graphical component is mapped to a node in the memory.
Every transformation consists of a sequence of these ele-
mentary operations:

• Create a node.

• Change the value of a node.

• Insert a node at the given position of the child list of
a particular node.

• Detach a node from its parent.

Each class inherited from Node has to override just the men-
tioned methods to achieve the mapping.

Node

value
children

__init__(value, children)
value(val)
insert_child(child, index)
detach()

LogNode

 

__init__(value, children)
value(val)
insert_child(child, index)
detach()

GuiNode

 

__init__(value, children)
value(val)
insert_child(child, index)
detach()

Fig. 1 Node class inheritance, adding side effects to tree
transformation

Fig. 2 GUI-mapped tree nodes during transformation

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



30 A Terse String-Embedded Language for Tree Searching and Replacing

3. THE TRANSFORMATION LANGUAGE

For the reference, the transformation language syntax
will be expressed in a form of a PEG (Parsing Expression
Grammars) grammar. In contrast to generative context-free
grammars, PEGs are recognition-based. They incorporate
both the lexical and syntactical grammar in one unit. Al-
ternatives, traditionally denoted by “|”, are replaced by or-
dered alternatives – “/”, so they are always unambiguous.
More details about PEGs can be found in [11].

The transformation language grammar is located in
Fig. 3. The starting rule Rule represents a Treepace trans-
formation rule and divides it into two logical parts – a pat-
tern and a replacement. The rule “ ” allows whitespace
characters to be present at convenient locations. Now we
will describe the components of the language.

Rule ← Pattern ’->’ Replacement
← (’ ’ / ’\t’)∗

Pattern ← Group (RelGroup)∗
Group ← Node/(GroupStart Pattern GroupEnd)

RelGroup ← (Relation Group) / ParentAny
Node ← Any /Constant /Code / Re f erence

Any ← ’.’
Constant ← ((’\w’+) / (’"’ (! ’"’ .)+ ’"’))

Code ← ’[’ PythonCode ’]’
PythonCode ← ExprPart+

ExprPart ← ( ! (’[’ / ’]’) .)+ / (’[’ ExprPart ’]’)
Re f erence ← ’$’ Re f Num

Re f Num ← ’\d’+
GroupStart ← ’{’
GroupEnd ← ’}’

Relation ← Child / Sibling / NextSibling
Child ← ’<’

Sibling ← ’&’
NextSibling ← ’,’

ParentAny ← ’>’

Replacement ← ReplNode (ReplRelNode)∗
ReplNode ← Constant /Code / Re f erence

ReplRelNode ← (ReplRelation Node) / ParentAny
ReplRelation ← Child / NextSibling

Fig. 3 The Treepace transformation language PEG grammar

3.1. One-node patterns

The pattern, represented by the rule Pattern in Fig. 3, is
used for searching in a tree, both standalone and as a part of
replacing or transformation. At first, we will focus on node
tests – simple patterns matching one node.

The most basic pattern, matching one arbitrary node
(Any) is a dot (.). A literal text (Constant) searches for
a node whose string representation is equal to it, e.g., a pat-
tern lit1 matches any node labeled “lit1”.

The most powerful one-node test is a predicate (Code)
enclosed in square brackets, which can contain any Python
expression. A node matches the given predicate if the

expression evaluates to True. The code is evaluated in
an environment containing a reference to the currently
tested node (the variable node). For example, the predi-
cate [node.value != "x"] matches all nodes whose value
does not equal “x”. An underscore is a shortcut for
node.value. For instance, [_.upper() == "Z"] matches
all nodes whose uppercase string representation equals “Z”.

Auxiliary variables can be supplied to the code via
keyword arguments of the API methods. This method
call returns a list of all one-node subtrees contain-
ing a node whose value is less than or equal to 7.4:
tree.search(’[_ <= limit]’, limit=7.4).

