
24 Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015, 24–31, DOI: 10.15546/aeei-2015-0025

ABSTRACT LANGUAGE OF THE MACHINE MIND

Ján KOLLÁR, Milan SPIŠIAK, Michal SIČÁK
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics

Technical University of Košice, Letná 9, 042 00 Košice, tel. 055/602 2561
E-mail: {jan.kollar,milan.spisiak,michal.sicak}@tuke.sk

ABSTRACT
In human-computer communication, abstract language of the machine mind should be represented by language concepts that re-

flect language concepts of humans. Language concepts are abstracted in the process of conceptualization and their meaning is given
by meaning of symbolized reality of surrounding world. That is why each concept represented internally has meaning by definition,
following semiotic approach. In this paper we present the description of our solution to the machine mind, so far restricted to regular
languages. To show that the mind is the language not just a grammar, we introduce briefly the principle of symbolization and concep-
tualization, omitting semantic aspects of thought. As a result, we get a supercombinator form for the internal language of the mind. We
do not solve here the language of thought in the sense of machine thinking. Using simple example of story occurring frequently in the
animal world, we will simply suppose that the stories represent external structured symbols and are approved be their existence. We
are focusing on their internal representation in the machine mind, which has language substance. First, we show how structural explo-
sion in the mind is prevented by well-performed abstraction during conceptualization. Second, introducing formalism of meta-lambda
calculus – an application of lambda calculus to regular expression, we present algorithmically evolved abstract internal language of
the machine mind in supercombinator form evolved by absorption of structured symbols on the machine input.

Keywords: Language abstraction, human-computer communication, language mind, meta-semantics, meta-lambda calculus.

1. INTRODUCTION

Conscious understanding the reality is the inherent
property of a human mind. But our hypothesis is that ma-
chines could perhaps mimic human language concepts, if
a machine alternative for an abstract internal language of
humans is evolved.

In this sense, machine understanding is an automated
evolution and interpretation of language concepts, sufficient
for exchanging semantically similar complex symbols be-
tween humans and machines. Externally communicated
symbols such as music, pictures, pictograms, words, sen-
tences, paragraphs, books, etc. in informal/natural lan-
guages, or statements, programs, models, graphs, etc. in
formal languages may have actually a very complex struc-
ture, which is approved on input of a human or machine
by its existence. Semantic similarity is the matter of the
same interpretation by communicating actors. In our opin-
ion, it is necessary to have the detailed structure of dynami-
cally evolvable machine mind before considering semantic
aspects of machine thinking.

Human-computer communication is at higher level of
abstraction than simple interaction, since information sig-
nificant for humans is reflected by machines at the higher
level of language abstraction, i.e. by concepts that are in-
ternal languages for external symbols. The hypothesis is
that we are not thinking in natural languages of loud sym-
bols that we recognize in our thoughts but in internal calm
concepts that we do not recognize at all. As we will see
these internal concepts consist of sub-concepts formed by
acquiring complex symbols on input. Hence, we follow
Shaymyan’s semiotic approach [17] not however restricted
to natural languages. As we feel, there are many applica-
tion areas, in that language abstraction in human-computer
and computer-computer communication is interesting using
also formal languages – some of them we introduce below.

Without-doubt, the evolution of languages in wider con-

text of human society is activated by communication [16]
since humans are symbolic beings. Following symbolic
Chomsky’s approach [6], we can see that language struc-
tures consist of external symbols, that are abstracted to
grammars. In reverse direction, automata are derived based
on grammars and they recognize language structures. To
prevent confusion, grammatical terminal symbols used in
Chomsky hierarchy of languages are not externally com-
municated symbols. They are fine-grained abstractions for
lexical units understandable to humans.

The crucial point in an efficient communication is lan-
guage abstraction [3,5,12]. The need for abstraction can be
found in many application areas, such as information sys-
tems, domain specific languages, telecommunication sys-
tems, computer networks, etc. Generating domain specific
languages starting with abstract syntax [2,15] are examples
of solutions based on abstraction.

