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ABSTRACT
The Internet of Things (IoT) is one of perspective electronic sectors. In the near future a lot of common devices from a refrigerator

to a door lock will be connected to the internet. Protection of the IoT devices should not be neglected. The device security is composed
of many safety levels, where every countermeasure increases its robustness.

The paper describes an implementation of a True Random Number Generator (TRNG) used in many cryptographic algorithms
and protocols. It is based on a modern low-cost and low-power STM32F050 ARM-M0 microcontroller, suitable especially for IoT
applications. The main motivation for developing of such generator was its absence in lower members of microcontroller families.
Integrated TRNG uses common features of the microcontroller, which may be portable across ARM-M0 architecture. A source of
randomness is instability of internal RC oscillator, which is acquired using another faster clock and one timer.

The paper follows a previous research, but using the modern microcontroller with proposed on-line embedded tests which are
designed in order to be simple and effective.
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1. INTRODUCTION

Random numbers are an important part of security and
encryption systems. They are used e.g. as the keys in sym-
metric ciphers, stream in one time pad ciphers or primes in
the RSA encryption [1]. The security in such systems is
proportional to the randomness of the generated numbers.

Random number generators can be divided into two
groups:

• pseudo-random number generator (PRNG),

• true random number generator (TRNG).

PRNG uses various mathematical algorithms to gener-
ate random numbers. A speed of the PRNG is equal to com-
puting performance and generated numbers have very good
statistical properties. However, the sequence of numbers is
repeated with a very big period.

Their weakness consists in predictability of generated
numbers. If an intruder recognize the generator equation,
then he can predict its output. Typical example of abusing
is AES cipher, where whole security depends on the strong
and unknown key.

TRNG uses various physical factors like thermal noise,
noise of semiconductor part or clock jitter to generate ran-
dom numbers. Its output is hard to predict and unlike
PRNG, its entropy raises in time. The TRNG throughput
depends only on the quality and speed of the noise source.

In general, it is very usual approach to combine these
two kinds of generators to obtain the best of both.

The following article is aimed on the integration of the
TRNG and its simple on-line embedded test in the small
and cheap microcontroller STM32F050K6 [2]. The source
of noise is jitter of the low speed internal RC oscillator. De-
scribed generator can be applied in low-power, low-cost ap-
plications. The generator should be portable across various

families of microcontrollers with a Cortex ARM-M0 core.
The ARM-M0 core is not just a low-cost core, but it is also
used in devices of miniature dimensions with few number
of pins [3], that are very interesting for IoT application. Ex-
ploitation of Cortex ARM-M0 resources is described in de-
tail, so the generator can be easily reimplemented. A typi-
cal example of use can be a car remote control, a hand-held
transceiver or many other secured IoT applications.

2. GENERATION OF RANDOM NUMBERS

2.1. State of the Art

The principle was already proposed in 1955 by Bell
Laboratories for LSI circuits [4]. The same principle could
be used in modern microcontrollers as was shown in [5],
[6]. The generator uses two independent oscillators – a
high speed oscillator and a low speed oscillator. Several
periods of slower oscillator are measured by fast oscillator
(see Fig. 1).
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Fig. 1 Exploitation of the clock jitter in TRNG

In the ideal world, the value of the acquired counter
should be a constant value. However, in the real world noise
causes deviations in the acquired counter, which can be ex-
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tracted as random numbers. The main source of noise is a
clock jitter, which is defined as a clock instability in time.

Our proposed design of TRNG is very similar, but it dif-
fers in the following aspects:

• The previous generator was developed and focused
on an 8-bit AVR microcontroller [7]. Our design
is integrated on the modern low-cost 32-bit micro-
controller, based on the ARM-M0 core. Since its
architecture is similar to other ARM-M0 microcon-
trollers, the proposed generator may be portable to
many other microcontrollers. We integrated whole
TRNG using a one timer and two oscillators, which
can be internal.

• The TRNG was tested mostly by statistical tests.
They are sufficient for the early evaluation of the
generator, but insufficient for the real operation due
to their high computational complexity. In addition,
the statistical tests don’t ensure unpredictability of
the generator. We designed embedded TRNG tests
adapted to the generator, which monitors sufficient
entropy and guarantees proper functionality of the
generator.

• We optimized the throughput of the TRNG, by opti-
mizing the counter reading period, in order to have
sufficient entropy using only the last bit of the ac-
quired counter. Additional bits of the counter are
more sensitive. Therefore they are used in TRNG
embedded tests for earlier detection of the failure.
The previous work was oriented mainly on analysis
of every counter bit randomness.