3.2. Relations

We can combine multiple node tests into a pattern using
relations (Relation). The pattern has essentially the form

t1 R1,2 t2 R2,3 t3 . . . Rn−1,n tn

where ti and t j are node tests and Ri, j is a relation between
a node matching the test ti and a node fulfilling the test t j.

The relation “to have a child” is denoted by “<”. Thus,
the pattern a < b < c matches subtrees with the root la-
beled “a”, having a child “b” which has a child “c”.

Other possible relations are “to have a sibling” (&), an
immediately following sibling (,) and a parent: >. The par-
ent relation is implicitly followed by a node test matching
any node. For example, the pattern root < a <b>, c & d

matches the highlighted subtree in Fig. 4.

root

dxca

b

Fig. 4 An example of a matched subtree

3.3. Groups

Parts of a pattern can be enclosed in braces to form a
group (Group). The groups are numbered from one and
can be nested. For instance, in the pattern {n1 < {n2}}, the
subtree containing nodes n1 and n2 is saved as the group
number one; the second group contains the node n2. A sub-
tree matching the whole pattern implicitly becomes a group
number 0.

It is possible to back-reference a group (Re f erence)
both in the pattern and a replacement using the notation $n

where n is the group number. This behavior strengthens the
similarity between Treepace and regular expression imple-
mentations in many general-purpose languages. For exam-
ple, the pattern {.} < $1 matches two nodes in a parent-
child relationship, having equal values.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 31

3.4. The replacement

The replacement part (Replacement) of a rule consists
of nodes separated by relations which they should form.
Each node in the replacement can be a literal, a back-
reference or an arbitrary Python expression. In the last case,
the code is evaluated and its result is assigned to the node
value. Supported relations are: child, next sibling and par-
ent. For instance, the replacement string [abs(-1)] < $2

represents a tree with the root labeled “1”, having a subtree
number 2 connected as its child.

A found subtree is intuitively replaced by a replacement
tree according to the strategies described in the section 4.4.

3.5. Rules

Combining a pattern and a replacement, we get a rule
(Rule) in the form: pattern -> replacement. To give an
example, the rule range < {.}, {[$1 > _]} -> range <

$2, $1 swaps the values of two children of a node labeled
“range” if the value of the first children is greater than the
second.

4. THE EXECUTION

First, the pattern and replacement is parsed into a syntax
tree according to the grammar (Fig. 3) and converted to two
lists of instructions – one for searching and one for building
a replacement of a particular subtree. Matches are found by
executing the searching instructions. If the matches over-
lap, an exception is raised, otherwise the replacing could
produce an unspecified behavior. For each matched sub-
tree, a replacement is built by executing the tree-building
instructions and the original subtree is replaced by a new
one.

4.1. The instruction generation

The syntax tree is traversed in a postorder manner.
When a particular node is visited, the corresponding in-
struction is generated and appended to the list of instruc-
tions. The mapping from nodes to instructions is shown
in Fig. 5. The scheme TS is used for the pattern part of
the syntax tree, TR for the replacement part. Unmentioned
node types do not produce any instructions. If there is a
symbol in angle brackets following the node type, its value
is a part of the input string corresponding to the given node.
The function start_num() returns the number of a currently
starting group, end_num() the number of an ending group.

4.2. Searching

The searching instructions are executed on a tree-
searching virtual machine which consists of a list of search-
ing branches. Each branch is a quintuple:

(groups, match, node, rel, instrs)

Every searching branch can be understood as a candidate
for the match accompanied by the necessary state informa-
tion. The set groups contains numbers of groups we are
currently enclosed by in the pattern. It is initialized to {0}.

The list match consists of a matching subtree (group 0) and
optionally other subtrees (one for each group). It initially
contains one empty subtree. Node is the current context
node, initialized to a root node. The item rel represents
a relation we are currently using for searching. Its initial
value is id (identity) for match() and fullmatch() meth-
ods; descendant (descendant or the node itself) otherwise.