From the viewpoint of strengthening communication
between humans and computers, the measure of automation
should be significantly increased. Machines must derive
language concepts in an automated manner when acquir-
ing information on their input. Grammatical inference [10]
comes out from Gold’s theorem [7] which states that it is
impossible to identify any of the four classes of languages
in the Chomsky hierarchy in the limit using only positive
samples. On the other hand, the machine is a passive ac-
tor in this approach, not able to formulate questions. As
we feel, the ability to formulate questions by machines is a
very important property, which is supported by the ability
to reconstruct external symbols from internal concepts in
our solution.

The complexity of conceptualization is usually solved
using probabilistic approaches, see [4,10,11]. In our exper-
iment [8] with genetic evolution of programs from context-
free (CF) grammars, genetic string is used in a determinis-
tic manner to generate base level programs from extended

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015 25

Backus Naur form metalevel.
Using crossovers in genetic evolution [13] is based on

the idea that material processes of genesis and growth of
living organisms are counterparts of immaterial grammat-
ical processes. Our approach is different. In our opinion,
systems are deterministic, just they are unknown to us in
detail, as stated by Peterson [14]. The finest level, which
we aim to recognize deterministically are not the biochemi-
cal processes in human brain, “just” immaterial processes in
forming the language of the human mind. Considering de-
terminism, a problem of structural explosion arises, which
is solved by Smith at automata level adding the auxiliary
variables, see [18]. Our approach is different – we are fo-
cusing to language and metalanguage level with automated
derivation of the automaton.

There is a strong need for the distributed structures for
deterministic finite state automata (DFA), along with the
ability for their matching in an associative memory [19].
This follows us to think about a fine grained parallel rep-
resentation of the machine mind language. In this paper,
we present the solution in the supercombinator form of ab-
stract language of machine mind, which has been derived
algorithmically. We also discuss the results and promissing
properties for further research.

But first, in Section 2, we introduce the essence of semi-
otic binding of symbolized reality to language concepts,
since it is crucial for understanding of mutual and non-
separable binding of syntax and semantics in our approach:
grammars are structural abstractions of languages, but at
the same time, grammars and languages are synonyms. Ab-
stract language of the machine mind, presented in this pa-
per, belongs to the category of regular languages in Chom-
sky hierarchy.

2. SYMBOLIZATION AND CONCEPTUALIZA-
TION OF REALITY BY MACHINES

Each symbol on input is symbolized and conceptual-
ized, before it is represented in an internal form of abstract
language of the mind. We introduce the principles of sym-
bolization and conceptualization in the following subsec-
tions.

2.1. Principle of Symbolization

As an illustrative example, let us introduce the reality
taken from an animal world: the dog and the cat are an-
imals and they are usually enemies. Both can be visu-
ally observed by human beings, and their pictures can be
recorded and reproduced by machines. This story is de-
picted in Fig. 1.

In general, reality is represented in a very different
ways, for example by photographs, by pictures, by sounds,
by words, etc. For the purpose of human-computer com-
munication, communicated symbols must be in the form
understandable to a human being. Let a picture of the dog
is designated by uppercase D and the picture of the cat by
C.

When C or D should be processed by machine in the
way analogical to humans, they must by symbolized for-
mally. Symbolization is the process of forming the bidi-
rectional associations of formal grammatical symbols to
recorded representations of real objects communicated as
external symbols. The process of symbolization is highly
dependent on aspects that are symbolized. For the purpose
of simplicity we suppose that transduction [1] is integrated
part of symbolization. Depending on aspects analysed and
transduced, original is less or more reproducible. For our
purposes, we use just a very coarse symbolization, in which
complex externally communicated symbol – a picture of the
dog differs from a picture of the cat, using different gram-
matical symbols. As a result, we have an ability to repro-
duce external symbols on output, what is the most impor-
tant here.

