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ABSTRACT 
A new numerical method to calculate the inverse hysteresis model using few experimental data extracted from the inverse first 

magnetization curve and based on scalar Preisach model is described. This modeling approach is applied to the case of soft 
ferromagnetic materials and allows the prediction of the necessary applied magnetic field value in order to obtain a desired 
magnetization function.  
In this paper, we first show how to model the inverse magnetic hysteresis behavior using an approach of the scalar Preisach type and 
the first magnetization curve [1-2] and then, the determination of the inverse density function using few experimental data extracted 
from inverse first magnetization curve. Mathematical developments revealed a parameter denoted  used in the positioning and 

whose variation affects significantly the magnetic properties. Comparisons of the obtained results with experimental data allowed 
the identification of the   factor as the tenth of the ratio of induction (magnetization) at the bend of saturation to the induction 

(magnetization) of saturation. The inverse model is then integrated into a finite element code using an electrical device formed of a 
ferromagnetic core surrounded by a coil which is supplied by a sinusoidal current. The efficiency and applicability of the developed 
method have been tested by numerical simulations and comparisons with available experimental data. 
 
Keywords:  hysteresis modeling, Preisach density function, inverse density function, scalar Preisach model, first magnetization 
curve, created points, magnetic materials, finite element method 

 

1. INTRODUCTION 

The Preisach model is built up as a collection of 
elementary bistable operators and gives a statistical 
interpretation of the hysteresis with a defined density 
function [3]. It is very used for hysteresis modeling in 
ferromagnetic materials. According to the scalar static 
Preisach model for the "direct model", the magnetization 

)(tM can be expressed as follows 
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Where   ,  is the Preisach density function,  ,R  is 

the elementary hysteresis operator (hysteron) with the 
switching fields ,  , and )(tH is the applied magnetic 

field, the input of the model, while )(tM  is the 

magnetization, the output of the hysteresis model. 
In the practice to describe accurately arrangements 

containing ferromagnetic parts, the Maxwell equations 
must be completed with the relations who describe the 
hysteresis behavior of magnetic materials. Also, in 
engineering design, with the current use of the field 
computation softwares, the need of coupling the numerical 
techniques with accurate hysteresis models is desired [2]. 

In some cases (where for example hysteresis may 
change substantially signal waveforms and performances), 
and in order to cancel or reduce the hysteresis effects (in 
order for example to obtain a desired signal shapes) it is 
very important to have at disposal an efficient and 
accurate inverse model [3-9]. 

In both cases (direct [1] and inverse Preisach models), 
the implementation requires the determination of the 
density function.   

In a finite element code using magnetic vector 
potential as unknown, we needs the relationship which 

gives the magnetic field H from the magnetic flux density 
B.  

In the following, we first show how to model the 
inverse magnetic hysteresis behavior using an approach of 
the Preisach type using the first magnetization curve and 
then, the determination of the inverse density function 
using few experimental data extracted from inverse first 
magnetization curve Finally, the inverse model is 
integrated in a finite element code using Matlab, a 
validation of the proposed method is given by comparison 
with experimental data. 

2. THE INVERSE PREISACH MODEL 

The direct model [1] calculates the magnetization of a 
material M (induction B ) given the applied field H : 
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The inverse problem is to predict the operative field 
H necessary to produce a magnetization M : 
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This is particularly true in the case of a finite element 
analysis, according to the formulation used, scalar or 
vector potential, it is necessary to have a relationship, 
respectively, of type (3). 

According to the Preisach model [9-10] and using the 
classical notations, an inverse Preisach model can be 
expressed as [9]: 
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From expression (4), it follows that the instantaneous 

value of excitation (output) depends on the induction, thus 
the inverse density function   ,  depends on these 

quantities over the Preisach triangle.         
Using the geometrical principle of Preisach model, the 

variation of the magnetic field is then given by [1, 3-9] 
 

   ddH  ,2                                        (5) 

 
This paper proposes for the inverse model a 

geometrical method using the same concepts as for the 
direct method, [1-2] using a few experimental data 
extracted from the inverted first magnetization curve for 
identification of the inverse density function   , . 

3. FORMULATION OF THE NEW PROPOSED 
METHOD FOR IDENTIFICATION OF INVERSE 
PREISACH DENSITY FUNCTION 

When using the proposed method for modeling the 
inverse behavior, a set of experimental points extracted 
from a first inverted magnetization curve and its 
symmetrical are then used, to create a cloud of point, they 
will then be used for the identification of the inverse 
distribution function of Preisach model. 