The execution algorithm is as follows: For each branch
whose instruction list instrs is nonempty, an instruction is
popped from the beginning of the list and executed on the
given branch with the following effect:

• FIND p replaces the current branch by zero or more
branches, one for each node which is in the relation-
ship rel with the node node and matches the predicate
p.

• REL r sets rel to r.

• GRPS n represents a start of the group n. It adds n to
the set groups and an empty subtree to the list match.

• The group end – GRPE n – removes n from groups.

• REF n (the back-reference) generates a list of instruc-
tions which searches for a subtree equal to the subtree
saved in match[n]. It adds the generated list to the be-
ginning of instrs.

The process repeats until there are no branches with a
nonempty instruction list. After execution, the resulting
subtrees are in the match fields of the branches.

TSJAny K = FIND ’True’

TSJConstant〈c〉 K = FIND ’str(node.value)==str(c)’

TSJPythonCode〈c〉 K = FIND c

TSJRe f Num〈n〉 K = REF n

TSJGroupStart K = GRPS start_num()

TSJGroupEnd K = GRPE end_num()

TSJChild K = REL child

TSJSibling K = REL sibling

TSJNextSibling K = REL next sibling

TSJParentAny K = REL parent
FIND ’True’

TRJConstant〈c〉 K = ADD repr(c)
TRJPythonCode〈c〉 K = ADD c

TRJRe f Num〈n〉 K = AREF n

TRJChild K = AREL child

TRJNextSibling K = AREL next sibling

TRJParentAny K = GPAR

Fig. 5 The translation schemes

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



32 A Terse String-Embedded Language for Tree Searching and Replacing

4.3. Building a replacement

For each single match match, a replacement building
machine is created:

(match, instrs, node, rel, tree)

where instrs are instructions obtained from the scheme TR,
node represents the current context node, rel is the relation
used to add the next node (child or next sibling) and tree
contains a reference to the root node of the tree being built.
Instructions are popped from the front of the list instrs and
executed:

• ADD c creates a new node n with a value equal to the
execution result of the Python code c. The node n is
added to the tree in such way that node and n form a
relation rel. The context node is set to n.

• AREL r assigns r to rel.

• The back-reference AREF n adds the subtree match[n]
to the tree in a way that the node node and the sub-
tree’s root form a relation rel. The context node is set
to the subtree root.

• GPAR sets node to its parent.

The replacement is then stored in the field tree.

4.4. Replacing

Finally, each matched subtree is substituted by its re-
placement. Because trees are not linear structures like
strings, not every subtree can by replaced by any other tree.
For example, we can not intuitively determine the result-
ing tree when a one-node subtree having two children in
the main tree is to be replaced by a tree with three children
(Fig. 6). Enumerating all ambiguous cases would be dif-
ficult (if even possible), so we decided to define a list of
five intuitive and unambiguous replacing strategies. Each
of them contains a test whether it can be applied and the
application algorithm itself. The strategies are tried from
the highest priority to the lowest one. If no strategy can be
applied, an exception is raised.

root

subtree_node

leaf2leaf1

child

a

dcb

Fig. 6 A tree with a found subtree (left) and its ambiguous
replacement (right).

The highest priority strategy is applicable if a match and
a replacement are of the same shape. Its algorithm is to as-
sign each node value of the old subtree to the corresponding
node of the new tree (Fig. 7).

matched

sub-

othertree

other →

re-

place-

otherment

other

Fig. 7 The same tree shapes strategy

The second strategy replaces an arbitrary subtree by one
node. An example of such replacement is in Fig. 8.

matched part

matched part

thirdsecond

first →
replacement

thirdsecondfirst

Fig. 8 Replacing a subtree by one node

If a matched subtree does not have any children in the
main tree, it is replaced by the third strategy (Fig. 9). The
match can be considered one big leaf which is replaced as
a whole.