By symbolization of the dog and the cat, we obtain the
set of associations (1)

{ d↔ D, c↔C } (1)

where formal (grammatical) symbol d symbolizes
recorded picture D of the realistic dog, and symbol c sym-
bolizes recorded picture C of the cat.

In this way, whenever machine recognizes a picture of
the dog D on its input, it replaces this picture by symbol
d for internal processing, and vice versa, instead of d, it
produces picture D on its output.

At this stage of recognizing reality by machines, we can
also notice the difference between grammar and the lan-
guage: if association set (1) does not exist, symbols d and
c are grammatical symbols, since they have no meaning.
Otherwise, d is formally bound to an informal meaning of a
dog, and c is bound to an informal meaning of a cat. Hence,
d and c with associated meaning are primitive languages
that represent facts. Clearly, if machine displays picture D
instead of symbol d, it is understandable to a human being.

The communication is based on exchanging not just
facts but also complex structured symbols, such as user in-
terfaces, programs, models, stories, songs, etc. To illustrate
the principle of conceptualization, let us consider again the
structured symbol – the story of the dog chasing the cat in
Fig. 1. Looking at the story from the left to the right, the
sequence of picture records (2) is observed

Fig. 1 Structured reality: the dog chasing the cat

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

26 Abstract Language of the Machine Mind

D C D C D D C D D C D C D (2)

which expresses depicted story, and based on association
set (1) it is symbolized to the form (3)

d c d c d d c d d c d c d (3)

Form (3) is the simplest (i.e. string) form of the lan-
guage concept. Considering associated meaning it is the
concrete regular language. Ignoring associated meaning, it
is grammatical string, belonging to the category of regular
grammars (regular expressions) in Chomsky hierarchy.

As we will see in subsection 2.2, abstraction of concep-
tualization is more powerful than that of symbolization.

2.2. Principle of Conceptualization

Concepts are internal representations of external sym-
bols in the form of languages. Concepts may be very prim-
itive, but also very complex. Conceptualization is crucial in
language evolution, since it is the process of evolving (and
changing) the language during communication.

Considering the story in Fig. 1 in the form (3), it can be
expressed more abstractly: for example, the dog does not
start to chase the cat until a cat appears, so prefix d c is the
proposition to start chasing, and chasing is finished when
the cat escapes, hence story terminates by d. Chasing itself
consists of repeated running and jumping of animals, but
the cat sometimes disappears behind the tall grass. Omit-
ting the reasons, we introduce the abstraction as a possible
alternative, to be able to show that more abstract represen-
tation of concepts prevents structural explosion.

Then more abstract concept of the story can be ex-
pressed by regular language in the form of regular expres-
sion (4)

d c { d [c] } d (4)

where transitive closure { r }= ε | r | r r | r r r | . . . ex-
presses repeated (and possibly empty) sequence of regular
expression r (in our case r = (d [c]), and optional occur-
rence [r] = ε | r expresses the fact that r (in our case r = c)
occurs optionally.

The effect of abstraction by conceptualization is such
that different number of occurrences of the dog and the cat
is irrelevant for the sufficient recognition of acquired story

on input. Evidently, conceptualization can increase the ab-
straction of concepts rapidly, since (5) holds.

d c d c d d c d d c d c d ⊂ d c { d [c] } d (5)

It is also noticeable, that communicated symbols may be
matched by both partners in communication successfully,
even if their internal concepts are different or wrong, be-
cause they may be corrected in later evolution during com-
munication. This perfectly corresponds to the fact that com-
munication can be successful even if current internal repre-
sentation of concepts in the mind is different.

For example, if (more abstract) language concept
known to a human is (4) and (less abstract) language con-
cept known to a machine is (3) then just less abstract con-
cept (3) is usable in communication.

The wrong concept known to machine d c d { d | c } d
is correctly usable, until two subsequent c c does not appear
in communication.

If both partners recognize the same high abstract lan-
guage concepts (4), the communication is more flexible.
For example, both will agree that even d c d is the same
story (such that the cat appears and escapes after the first
dog’s jump).

