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ABSTRACT 
Meshless methods have attracted considerable interest to the flexibility of adding or removing nodes in the domain 

of study without any need to remeshing with elements. In this paper the meshless local Petrov Galerkin (MLPG) method 
is applied to electromagnetic field with a moving structure. The method is an effective truly meshless method for solving 
PDEs. Formulations are based on a local weak form using the moving least square (MLS) for interpolation schemes. 
This paper focuses on the application of this method to electromagnetic linear actuators which are finding increasing 
use in various fields.  The device presents an axisymmetric structure with a moving part displaced longitudinally with a 
constant step. The global magnetic force was calculated using the meshless magnetic potential solutions. Numerical 
results were compared to the FEM ones considering the structure both in pause and movement cases.   
 
Keywords:  Moving least square (MLS) approximation, Weight and Test functions, Domain of influence, MLPG method, Actuator, 
Movement 
 
 
1. INTRODUCTION 

Although the mesh-based finite element method is 
dominant in engineering now, it faces difficulties in 
solving problems involving large deformation and 
discontinuities [1]. In recent years, strong interest is 
focused on the development of the next generation of 
computational methods called meshless or meshfree 
methods [2]. The main objective of these ones is to get 
grid off, or at least to alleviate the difficulty of meshing 
and remeshing the entire structure; by only adding or 
deleting nodes in the entire domain of study [3, 4].  The 
meshless approach does not need a mesh generation to 
divide the problem domain, the necessary information to 
provide a solution, is only the location of scattered nodes 
in the region and on the boundary [2].  Several meshless 
approaches have been developed, based on global weak 
forms and which may be classified as Galerkin methods. 
These methods use a background mesh for the numerical 
integration of the weak form which may also become 
distorted during large deformations; therefore these 
methods are not truly meshless [16].  Recently, methods 
based on the local weak forms have been proposed, the 
meshless local PetrovGalerkin method based on a local 
weighted residual method [Atluri and Zhu (1998)] has 
attracted a lot of attention and extended too many 
problems [18]. In the MLPG method, both the trial 
function and test functions are constructed on local 
subdomains, and only local background integration cells is 
required. The choice of the test and trial functions is very 
flexible [4], here; the MLS weight function is used as test 
function in the local weak form. The shape function 
constructed by the interpolation, does not possess the 
Kroneker delta property, the penalty approach is used to 
enforce the essential boundary conditions [24].  

 

In the present work, an MLPG algorithm is 
implemented for 2D magnetodynamic field problems and 
applied to an electromagnetic linear actuator device.  The 
study began by considering the plunger in a static position 
as a magnetostatic problem. Then the study aims to 
evaluate the variation of global magnetic force in function 
of the displacement of the moving part, using only some 
nodes in the computation. Every new position is 
considered as a new magnetostatic problem. The 
movement is taken into account by only modifying the 
physical properties of released or occupied regions [9] or 
by adding and deleting some nodes associated to the 
moving band. 

Meshless results are in good agreement compared to 
FEM ones by making a judicious choice of some meshless 
numerical parameters. 
 
2. WEIGHT  FUNCTIONS 

The weight function is an important ingredient in the 
moving least squares interpolation (MLS) largely cited in 
the literature and used to form the trial function by 
generating the shape function [28]. The weight function 
is defined with a compact support, often called domain of 
influence. This domain can be circular, elliptic or 
rectangular. Its width is defined by: 

ImaxmI Cdd              (1) 

where maxd is a scaling factor and IC  the difference 

between node XI and its nearest neighbour when the nodal 
distribution is uniform. If the nodes are not uniformly 
distributed IC is taken as follows: 
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where JS is the minimum set of neighbouring points of XI 

which construct a polygon surrounding point XI. 
Cubic spline, exponential and Gaussian functions are 

some of the commonly used weights. The weight function 
used in this paper is the cubic spline function: 
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where mII d/dr   is the normalized distance with 

II XXd  . 