main

x

zy

→

main

any

treearbitraryother

Fig. 9 A subtree with no children in the main tree

The last two strategies require that the matched sub-
tree’s inner nodes (including the root) must not have chil-
dren outside the subtree. If the match have the same leaf
count as the replacement, children of the match leaves be-
come the children of the replacement leaves (Fig. 10).

subtree

leaf2

child

leaf1

child

→

replacement

leafB

child

node

leafA

child

Fig. 10 The same leaf count

Leaves of a subtree which have children in the main tree
will be called “partial leaves”. If the partial leaf count of a

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 33

match equals the leaf count of a replacement, we can use
the last strategy (Fig. 11).

subtree

partial

child

node →

replacement

replacement

child

Fig. 11 The same partial leaf count

5. EXAMPLES

5.1. A document transformation

Fig. 12 displays the structure of a tree extracted from an
XML document and a resulting tree after execution of the
transformation written in Treepace. The practical expres-
sivity of the language is high in comparison to existing lan-
guages. The exhibited source code has a length of around
40% (measured by character count) compared to the same
transformation written in XQuery Update and only 30% of
the length of XSLT code.

article

content

calc

plus

elem

4

elem

3

heading

An example

→

html

body

p

7

h1

An example

1 tree.transform(’’’

2 article -> html < body

3 heading -> h1

4 content -> p

5 calc < plus < elem<{.}>, elem<{.} ->

[text(num($1) + num($2))]

6 ’’’)

Fig. 12 An example of a transformation and its source code

5.2. A transformation execution example

We will follow execution of a sample transformation
tree.transform(’["a" in _] < {.} -> $1 < x’) on the
tree displayed on the left side of Fig. 13. First, the rule
is parsed into a syntax tree. Its relevant parts (with some
nodes omitted) are shown in Fig. 14.

root

a2a1

b

→

root

a2b

x

Fig. 13 The tree before transformation→ after transformation

Pattern

GroupEndNode

Any

Group-
Start

Relation

Child

Node

PythonCode
〈"a" in _〉

Replacement

ReplNode

Constant〈x〉

ReplRelation

Child

ReplNode

Re f Num〈1〉

Fig. 14 Parts of an abstract syntax tree obtained from the rule

The pattern part of the rule produces the instruction list:

[FIND ’"a" in _’, REL child, GRPS 1, FIND True, GRPE 1]

For the replacement part, the generated instructions are:

[AREF 1, REL child, ADD ’"x"’]

Searching is performed on the searching machine – a
list of branches (groups, match, node, rel, instrs). The se-
quence of machine states is as follows:[
({0}, [{}], root, descendant, [FIND ’"a" in _’, . . . ])

]
⇒(1)[

({0}, [{a1}], a1, descendant, [REL child, . . . ]),

({0}, [{a2}], a2, descendant, [REL child, . . . ])
]
⇒(2)[

({0}, [{a1}], a1, child, [GRPS 1, . . . ]),

({0}, [{a2}], a2, child, [GRPS 1, . . . ])
]
⇒(3)[

({0,1}, [{a1}, {}], a1, child, [FIND ’True’, . . . ]),

({0,1}, [{a2}, {}], a2, child, [FIND ’True’, . . . ])
]
⇒(4)[

({0,1}, [{a1,b},{b}], b, child, [GRPE 1])
]
⇒(5)[

({0}, [{a1,b},{b}], b, child, [ ])
]

The first instruction (1) searches for all descendants (in-
cluding itself) of the root node whose label contains the let-
ter “a”. There are two such nodes, so the current search-
ing branch is divided into two, having the corresponding
group 0 of each match updated and the context node set.
A relation-setting instruction is executed (2) on each of the
branches. A start of a new group (3) adds the group number
to the current group set and appends a new, empty subtree to
the match. Then all children of the context nodes are found
(4). Since the context node of the second branch, a2, does
not have a child, this branch is removed from the machine.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



34 A Terse String-Embedded Language for Tree Searching and Replacing

After the group number 1 ends (5), the instruction list of the
sole remaining branch is empty and the search finishes.