Let us present in Section 3 the problem of structural ex-
plosion, which yields us our solution to the representation
of abstract internal language, introduced in Section 4.

3. STRUCTURAL EXPLOSION

When recognizing a sentence (a simple kind of reg-
ular language concept) by a deterministic finite-state au-
tomata, we are able to do so by abstract interpretation,
see [9], which is a meta-execution, i.e. execution of a meta-
language. When regular language is meta-executed, de-
terministic finite-state automaton is derived. But then the
problem of structural explosion arises. On the other hand,
the solution to this problem yields surprisingly simple rep-
resentation of the abstract language of the machine mind in
supercombinator form.

Let us explain first what the structural explosion prob-
lem means in the context of abstract language of the mind.

Using SUM for n-nary sum (| . . . |) metaoperation, SEQ
for binary right associative sequencing metaoperation,
TERM for terminal symbol, EXP for unary (()) metaop-
eration of subexpression, OPT for unary option ([]), and
CLS for unary transitive closure ({}), regular expression
d c { d [c] } d transformed to the syntactic tree and the
equivalent graph form is depicted in Fig. 2.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015 27

Fig. 2 Syntactic tree and graph of dc{d[c]}d.

Abstract interpretation on the syntactic tree just sequen-
tially emulates parallel flow of marks in regular expression
graph, but functionally both forms are equivalent. Derived
DFA is introduced in Fig. 3.

Fig. 3 DFA for dc{d[c]}d.

At this point, the problem of structural explosion can be
explained considering our animal story. Suppose that ex-
cept the dog and the cat, the mouse M (in symbolic form
m) appears as the third animal. Let us consider two other
stories being acquired as structured symbols on machine in-
put: (1) the cat chasing the mouse, and (2) the dog chasing
the mouse. Acquiring multiple structured symbols (regular
languages) subsequently is equivalent to their summariza-
tion. Summarizing three structured symbols, we get regular
expression and derived DFA according Fig. 4.

Clearly, the structure of regular language and corre-
sponding DFA grows rapidly. Summarizing hypothetically
thousand symbols acquired on input, the effect of structural
explosion is evident.

Fig. 4 Graph of dc{d[c]}d|cm{c[m]}c|dm{d[m]}d and derived DFA.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

28 Abstract Language of the Machine Mind

As can be seen, many similarities occur in explosively
evolved language and derived automaton. This tends us to
decompose the language (not the automaton) in the way
as a child dismounting the toy to see all its parts. But in
contrast to a child, which is not able to compose the toy if
missing some part, the machine mind minimizes the set of
languages in such way that original language and reality is
reproducible.

As a result we get abstract language as a minimum set of
abstract languages in supercombinator form, that are com-
posable dynamically, i.e. by the application, even in paral-
lel. The essence of method which we used when evolving
abstract language of the machine mind algorithmically, we
present in Section 4.

4. ABSTRACT LANGUAGE EVOLUTION

As we will see in subsection 4.2, abstract language is
a minimal set of abstract languages, derived from acquired
structured symbol on input. Abstract language itself has no
meaning, until it is applied to approved elementary sym-
bols, representing facts. Sets of elementary symbols are
derived during abstract language evolution.

The method of evolution uses meta-lambda calculus,
which we propose in the form of the application of lambda
calculus to regular expressions.

4.1. Meta-lambda Calculus

Lambda expression e is defined by the rule (6)

e→ a | x | e1 e2 | λx. e (6)

where a is a constant, x is a (lambda) variable, e1 e2 is
the application of an expression e1 to an expression e2, and
λx. e is the lambda abstraction, which designate a func-
tion with lambda variable x (formal parameter) and e is the
expression which defines the value of lambda abstraction
application.