In 2D, the influence domain covers an area [6].  In this 
work, a rectangular shape domain is chosen and the 
interpolation is calculated using a linear basis function. 

3. AXISYMMETRIC FORMULATIONS  

The electromagnetic equation describing the 
axisymmetric problem, in terms of the magnetic vector 

potential A


, is given by: 
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where μ, σ et J


are respectively the magnetic permeability, 
the electric conductivity and the external current density. 
The essential and flux boundary conditions are 
respectively: 
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where:   qu is the boundary of Ω and  n is the 

unit outward direction to the boundary q . 
Using 2D cylindrical r, z coordinates, and as the 

magnetic vector potential A


 has only the φ component      

( AA


 ), the equation (4) became: 
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Equation (6) can also be written as 
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Using the modified vector potential rAA  leads to: 
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where r  is the relative magnetic permeability and 0
 
is 

the permeability of free space. 
In a sub-region tes   (of boundary s ) located 

entirely inside the global domain, the local weighted 

residual form with the penalty method used to enforce 
essential boundary conditions gives [4]: 
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where A is the trial function obtained by the MLS 
interpolant, is the test function, α is the penalty 

parameter,   ss , ussu    and qssq  
(see Fig. 1). Using the divergence theorem, the local weak 
form of governing equation will be: 
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The test functions can be chosen to vanish on sL , 

therefore the term  Lsq vanishes.  

Note that the MLS approximation of A can be written 
as: 
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where: )z,r(I is the MLS shape function of node I.  

IA are the nodal values of A and n is the number of 

nodes. Then the weak form leads to the resulting system 
of equations: 
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where ‘int’ and ‘bdry’ denote internal and boundary nodes 
respectively: 
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Numerical integration of Gauss is used to evaluate the 
integrals involved in equations (13) to (16) in every sub-

domain s . 
In the present work, the test function is defined in a 

similar manner as the weight function in the MLS 
approximation, by replacing the dmi by i0dm  called 

support domain of node i: 

imax0i0 C .d  dm       (17) 
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The scaling factors are chosen to ensure a symmetric 

Ωs, so the test functions )X(i were chosen to vanish on 
i

su  such as νi =0 on i
su  for node i. 

The implementation of the MLPG method can be 
carried out according to the flowchart cited in [3]. 

 

 
 

Fig. 1  Principle of MLPG method 
 

Note that in MLPG method, just a cloud of nodes and 
their corresponding domain of influence are used. The 
domain of each point contain some nodes in the 
neibeirhood making a virtual connectivity.  No fixed nodal 
connectivity to form elements as in the universal FEM. 
Also, no shadow mesh for the domain integrals as in some 
meshless methods which makes them not trully meshless.  

4. APPLICATIONS AND RESULTS 

The proposed method is applied to an axisymmetric 
actuator device which represents an electromagnetic 
hummer with a simple configuration. The system consists 
of (see Fig. 2 (a)): 
1- One cylindrical coil supplied by a constant current 
impulse  I=90A and containing N=1178 of spires. 
2- A ferromagnetic non conducting cylindrical plunger       
( 0 ,230r   ) is moving longitudinally towards the 

coil with a constant step.  
3- The free space, containing the air, surrounds the load 
and the inductor. 
The electromagnetic field is pulling the core inside the 
coil with effect of a magnetic force determined at each 
step (regular) of the displacement.  

The axisymmetric problem structure is presented in 
Fig. 2 (b), essential boundary conditions are imposed on 
all sides (A0=0). 
 

 
 

Fig. 2 (a)  2D Representation of the linear actuator  
 

 
 

The dynamic problem is considered as a series of 
magnetostatic problems, each one for every new position 
of the load. 

The magnetic energy, in axisymmetric coordinate's 
case, is calculated using the formulation: 


coil

mag AdrdzJW      (18) 

Where A is the magnetic vector potential and Jφ the 
excitation current density. 