For each match (in this case, only one) a replacement-
building machine (match, instrs, node, rel, tree) is created.
The execution process follows.(
[{a1,b},{b}], [AREF 1, . . . ], None, None, None

)
⇒(1)(

[{a1,b},{b}], [REL child, . . . ], b, None, b
)
⇒(2)(

[{a1,b},{b}], [ADD ’"x"’], b, child, b
)
⇒(3)(

[{a1,b},{b}], [ ], x, child, b
|
x

)
The back-referencing instruction (1) creates a new tree

(because it is not yet created) containing the subtree from
the group 1, which is the sole node b. It sets the context
node to the root of the added tree – b. Then a relation is set
(2) and a node with the value of “x” is added to the tree (3)
as a child of the context node.

The matches are not overlapping (since there is only one
match) and the replacement can proceed. Because the pat-
tern and the replacement are of the same shape (two nodes
– a parent and a child), the first strategy is used. The value
of node a1 is replaced by “b” and the value of node b by
“x”. The result is shown on the right side of Fig. 13.

The transformation then stops because the search pat-
tern is no longer present in the tree.

6. CONCLUSION

Our goal was to create a terse, string-embedded lan-
guage for tree transformations where the node values can
be arbitrary objects and nodes can react to changes which
occur during transformation. The language is not limited to
a particular application domain like natural language pro-
cessing or AST transformation. Functionalities of the host
language can be accessed easily within the embedded code.
The ability to react on node changes has an advantage that
tree-resource mapping like a simple tree visualization can
be implemented with minimum effort.

To lower the barrier of learning a new language, sev-
eral concepts resemble popular string regular expression
implementations to some extent. Furthermore, an on-
line tutorial using the IPython Notebook [12] technology
is available at http://nbviewer.ipython.org/github/

sulir/treepace/blob/master/doc/Tutorial.ipynb.
A short comparison of selected features with existing

similar languages can be found in Table 2.

6.1. The language expressivity

The expressivity of Treepace patterns is comparable to
XPath. The concept of relations in our solution is similar to
XPath axes. An important difference is that Treepace does
not support the descendant (a direct or indirect child) rela-
tion. This is justified since XPath queries return only a set
of nodes while Treepace matches a continuous subtree.

The theoretical expressivity of Treepace is limited by
the fact its current version does not support any form of a
repetition or alternative in the pattern. Hence for the given
pattern string, the matched subtree has a fixed number of
nodes.

Table 2 A comparison of Treepace with similar languages

terseness arbitrary objects
as node values

embedding
type

Treepace yes yes string

XSLT no no none

XQuery
Update

partial no various

Tsurgeon yes no none

JastAdd no yes none

Gremlin partial no pure, string

Regarding the replacement, there are two main limiting
factors. First, the matches must not overlap. Second, there
are currently only five replacing strategies built-in. How-
ever, it is possible to use only the pattern matching part of
the library and perform the replacement manually.

6.2. Possible extensions

It would be interesting to implement patterns sim-
ilar to Regular XPath [13], particularly the transitive
closure support. This would allow using patterns like
root < child (,child)*. The star in the pattern would
represent a repetition, so it would select all direct children
(labeled “child”) of the root node.

Often used concepts like checking whether a node is a
leaf, should have their own syntactic sugar. Thanks to the
object-oriented nature of the library source code, it will be
easy to add additional relations or replacing strategies to
Treepace.

More details about Treepace can be found in the mas-
ter’s thesis [14].

ACKNOWLEDGEMENT

This work was supported by VEGA Grant
No. 1/0341/13 Principles and methods of automated ab-
straction of computer languages and software development
based on the semantic enrichment caused by communica-
tion.