In the identification process, we make the following 
assumptions: 

1. in each cell C(i,j) of the discretized Preisach triangle,   
the density function ν(α, β) is constant: 

 
  ijjiji

jiC
Sdd   ),(),(
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   ,      (6) 

 
where S(i,j) is the area of the cell C(i,j), ν(i,j) the discrete 
value of the Preisach density function and  νij the discrete 
value multiplied by the area of the cell. 

 
2. symmetry of the density function with respect to the   

line (α = -β) in the Preisach triangle. 
Using these assumptions, we consider:   
• ( p ) given experimental points [(Bi,Hi), i=1,p] 

extracted from first inversed magnetization curve (see Fig. 
3 a)) with B constant. 

 

ii BBB  1                                                        (7) 

 
• ( p ) symmetrical points of the given experimental 

points relative to the (B, H)-plane origin and noted [(-Bi, -
Hi), i =1,p] (see Fig. 1a)). 

• a cloud of ( 2p ) created points noted by (Bij
*, Hij

*)  

and defined in the (B, H)-plane by: 
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where )(BH fmc  is the first inversed magnetization curve  

(completed by its symmetrical relative to the origin (0,0)). 
 sH and  sB are respectively the saturation field and the 

induction of saturation given by the first inversed 
magnetization curve. 

Created points are arranged in the (B, H)-plane 
following the procedure described below: 
1. Horizontal positioning: for the kth experimental point 

(Bk, Hk), we define [(Bkj
*, Hkj

*), j=1,2k-1] created 
points positioned in the region of the (B, H)-plane 
delimited by the lines (B = Bk) and (B = -Bk): 
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It should be noted that created points are also equally 
spaced (second equation of (9)). 

2. Vertical positioning: The magnetic field value *
kjH  is 

determined using a grandeur denoted by kH  which 

represents the magnetic field variation between two 
successive experimental points. The factor   is used and 

it allows vertical positioning of the created 

point ),( **
kjkj HB . Subsequently, for each experimental 

point, we obtain  )( kp  created points arranged vertically 

above it. The conditions given by (8) imply that the factor 
  must be positive. After positioning all the created 

points in the (B, H)-plane, we apply the Preisach model 
technique (4). Taking into account the assumption number 
2 (symmetry of the density function), we consider only 

)1( pp cells in the discretized  Preisach triangle. 

In the figure below (Fig. 1) are represented, the first 
inverted magnetization curve and its symmetrical and the 
cloud of point created for a discretization of the Preisach 
triangle. 

 
 
 

 
 
 
 
 
 
 
 
            

 

a)                                            b) 

Fig. 1  Geometric interpretation:  
a) Preisach triangle discretization by considering given 

experimental points and their symmetrical  
b) Preisach triangle discretization by considering a cloud of 

created points 
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To explain the process used in the new proposed 
identification method, we consider 3p  experimental 

points extracted from a given first inverted magnetization 
curve and their symmetrical relative to the origin of the 
(B, H) plane: 
[ ),( 33 HB  , ),( 22 HB  , ),( 11 HB  , ),( 00 HB , ),( 11 HB , 

),( 22 HB , ),( 33 HB ] 

For the first experimental point ),( 11 HB  and 

symmetric ),( 11 HB   (Fig. 2), in order to identify the 

contents of the cell corresponding to the discrete value of 
the inverse distribution function 11 , using a created point 

),( *
11

*
11 HB  arranged vertically above the point 

),( 00 HB (Fig. 2) and defined as follows: 
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The value of excitation *
11H  is determined using the 

grandeur noted 1H  which represents the variation of 

excitation between the experimental points 
),( 11 HB  , ),( 00 HB  and the factor   which allows the 

positioning of the point ),( *
11

*
11 HB  with respect to the 

experimental points ),( 11 HB  , ),( 00 HB : 

 
)( 011 HHH                                                    (11) 

 

0 avec   10
*
11   HHH                 (12) 
 

The variation between excitation )( 1H  and )( *
11H  is 

only involving cell )1,1(C  (Fig. 2), we then obtain: 
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Thus, one can deduce the value of the inverse 
distribution function corresponding to the cell )2,1(C  (Fig. 