Then, the total magnetic force, for a regular increment 
of displacement Δz is calculated as: 

dz

dW
F mag

mag        (19) 

The realization of all simulations have been achieved 
in Matlab environment. 

 
A. PLUNGER AT A FIXED POSITION 
 

A set of (55x51) irregular nodes is generated to 
represent the problem domain at the initial position 

 0.22m=z0 of the load (Fig. 3). 

 
 

Fig. 3  Nodal arrangement on domain of study and boundaries 
at depart position (55x51) nodes 

 
The meshless accuracy can be performed by selecting 

the adequate numerical parameters of the method. All 
MLPG calculations were achieved by the choice of the 
following factors: 66.1dmax  , 35.1d 0max  , 6x6 of Gauss 

points in every node sub-domain s (without any 

partition) and 3 points on each section su  with the penalty 

factor of  810 . 
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To validate meshless results, these ones are compared 
to FEM where a large number of nodes (51369 nodes) is 
used to approximate almost exactly the exact solutions.  

Meshless and FEM isovalues contours of the magnetic 
vector potential, corresponding to the initial position, are 
shown in Fig. 4 and Fig. 5 respectively.  

Fig. 6 shows computed solutions along the line 
r=12Δr (Δr is the step along r direction) passing through 
the inductor. As it is noticed, results are in good 
agreement. 
 

 
 

Fig. 4  FEM equipotential lines of the magnetic vector 
potential A 

 

 
 

Fig. 5 MLPG equipotential lines of the magnetic vector 
potential A 

 

 
 

Fig. 6  Meshless and FEM solutions along the line (12Δr, z) 

 
B. THE PLUNGER IN MOVEMENT 
 
First study 
 

In this case, the displacement step Δz is equal or 
multiple of the regular discretization step Δh.  When the 
armature moves with an increment Δz, physical properties 
assigned to sub-regions released or occupied will be 
changed according to their new assignment (air or 

plunger) leading to a new magnetostatic problem. The 
meshless Magnetic force curve compared with the FEM 
show a good similitude with the two solutions (Fig. 7). 
The plunger was displaced over the distance z=0.2m by 
the step Δz=0.02m. 
 

 
 

Fig. 7  MLPG and FEM Magnetic forces for  Δz=0.02m 
 
 

Second study 
 

In this case, the displacement step is different from the 
discretization one. The problem is treated by only moving, 
adding or deleting nodes in the concerned band of 
movement as a succession of magnetostatic problems. 

The meshless and FEM magnetic forces are calculated 
for a displacement of z=0.19m by the step 
Δz=Δh/2=0.01m. As it is seen in Fig. 8, the curves are 
very close. 
 

 
 

Fig. 8  MLPG and FEM magnetic forces for  Δz=0.01m 

5. CONCLUSION 

The MLPG method is a truly meshless method since 
no finite elements mesh and no background mesh is 
required in the interpolation or in the integration in 
solving a proposed problem. The method is implemented 
by using the moving least square approximation and the 
local weak form as well as the penalty technique to 
enforce the essential boundary conditions.  

In the present work, the method was presented to study 
magnetic field problems and applied to a real device, an 
axisymmetric linear actuator. The moving part was 
displaced longitudinally with a constant step. 

The study is based only on some nodes in the domain 
and its boundaries. The displacement of the body is taking 
in account by only changing the magnetic properties of 
concerning nodes in the moving band or by adding and 
deleting some nodes in every new position. This show the 
flexibility in dealing with the problem of movement.  
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The meshless method does not need a new generation 
of all nodes or the burdensome remeshing with fixed 
connectivities during the evolution of the simulation, 
which is the case of the universal FEM.  

However, meshless calculations need a judicious 
choice of some numerical parameters affecting the 
accuracy: Number of domain nodes and Gauss points, 
alpha parameter for imposing essential boundary 
conditions, and finally sizes of the weight and test 
functions domains.  MLPG results, for the selected 
adequate factors, were compared to the FEM ones 
showing good agreement between corresponding curves.  
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