2.2. Description of the Implementation

We designed the generator on the STM32F050K6 (new
marking STM32F031K6), 32-bit microcontroller based on
ARM 32-bit Cortex R©-M0 core [2]. The main advantage is
its high performance in comparison to its small dimensions
and low power consumption. Core can operate at a maxi-
mum frequency of 48 MHz and it contains 32 kB of flash
and 4 kB of SRAM memory. These types of microcon-
trollers usually contain an integrated TRNG only in more
complex devices (e.g. STM32F4xx).

The generator uses two oscillators, a slower 40 KHz
(LSO) one and a faster 48 MHz (HSO) one. To measure the
frequency we use a Timer 14 (TIM14) intended for inter-
nal or external clock measurement (see Fig. 2). The timer

allows to measure several periods of slower LSO oscilla-
tor and to generate appropriate interrupt. TIM14 allows to
capture clock signal from following sources:

• intended general purpose input pin (GPIO),

• real time clock,

• high speed external clock (divided by 32),

• microcontroller clock output (MCO) pin.

We are using the MCO pin, which can have various
sources. In our case, internal 40 kHz LSO is used. The
MCO clock frequency can be divided using the MCO clock
divider (max. dividing by 128), which unfortunately does
not feature all devices.

The input clock of TIM14 is sampled by scalable fre-
quency, and the clock edge is detected. The edge detection
is executed by several consecutive samples (number can be
adapted) and a rising or falling edge can be selected. The
next block, prescaler allows to generate the interrupt after
1/2/4 or 8 valid transitions.

Finally, capture register reads the 16-bit counter
(clocked by HSO) and generates interrupt each time the
prescaled edge is detected. If the capture register is read
after several interrupts, the entropy is accumulated and the
dispersion of the generator is bigger.

TIM 14 interrupt has to have a highest possible priority.
Any other interrupts with higher priority as TIM14 interrupt
may result in deterministic behaviour of the TRNG.

Every acquisition of the LSO period should be indepen-
dent from the previous one. There are two solutions how
to independently read data from the capture register during
the interrupt routine. The first one is to read data from cap-
ture register and reset the counter. Its disadvantage is that
a delay of the interrupt calling has a tiny impact on the ac-
quisitions, but the realization is very simple. The second
one is to remember the last capture register value and to
calculate the difference between two consecutive samples.
This calculation is computationally more complicated than
previous one.

In order to achieve the simplest solution we chose the
first one.

2.3. Optimization and Experimental Results

We have two main parameters which can adapt the out-
put of the generator, the prescaler size (PRSC) and the in-

Frequency
Divider *

/1,2 … 128
Prescaler
/1,2,4,8

PLLCLK
HSI

HSI48
HSI14

HSE
SYSCLK

LSI
LSE

MCO pin GPIO pin 

HSE/32
RTCCLK

TI1_RMP

MCO

Edge 
detector

Capture
register

Autoreload
counter

Interrupt or 
DMA request Timer 14 capture mode 

Internal Clock

Fig. 2 Exploitation of the Timer 14 for TRNG
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terrupt count (INT). PRSC defines how many periods of
LSO are elapsed until the interrupt routine is called and
INT defines how many interrupt routines are executed un-
til one random bit is read. Minimization of executed in-
terrupt routines per second minimizes a load of microcon-
troller. Therefore, we configured PRSC to the highest pos-
sible value - eight periods.

We did experiments to find the best INT value, in order
to optimize its throughput. We acquired 524,288 of 16-bit
capture counter words and tested individual bits by using
ENT test suite [8], similar to [6]. The test suite consists
of several smaller tests - Entropy, Chi-square Test, Arith-
metic Mean, Monte Carlo Value for Pi, and Serial Correla-
tion Coefficient. The binary sequence passes the test, if the
test results are close or corresponding to the values shown
in Table 1.

Table 1 The ENT test suite results of the ideal PRNG

> 7.976 0% 10 % < χ 2 < 90 % ~ 127.5 ~ 3.14 ~ 0

Compr. Chi Square
Arithmetic
Mean

Monte
Carlo

Correl.
Coeff.

Entropy

We did the tests for various values of INT = 1/2/3/4/5
that correspond with frequencies of counter reading of
5000/2500/1666/1250/1000 Hz (see Table 2).