A regular expression r is defined by rule (7).

r→ a | r1 + . . .+ rn | r1| . . . | rn | (r) | [r] | {r} (7)

where a designates a terminal, r1 + . . .+ rn is the se-
quence of regular expressions, r1| . . . |rn is the sum of regu-
lar expressions, and parentheses, brackets and curly brack-
ets have this meaning: (r) = r, [r] = ε|r, and transitive clo-
sure {r}= ε|r|rr|rrr|

Now, we are ready to express meta-expression r in
meta-lambda calculus form (8)

r → (λx. x) a
| (λx1. . . . λxm. r1 + . . .+ rn) a1 . . . am
| (λx1. . . . λxm. r1 | . . . | rn) a1 . . . am
| (λx1. . . . λxm. r) a1 . . . am
| (λx1. . . . λxm. (r)) a1 . . . am
| (λx1. . . . λxm. [r]) a1 . . . am
| (λx1. . . . λxm. {r}) a1 . . . am

(8)

in which all lambda abstractions are supercombinators
(lambda abstractions that have no free variables) and se-
quence operation in regular expression is designated by (+)
to distinct it from application designated by space.

4.2. Abstract Language of the Machine Mind Evolu-
tion and Results

Decomposing regular expression to maximum number
of supercombinators in the first step, we get the set of su-
percombinators (occurring multiply) and all arguments for
each of them. For example, the decomposition of regular
expression dc{d[c]}d introduced in Table 1 yields 13 su-
percombinators. L12 is the root, since its application repro-
duces structured symbol abstracted to dc{d[c]}d. It may be
proved that (L12 d c = dc{d[c]}d) holds.

Table 1 Supercombinators and their arguments for decomposed
regular expression dc{d[c]}d

Supercombinators Arguments

L0 = λx1. x1 d

L1 = λx1. L0 x1 d

L2 = λx1. x1 c

L3 = λx1. λx2. L1 x1 + L2 x2 d c

L4 = λx1. x1 d

L5 = λx1. L4 x1 d

L6 = λx1. x1 c

L7 = λx1. [L6 x1] c

L8 = λx1. λx2. L5 x1 + L7 x2 d c

L9 = λx1. λx2. { L8 x1 x2 } d c

L10 = λx1. λx2. L3 x1 x2 + L9 x1 x2 d c

L11 = λx1. x1 d

L12 = λx1. λx2. L10 x1 x2 + L11 x1 d c

Considering regular expression (9)

dc{d[c]}d|cm{c[m]}c|dm{d[m]}d (9)

we would obtain 40 supercombinators (L0 . . .L39), root be-
ing represented according (10)

L39 = λx1. λx2. λx3. L12 x1 x2 | L25 x2 x3 | L38 x1 x3 (10)

such that L39 d c m= dc{d[c]}d|cm{c[m]}c|dm{d[m]}d.
In the second step, multiple occurrences of supercom-

binators are removed considering equality of two abstract
languages.

Languages L1 and L2 are equal (L1 = L2) if they are of
the same arity and they are defined by equal expressions.
Expressions e1 and e2 are equal (e1 = e2), depending on

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015 29

their forms, see (11).

x1 = x2,
if x1 = x∧ x2 = x

L1 x1
1 . . . x1

n = L2 x2
1 . . . x2

n,
if L1 = L2∧ x1

1 = x2
1∧ . . .∧ x1

n = x2
n

[e1] = [e2],
if e1 = e2

{ e1 } = { e2 },
if e1 = e2

e1
x + e1

y = e2
x + e2

y ,

if e1
x = e2

x ∧ e1
y = e2

y
e1

1 | . . . | e1
n = e2

1 | . . . | e2
n,

if e1
1 = e2

1∧ . . . ∧ e1
n = e2

n

(11)

The result of compression for regular expression
dc{d[c]}d yields total minimum number of 8 supercom-
binators for internal abstract language, see Table 2, where
root is L7 (L7 d c = dc{d[c]}d), and compression ratio is
13/8 = 1.62.