REFERENCES

[1] SULÍR, M. – ŠIMOŇÁK, S.: Methods and Appli-
cation of Tree Transformations. Electrical Engineer-
ing and Informatics IV: Proceedings of the Faculty of
Electrical Engineering and Informatics of the Techni-
cal University of Košice, 2013. 373–377

[2] CLARK, J. et al.: XML Path Language (XPath). 1999.
http://www.w3.org/TR/xpath

[3] GENEVÈS, P.: Course: The XPath Language. Greno-
ble: University of Grenoble, 2014. http://wam.

inrialpes.fr/courses/PG-MoSIG13/xpath.pdf

[4] GOTTLOB, G. – KOCH, C. – PICHLER, R.: XPath
processing in a nutshell, ACM SIGMOD Record 32,
No. 2 (2003) 21–27

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://nbviewer.ipython.org/github/sulir/treepace/blob/master/doc/Tutorial.ipynb
http://nbviewer.ipython.org/github/sulir/treepace/blob/master/doc/Tutorial.ipynb
http://www.w3.org/TR/xpath
http://wam.inrialpes.fr/courses/PG-MoSIG13/xpath.pdf
http://wam.inrialpes.fr/courses/PG-MoSIG13/xpath.pdf


Acta Electrotechnica et Informatica, Vol. 14, No. 2, 2014 35

[5] CLARK, J. et al.: XSL Transformations (XSLT).
1999. http://www.w3.org/TR/xslt

[6] ROBIE, J. et al.: XQuery update facility 1.0. 2011.
http://www.w3.org/TR/xquery-update-10/

[7] EKMAN, T. – HEDIN, G.: Rewritable reference at-
tributed grammars. ECOOP 2004 – Object-Oriented
Programming. 147–171

[8] LEVY, R. – ANDREW, G.: Tregex and Tsurgeon:
tools for querying and manipulating tree data struc-
tures. Proceedings of the fifth international conference
on Language Resources and Evaluation, 2006. 2231–
2234

[9] MILLER, J. J.: Graph Database Applications and
Concepts with Neo4j. Proceedings of the Southern
Association for Information Systems Conference, At-
lanta, GA, USA. 2013.

[10] ERDWEG, S. – GIARRUSSO, P. G. – RENDEL, T.:
Language composition untangled. Proceedings of the
Twelfth Workshop on Language Descriptions, Tools,
and Applications. 2012

[11] FORD, B.: Parsing expression grammars: a
recognition-based syntactic foundation, ACM SIG-
PLAN Notices 39, No. 1 (2004) 111–122

[12] PEREZ, F. – GRANGER, B. E.: An Open Source
Framework for Interactive, Collaborative and Re-
producible Scientific Computing and Education.
2013. http://ipython.org/_static/sloangrant/

sloan-grant.pdf

[13] TEN CATE, B.: The expressivity of XPath with tran-
sitive closure. Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems. 2006. 328–337

[14] SULÍR, M.: Language of tree transformation design
and implementation. Master’s thesis. Košice: Techni-
cal University of Košice. 2014 (in Slovak)

Received May 26, 2014, accepted June 22, 2014

BIOGRAPHIES

Matúš Sulı́r was born in Poprad, Slovakia in 1991. In 2014
he graduated with a master’s degree in Informatics from the
Faculty of Electrical Engineering and Informatics at Tech-
nical University of Košice. Currently he continues his
studies at the doctoral level. His research interests encom-
pass domain-specific languages, programming paradigms,
computer emulation and web technologies.

Slavomı́r Šimoňák was born in 1974. In 1998 he grad-
uated from the Department of Computers and Informatics
of the Faculty of Electrical Engineering and Informatics at
Technical University of Košice and defended his PhD thesis
titled “Formal Method Integration Based on Transforma-
tion of Petri Nets and Process Algebras” in 2003. Currently
he works as an assistant professor at the Department of
Computers and Informatics. His research interests include
formal methods integration and application, algorithms and
data structures, machine-oriented languages, and computer
emulation.

ISSN 1335-8243 (print) c© 2014 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery-update-10/
http://ipython.org/_static/sloangrant/sloan-grant.pdf
http://ipython.org/_static/sloangrant/sloan-grant.pdf