Table 2 The ENT test suite results for individual TRNG bits

0 7.999708 0% 97.59% 127.4800 3.137204 -0.000592
1 7.980202 0% 0.01% 120.3084 3.280439 0.023683
2 7.873203 1% 0.01% 111.1374 3.367002 0.109169

0 7.999688 0% 90.06% 127.4712 3.145901 0.001630
1 7.997653 0% 0.01% 125.2827 3.197858 -0.000051
2 7.487666 6% 0.01% 91.1838 3.649581 0.117187

0 7.999650 0% 50.10% 127.5477 3.136059 -0.002757
1 7.999617 0% 14.84% 127.2944 3.136792 0.000997
2 7.831700 2% 0.01% 106.5012 3.484053 0.060202

0 7.999672 0% 76.59% 127.3845 3.139218 0.001754
1 7.999636 0% 32.90% 127.5111 3.140271 -0.000914
2 7.992287 0% 0.01% 125.4862 3.142239 0.045200

0 7.999630 0% 25.34% 127.5792 3.140362 0.000720
1 7.999675 0% 79.49% 127.4025 3.141049 0.001505
2 7.995464 0% 0.01% 124.627 3.193234 0.017945

Monte
Carlo

Correl.
Coeff.

Bit Entropy Compr.
Chi
Square

Arithmetic
Mean

Monte
Carlo

Correl.
Coeff.

Bit Entropy Compr.
Chi
Square
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Mean

Arithmetic
Mean

Monte
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INT = 1; f = 5000 Hz

INT = 2; f = 2500 Hz

INT = 3; f = 1666 Hz
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INT = 5; f = 1000 Hz

Bit Entropy Compr.
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Square
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Monte
Carlo
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These tests were done during standard operating condi-
tions (room temperature, unaltered voltage) and we used
the 8 MHz external clock source multiplied by PLL to

48 MHz as HSO and internal 40 KHz oscillator as LSO.
These attributes may affect TRNG, but they are not dis-
cussed in detail in the paper. We will focus on them in the
following work.

Table 2 shows the results of ENT test suite to the se-
quences of the zero bits, the first bits, and the second
bits. According to Table 1, all sequences for INT = 1, and
INT = 2 do not pass the tests – Chi Square test failed in
every case. In other cases we can see, that the lower fre-
quency of reading (lower throughput) increases entropy of
individual bits. It also corresponds with mean value, where
the Chi Square test passed in the cases, when the value was
very close to 127.5. Results show that the most sensitive
test is Chi Square test. These acquired data of different fre-
quencies and quality are also used as the test vectors for the
development of our embedded tests.

3. EMBEDDED TRNG TEST

The embedded TRNG test should be fast, simple, and
reliable. Our proposal is to use the last bit of the counter as
the generator output and to use additional higher two bits
for embedded tests. The higher bits are more sensitive than
the last bit (see Table 2), therefore they should indicate the
TRNG failure faster and more accurately than the statistic
tests of the generator output.

In the real application, the test can indicate TRNG fail-
ure, even if the failure didn’t occur (so-called false alarm).
These alarms are tolerable, if they are not very frequent. In
this case, the corrupted data are not used and new ones are
generated. However, the test should be very reliable and
sensitive for the total failure.

3.1. Poker Test

Let us imagine an example that poker player has five
cards, where the following combinations can be obtained:

• five of a kind – AAAAA,
• four of a kind – AAAAB,
• full house – AAABB,
• three of a kind – AAABC,
• two pairs – AABBC,
• one pair – AABCD,
• burst – ABCDE.

Every combination of cards on hand during ”poker
game” should be repeated with some statistical probability,
which can be easily calculated. When we use these proba-
bilities as reference for observation, we can estimate if the
sequence of cards in a poker game is random or not. Then
Chi-Square analysis is used for expression of the dependen-
cies.

The same principle is used in Poker Test for testing of
random data. The five consecutive integers are observed
and one of the seven different patterns is recognized. Poker
Test is also one of the NIST random number statistical
tests defined in FIPS 140-1 (it was already superseded by
FIPS 140-2, where the Poker Test is missing, but it is still
used in many applications). There is also modification of
Poker Test where only four or three consecutive numbers
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are used [9]. Their advantage is mainly a lower computa-
tional effort.