2): 
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At this stage, we determined discrete values of the 

inverse distribution function 11 , 12  corresponding to the 

variation of excitation between ( 1H , *
11H , 1H ). 

For the second experimental ),( 22 HB  and its 

symmetrical ),( 22 HB  , we use three created points 

),( *
21

*
21 HB , ),( *

22
*
22 HB  and ),( *

23
*
23 HB  positioned  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2  Geometric interpretation of the procedure for the first 

experimental point (B1, H1) 
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For the third experimental point ),( 33 HB  and its 

symmetrical ),( 33 HB  , we use five created points 

noted: ),( *
31

*
31 HB , ),( *

32
*
32 HB , ),( *

33
*
33 HB , ),( *

34
*
34 HB  

and ),( *
35

*
35 HB  positioned vertically and above the points 

respectively ),( 22 HB  , ),( *
21

*
21 HB , ),( *

22
*
22 HB , 

),( *
23

*
23 HB  and  ),( 33 HB  defined as follows: 
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Finally, considering ( p ) experimental points, we 

obtain a system of )1( pp  equations whose unknowns 

are the discrete values of the inverse distribution function 
of the Preisach model ij . 

4. NUMERICAL RESULTS 

For the validation of the proposed method for 
modeling the inverse behavior we developed a simulation 
program that enables the positioning of the points created 
with respect to the experimental points used, and then the 
discretization of the Preisach triangle. 

For the simulations, we consider 15 experimental 
points extracted from the first inverted experimental 
magnetisation curve following the procedure developed 
with all its stages, we get a system of 240 equations 
numerically solved. Several numerical simulations were 
performed for different values of factor γ. 

 
For 2/1  

 
a) 
 

 
b) 

 
Fig. 3  a) Experimental curve and simulated curve (solid line 

with stars) generated by the proposed method 
b) Preisach distribution function generated by the proposed 

method for 2/1  

For 20/1  

 
a) 

 
b) 

 
Fig. 4  a) Experimental curve and simulated curve (solid line 

with stars) generated by the proposed method 
b) Preisach distribution function generated by the proposed 

method for 20/1  

 

For 10/1  

 
a) 

 

 
b) 
 

Fig. 5  a) Experimental curve and simulated curve (solid line 
with stars) generated by the proposed method 

b) Preisach distribution function generated by the proposed 
method for 10/1  
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For 20/3  

 
a) 

 
b) 

 
Fig. 6  a) Experimental curve and simulated curve (solid line 

with stars) generated by the proposed method 
b) Preisach distribution function generated by the proposed 

method for 20/3  

 
For 0  

 
a) 

 
b) 

 
Fig. 7  a) Experimental curve and simulated curve (solid line 

with stars) generated by the proposed method 
b) Preisach distribution function generated by the proposed 

method for 0  

For different values of the factor  , we presented the 

numerically identified Preisach inverse density function 
and the corresponding hysteresis cycle. The value 

20/1 gives a good restitution of the inverted 

experimental cycle (Fig. 4a)). The corresponding 
distribution function is represented in (Fig. 4b)). For 

10/1 and 20/3 , the simulated cycles are not in 

agreement with the experimental ones (Fig. 8) and (Fig. 
6), this is particularly true near the remanence. Finally, 
when   →0 the simulated cycle represents the median of 

the inverted experimental cycle (Fig. 7a)) the maximum 
values of the density function are situated on the line α = β 
which is a significant result because when α = β there is 
no hysteresis (Fig. 7b)). 

Based on the results obtained in [1], we have chosen 
the tenth of the ratio of induction (magnetization) at the 
bend of saturation to the induction (magnetization) of 
saturation value for the parameter  . 

In the figure below (Fig. 8) is represented, a 
comparison of the hysteresis cycle obtained with the 
proposed method and the hysteresis cycle obtained with 
the inverted centered cycles method [9]. The proposed 
method requires only the first magnetization curve 
generally provided by the constructor, whereas the method 
of the centered cycles requires a set of inverted centered 
cycles to better restore the experimental cycle. 