The result of compression for regular expression
dc{d[c]}d|cm{c[m]}c|dm{d[m]}d yields total minimum
number of 9 supercombinators for internal abstract lan-
guage, see Table 3, where root is L8 (L8 d c m =
dc{d[c]}d|cm{c[m]}c|dm{d[m]}d), and compression ratio

is 40/9 = 4.444.

Table 2 Abstract language for symbol dc{d[c]}d

Supercombinators Arguments

L0 = λx1. x1 { d, c }
L1 = λx1. L0 x1 { d }
L2 = λx1. λx2. L1 x1 +L0 x2 { d c }
L3 = λx1. [L0 x1] { c }
L4 = λx1. λx2. L1 x1 +L3 x2 { d c }
L5 = λx1. λx2. {L4 x1 x2 } { d c }
L6 = λx1. λx2. L2 x1 x2 +L5 x1 x2 { d c }
L7 = λx1. λx2. L6 x1 x2 +L0 x1 { d c }

In general, if m is a minimum number of supercombina-
tors Lk, k = 1 . . .m, and Argsk is the set of arguments for lan-
guage Lk, then the number of all arguments ∑

m
k=1 | Argsk |

selected during internal abstract language derivation is
equal to the number of possible applications, that poten-
tially can reproduce all symbols acquired by structured
symbol, which is reproducible by application of the root
supercombinator.

Table 3 Abstract language for symbol dc{d[c]}d|cm{c[m]}c|dm{d[m]}d

Supercombinators Arguments

L0 = λx1. x1 { d, c, m }
L1 = λx1. L0 x1 { d, c }
L2 = λx1. λx2. L1 x1 +L0 x2 { d c }
L3 = λx1. [L0 x1] { c, m }
L4 = λx1. λx2. L1 x1 +L3 x2 { d c, c m, d m }
L5 = λx1. λx2. {L4 x1 x2 } { d c, c m, d m }
L6 = λx1. λx2. L2 x1 x2 +L5 x1 x2 { d c, c m, d m }
L7 = λx1. λx2. L6 x1 x2 +L0 x1 { d c, c m, d m }
L8 = λx1. λx2. λx3. L7 x1 x2 | L7 x2 x3 | L7 x1 x3 { d c m }

5. DISCUSSION

We were concentrated in this paper to the abstract (inter-
nal) language of the machine mind, obtaining the following
results.

1. There is no danger of structural explosion anymore,
since all terminals originally positioned in syntactic
tree leaves are now represented by one identity super-
combinator application, see Table 2 and/or Table 3.

2. Similar symbols on input exploit already stored el-
ementary supercombinators – two new stories yield
increasing the number of supercombinators by one,
compare Table 2 and Table 3.

3. Abstract language is non-redundant, i.e. multiple oc-
currences of supercombinators do not exist, although

they occur in a hidden form in a source regular ex-
pression, see decomposed form in Table 1.

4. Upper indices of supercombinators can be under-
stood as positions in a highly parallel architecture,
and supercombinators can be fetched by matching
before they are applied. Moreover, the application
of a supercombinator to arguments can be potentially
implemented by sending the values of arguments to
supercombinator inputs in a highly parallel dataflow
manner.

5. Considering supercombinators bodies, they are in the
form of regular expressions again, but they contain
the applications of other supercombinators instead of
terminal symbols. It yields intensive inner commu-
nication and clearly, a new kind of machine mind ar-

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

30 Abstract Language of the Machine Mind

chitectures is highly required.

6. Evolving the abstract language from an input struc-
tured concept, which is approved by default, many
other subconcepts are implicitly derived and ap-
proved. It means, that the communication based
on complex structured symbols evolves internal lan-
guage more rapidly, than if using just simple sym-
bols.

Our approach comes out from symbolism and concep-
tualism. The goal of our research is to find universal meta-
computational algorithm to the evolution of the machine
mind, considering both formal and informal languages. The
algorithm should produce the language structure of the ma-
chine mind, which should be appropriate for formal rea-
soning by an analogy to human thinking. In this paper we
present the solution restricted to the category of regular lan-
guages. Although our approach is different than that in cog-
nitive science based on connectionist models suported by
cognitive semantics, there are some common points.