We utilized such test in our embedded tests, where we
used the last three bits of the counter. The test must be fast,
so we took 1032 samples of counter (the number divisible
by 3), where every sample consists of the last three counter
bits. We used Poker Test with the hand of three consecu-
tive numbers, due to its simplicity. The following Table 3
shows possible combinations and the probability of their
occurrences in an ideal source of randomness:

Table 3 Probability of counter values occurrence using Poker
Test with Hands of Three Numbers

Combination
Probability of
the occurrence

Expected
occurrence

Three of kind (AAA) 0.016 16
One pair (AAB) 0.328 339
Burst (ABC) 0.656 677
Sum: 1 1032

We analysed 4064 sequences (one sequence = 1032 bits)
of our recorded data and calculated the Chi-Square (X2) us-
ing the following formula:

X2 = ∑
(O−E)2

E
(1)

The degree of freedom for our Table equals to two, so
the critical value of X2

.05 equals to 5.99. Every sequence
which had a value higher than or equal to X2

.05 was marked
as failed. We carried out these tests for the same data as
in the previous section, in order to see if the embedded test
can detect worse TRNG quality.

As we can see earlier in Table 2, the first usable gener-
ator output is for the frequency of 1666 Hz. The results of
Poker Test follow these results and there is also a consid-
erable difference between 2500 Hz and 1666 Hz (Table 4).
One of disadvantages of the test is its higher computational
effort which can be crucial in low-power consumption ap-
plications.

Table 4 Results of Poker Test for various frequencies

TRNG
Frequency

Number of successful Number of failed

5000 Hz 0 (0 %) 4064 (100 %)
2500 Hz 250 (6 %) 3814 (94 %)
1666 Hz 2830 (70 %) 1234 (30%)
1250 Hz 3656 (90 %) 408 (10 %)
1000 Hz 3779 (93 %) 285 (7 %)

3.2. Counter Distribution Test

One of the simplest tests of randomness is to calculate
the mean value. It does not monitor the patterns in a se-
quence similarly to Poker Test, however it is very easily
implemented. Usually it counts the number of zeros (or
ones) during some period.

We used the advantage of the additional counter bits and
designed a similar test. The test counts and records an oc-
currence of the last three bits of 16-bit counter words, where
only values from zero to seven can be obtained. In an ideal
case, we should have a uniform distribution of these values.
Fig. 3 shows the distribution of last three bits of the counter
values for various frequencies (the same set of data as in Ta-
ble 2). We can see that the distribution is more significant
than just mean value of the last bit.
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Fig. 3 Distribution of the last three bits of the generator

The next step was to find a proper threshold value for the
TRNG test. As we can see in Fig. 3, the proper generator
has a uniform dispersion, while wrong generator shows sig-
nificant differences between values. Therefore we designed
a double-sided threshold, in order to detect maximum and
minimum values. The threshold is configured symmetri-
cally on both sides from the estimated mean value. It is de-
fined by percentage parameter s, which defines how much
the sequence can be skewed from the mean value. If some
value of the dispersion overruns one of the thresholds, the
test is marked as failed. Top threshold t, and bottom thresh-
old b for n samples of k bits are calculated as follows:

t =
n(100+ s)

2k100
b =

n(100− s)
2k100

(2)

We did experimental tests for 4064 sequences of various
frequencies with different threshold values (see Table 5).
Our TRNG test uses sequence of size n = 1032 samples (one
sample has k = 3 bits – last three bits of 16-bit counter). The
test works very precisely, because for 2500 Hz and 5000 Hz
it indicates the generator faults, similarly to the ENT sta-
tistical tests. We can also see some failures in frequency
of 1666 Hz. They represent the false alarms, which don’t
mean the total failure of the generator. One of the total
failure tests consist in a maximum allowed number of con-
secutive failures, the other consist in a maximum number
of the threshold overruns (from one to eight).
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Table 5 Number of failed sequences for different threshold values

4. CONCLUSION

The paper presented TNRG implementation for low-
cost ARM-M0 core based microcontroller, where the simi-
lar TRNG is typically missed and integrated only in higher
families of the microcontroller. We described in detail its
principle and implementation. We optimized its through-
put and obtained the frequency of reading around 1666 bps.
The achieved throughput is bigger than in the similar exist-
ing implementations.

We also designed two tests which can be used as embed-
ded test - Poker Test and Counter Distribution Test. These
tests use internal bits of the generator and they should detect
the fault of the generator faster than statistical tests on the
output sequence. The Counter Distribution Test is computa-
tionally simpler and can detect the generator fault similarly
to (or even better than) Poker test. On the other hand, it just
guarantees that the generator has proper distribution and it
does not guarantee its randomness.

The following work will be focused on testing of the
generator and its embedded on-line tests during various en-
vironmental conditions like temperature or power supply.
We also plan to integrate the TRNG on similar ARM-M0
core based microcontrollers of various families.

Described TRNG design uses just noise of jittery
clocks. Therefore one of the alternative to proposed TRNG
can be in the future design with other clock sources, or de-
sign with different source of noise (e.g. thermal, or atmo-
spheric noise).
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