 

 
 

Fig. 8  Comparison of the hysteresis cycle obtained with the 
proposed method and the hysteresis cycle obtained with the 

inverted centered cycles method [9] 

5. INTEGRATION OF THE NEW INVERSE 
MODEL IN A FINITE ELEMENT CODE FOR 
THE RESOLUTION OF NON LINEAR 
MAGNETOSTATIC PROBLEM 

The magneto-static problem is described by the 
following Maxwell’s equations [9]: 

JH


 ,  in 10     (20) 

0 .  B


,  in 10          (21) 

HB


0 ,  in 0               (22-1) 

 )(0 HMHB


  , in 1                           (22-2) 

 
The studied magnetic field problem is separated into 

two parts, the magnetically nonlinear medium 
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(ferromagnetic core) denoted by 1  and the nonmagnetic 

domain (windings and air) denoted by 0 . 

H


, B


 and J


 are respectively the magnetic field 
intensity, the magnetic flux density, and the source current 

density. 0  is the vacuum permeability. M


is the 

magnetization vector.  
The problem region is surrounded by the boundary 

BH  .  

The tangential component of H on H  and the normal 

component of B on B , are set zero: 
 

0 nH , on H , and 0nB , on B         (22-3) 

The magnetic potential vector A


 is defined from 
equation (21) by:  

 

BA


    (23) 

By combining equations (20), (22-2) and (23), we 
obtain the nonlinear partial differential equation in terms 

of the magnetic vector potential A


: 
 

 MJA
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 0)(     (24) 

Axisymmetric problem is obtained from the 
electromagnetic equation in terms of the magnetic vector 
potential (24). In the axisymmetric case the source current 
density J  has only the φ-component ( J ) which is 

independent of φ, so the resulting magnetic vector 
potential has only the φ-component ( A ). Using 2D 

cylindrical r, z coordinates; equation (5) is developed as  
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Once the formulations are established, a technique for 
solving the nonlinear problem is then performed. The 
fixed point method [11-14], with its advantages described 
above, has been chosen. It consists in repeatedly solving 
the problem until the convergence of the solution by 
integrating the model of hysteresis. 

6. TEST PROBLEM MODELLING 

To illustrate the procedure presented, we consider a 
coil with a length of 0,012 m carrying a sinusoidal with 
the source current density J=106 A/m2at a frequency of 0.5 
Hz, which induces longitudinal currents in a cylindrical 
ferromagnetic sample with a length of 0.08 m and 0.02 m 
diameter. A free space (air) surrounds the coil and the 
ferromagnetic sample (Fig. 9). 

For the numerical modeling, the theoretical infinite 
limits of the study domain are brought back to a finite 
distance which can vary according to the desired 
precision. In our case, these limits were fixed at a distance 
0.2 m of the studied device. Taking into account the 
axisymmetric nature of the problem, only 1/4 of the 
domain is considered. The boundary conditions are 
represented on all the limits shown in Fig. 9. 

 
 
 
 

 
Fig. 9  Test problem and boundary conditions 

 
Below, we represent the iso values of the magnetic 

vector potential, the magnetic field evolution, and the 
magnetic induction as well as the hysteresis cycles, at the 
selected points of the ferromagnetic sample denoted C1 
and C2 whose coordinates are respectively: 
C1(0,0.02) and C2(0.01,0.02). 
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Fig. 10  The magnetic vector potential 
 

 
 

Fig. 11  Evolution of the hysteresis cycles in the selected nodes 
(C1 and C2) of the ferromagnetic sample 
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Fig. 12  Magnetic induction in selected points of the 
ferromagnetic sample 
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Fig. 13  The evolution of the magnetic field in selected nodes of 
the ferromagnetic sample 
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Fig. 14  Distribution function of the Preisach model used during 
the cycle trace at node C1 
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Fig. 15  Distribution function of the Preisach model used during 

the cycle trace at node C2 
 

7. CONCLUSION 

In this paper, we have shown that some experimental 
data extracted from the first inverse magnetization curve 
can be used for the determination of the inverse Preisach 
model. 

A comparison of the proposed method with previous 
similar studies [9] is presented and shows the 
effectiveness of the proposed method (Fig. 8). The method 
has been tested only for the case of a soft magnetic 
material and the results obtained are very acceptable and 
allow a very good restitution of the experimental reversed 
hysteresis cycles. 

We have also shown that the proposed method is well 
suited for use in a magnetic vector potential formulation 
by integrating it into a finite element code using Matlab 
where the fixed point method is used to manage 

nonlinearities. The advantages mentioned make the 
developed method a powerful numerical tool for the 
inverse identification of the scalar Preisach density 
function when only the inverse magnetization curve is 
given. 
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