First, the internal language of the mind in our solution
is represented by the meta-computational algorithm which
computes the structure similar to neural networks. Struc-
tural analogies between elementary supercombinators and
neurons, as well as between activating applications and
synapses are evident. The answer to the question if there
exists some mapping between supercombinator form and
neural networks is not so simple.

Second, meta-computational process of the evolution of
the machine mind dynamically varies the internal structure
of the mind, which is promising property taking into ac-
count that languages are changing during communication
permanently.

The main contribution for our future research is the fact,
that minimum supercombinator structure of the mind is a
possible criterion for well-performed automated abstraction
during conceptualization.

6. CONCLUSION

We present three levels in the automated language evo-
lution. The outer level of symbolization of reality is an
analogy to human perception. The middle level of concep-
tualization evolves structured symbols – regular languages
based on approval during communication. The inner level
contains abstract language of the machine mind derived in
the form of minimum set of supercombinators and their ar-
guments – sequences of symbols.

The essential impulse for doing this work is simple con-
sideration, that human beings are thinking and evolving
its languages when communicating with the external world
and/or with their internal minds. By an analogy to this pro-
cess, we solve the problem of the representation of abstract
internal language of machine mind algorithmically. As a re-
sult of automated evolution, highly parallel and structurally
non-explosive abstract internal language is derived, which
reflects reality dynamically, i.e. by applications, not by
data.

As we feel, it is promissing step and the proposition
for reasoning about the language concepts in the machine

mind.

ACKNOWLEDGEMENT

This work was supported by project VEGA 1/0341/13
“Principles and methods of automated abstraction of com-
puter languages and software development based on the se-
mantic enrichment caused by communication”.

REFERENCES

[1] BARSALOU, L.W.: Perceptual symbol systems, Be-
havioral and brain science,22, 1999, 577-660.

[2] BAČÍKOVÁ, M. – PORUBÄN, J. – LAKATOŠ D.:
Defining Domain Language of Graphical User In-
terfaces. In: Slate 2013 : 2nd Symposium on Lan-
guages, Applications and Technologies : June 20-21,
2013, Porto, Portugal. - Wadern : Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013, 187–202.

[3] BĚHÁLEK, M. – ŠALOUN, P.: Usage of embed-
ded process functional language as a modeling tool
for embedded systems development. In: International
Conference on Intelligent Systems, Modelling and
Simulation (ISMS) : Jan 2013, IEEE, 2013, 116–121.

[4] CARVALHO, N. R. – ALMEIDA, J.J. – PEREIRA,
M.J. – HENRIQUES P. R.: Probabilistic synset based
concept location, In SLATE12 Symposium on Lan-
guages, June 21-22, Braga, Portugal, 2012, 239–253.

[5] CHODAREV, S.: Development of Domain-Specific
Languages Based on Generic Syntax and Functional
Composition. Information Sciences and Technologies
Bulletin of ACM Slovakia, 2012, FIIT STU, 47–53.

[6] CHOMSKY, N.: Syntactic Structures, 1957. Walter
De Gruyter: Mouton classic, ISBN 3-1101-7279-8

[7] GOLD, M.E.: Language Identification in the Limit,
Information and Control, 10, 1967, 447–474.

[8] KOLLÁR, J. – PIETRIKOVÁ, E.: Genetic evolution
of programs. Central European Journal of Computer
Science, September 2014, 2014, 160–170.

[9] KOLLÁR, J.: Formal Processing of Informal Mean-
ing by Abstract Interpretation. Smart Digital Futures
2014, June 18–20, 2014, Chania, Greece. - Amster-
dam : IOS Press, 2014, 122–131.

[10] JAVED, F. – MERNIK, M. – BRYANT, B.R. –
SPRAGUE, A.: An unsupervised incremental learn-
ing algorithm for domain-specific language develop-
ment, Applied Artificial Intelligence, 22, 7-8, 2008,
707–729.

[11] McKAY, R.I. – HOAI, N.X. – WHIGHAM, P.A. –
SHAN, Y. – O’NEILL, M.: Grammar-based Genetic
Programming: A survey. Journal of Genetic Pro-
gramming and Evolvable Machines, 11, 3–4, 2010,
Springer US, 365–396, ISSN 1389-2576.

[12] OBRENOVIĆ, N. – POPOVIĆ, A. – ALEKSIĆ, S.
– LUKOVIĆ, I.:Transformations of Check Constraint
PIM Specifications Computing and Informatics, 31, 5,
2012, 1045–1079.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015 31

[13] O’NEILL, M. – RYAN, C. – KEIZER, M. – CAT-
TOLICO, M.: Crossover in Grammatical Evolution.
Genetic Programming and Evolvable Machines, 4,
2003, 67–93.

[14] PETERSON, J.L.: Petri Nets: Theory and Modelling
the Systems. Prentice–Hall, Inc. Englewood Cliffs,
1981

[15] PORUBÄN, J. – FORGÁČ, M. – SABO, M. –
BĚHÁLEK, M.: Annotation based parser generator.
In: Computer Science and Information Systems : Spe-
cial Issue on Advances in Languages, Related Tech-
nologies and Applications, 7, 2, 2010, 291–307.

[16] RENFREW, C.: Prehistory: The Making of the Hu-
man Mind. Modern Library Chronicles, 2009, 240 pp.

[17] SHAUMYAN, S.: A Semiotic Theory of Language.
Bloomington: Indiana University Press, 1987. 352 pp.

[18] SMITH, R. – ESTAN, C. – Jha Somesh – Kong Shi-
jin: Deflating the big bang: fast and scalable deep
packet inspection with extended finite automata, ACM
SIGCOMM Computer Communication Review, 38, 4,
2008, 207–218.

[19] YANG, Yi-Hua E. – PRASANNA, V.K.: Space-time
tradeoff in regular expression matching with semi-
deterministic finite automata, INFOCOM, Proceed-
ings IEEE, 10-15 April 2011, 1853–1861.

Received July 7, 2015, accepted January 18, 2016

BIOGRAPHIES

Ján Kollár is Full Professor of Informatics at Depart-
ment of Computers and Informatics, Technical university
of Košice, Slovakia. He received his M.Sc. summa cum

laude in 1978 and his Ph.D. in Computer Science in 1991.
In 1978-1981 he was with the Institute of Electrical Ma-
chines in Košice. In 1982-1991 he was with Institute of
Computer Science at the P.J. Šafárik University in Košice.
Since 1992 he is with the Department of Computer and
Informatics at the Technical University of Košice. In 1985
he spent 3 months in the Joint Institute of Nuclear Research
in Dubna, USSR. In 1990 he spent 2 months at the De-
partment of Computer Science at Reading University, UK.
He was involved in research projects dealing with real-
time systems, the design of microprogramming languages,
image processing and remote sensing, dataflow systems,
implementation of programming languages, and high per-
formance computing. He is the author of process functional
programming paradigm. Currently his research area covers
formal languages and automata, programming paradigms,
implementation of programming languages, functional pro-
gramming, and adaptive software and language evolution.

Milan Spišiak graduated (M.Sc.) at the Department of
Computers and Informatics of the Faculty of Electrical En-
gineering and Informatics at Technical University in Košice
and currently he is working towards his PhD at the same
university. His current research focus on formal and infor-
mal languages symbolization and conceptualization.

Michal Sičák is computer science PhD student at the De-
partment of Computers and Informatics of the Faculty of
Electrical Engineering and Informatics at Technical Univer-
sity in Košice. He received his M.Sc. summa cum laude in
2014. The subject of his research involves evolution and
conceptualization of grammars and languages.

ISSN 1335-8243 (print) c© 2015 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

