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ABSTRACT
We present a fully mechanized proof of correctness and stability of the insertion sort algorithm, while handling stability not as an

afterthought in its formal specification, but rather as a property removing any unspecified behaviour from the algorithm, by explaining
what happens to elements that are considered equivalent. We therefore express the combined notion of being sorted along with stability
as a single inductive predicate, allowing us to share uncovered information in proofs, resulting in a more elegant approach to showing
correctness and stability of sorting algorithms. Naturally, there are also cases when we can indeed forget about stability. We prove, that
under the assumption that the sequence to be sorted contains unique elements only, sorting and stable sorting are equivalent notions.
Formalization is conducted in the Lean theorem prover.
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1. INTRODUCTION

Given the ubiquity of application of sorting algorithms,
it should come as no surprise that many attempts at formal
software specification with consequent verification revolve
around this very topic. In addition to the fact they are com-
monplace, and as such, having their formal proof of cor-
rectness is inherently very useful, they are also reasonably
complex algorithms (in terms of invariants they establish)
with relatively easy to formulate specification and imple-
mentation.

This tradition was started by Hoare and Foley [1] in
1971, when they conducted a proof on paper of the impera-
tive quicksort algorithm. They also suggested the possibil-
ity of mechanization of the said proof, but disregarded the
idea after short contemplation given the state of available
tools then.

Continuing with the tradition, Filliâtre and Magaud [3]
used Coq [2] to formalize and prove correct imperative in-
sertion sort, quicksort and heapsort. Selection sort in Java
using Krakatoa Modelling Language [5] for specification
of behaviour has been formalized by Tushkanova, Giorgetti
and Kouchnarenko [4].

With regards to more recent developments, it has been
implicitly established that the notion of stability is also an
important characterizing factor of sorting algorithms and as
such, its presence (or lack thereof) should be captured in
formal specifications. We are aware of two developments
of certified sorting algorithms that also consider stability. In
2013, Sternagel [6] used a declarative Haskell implementa-
tion of merge sort (one supposedly used by GHC, a major
compiler provider for the language in question) as basis for
an implementation in Isabelle/HOL [7], which he then not
only proved correct with regards to the expected sorting be-
haviour (to be discussed shortly), but also showed that the
implementation he is using happens to be stable. Shortly
thereafter, Gouw, Boer and Rot [8] formalized a Java imple-
mentation of counting sort and radix sort, utilizing KeY [9]
to conduct proofs of correctness and stability. It is worth
noting that stability of counting sort when used as a sub-
routine for radix sort is of paramount importance to achieve
correct behaviour of radix sorting. In such cases, proof of

correctness cannot omit this important property at all.
The main contributions of this paper are as follows. We

use the Lean theorem prover [10] to specify stability and
correctness of sorting algorithms utilizing a single induc-
tive predicate to express the notion of being sorted along
with stability, allowing us to avoid having to recover or-
dering information in the stability proof separately. We are
not aware of this approach being used prior. Demonstra-
tion of the practicality thereof is conducted by showing that
behaviour of (stable) insertion sort conforms to the specifi-
cation. To the best of our knowledge, this is the first mech-
anized study to consider stability of insertion sort. In addi-
tion to that, we provide an equivalence proof of the notion
of being sorted and being sorted stably, assuming unique-
ness of elements. The study also represents an example of
utilizing formal verification tools to solve problems related
to real world applications.

2. NOTATION, STABLE INSERTION SORT AND
ITS USUAL SPECIFICATION

Insertion sort generally consists of two parts. A proce-
dure to insert an element into a correct position in a sub-
sequence formed from the original one and a routine to
call the insertion procedure on every element of the se-
quence. This way, a series of incrementally longer sorted
subsequences is built, until the very last element is inserted.
The algorithm is described in more detail in Algorithms by
Sedgewick [11].

A short digression to notation and nomenclature used
henceforth. Sequences of elements will be modelled by
lists of form head :: tail, with [ ] being an empty list and
[x] a list of length one. We will also use the words list and
sequence interchangeably.

Our specification slightly differs from what is usually
used for a correct (and possibly stable) sorting algorithm.

2.1. Usual correctness

Correctness is generally expressed in terms of two prop-
erties (already present in [1]):

• the resulting sequence is sorted
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• the resulting sequence is a permutation of the input
sequence

This coincides with our intuitive idea of what a sorting
algorithm should do, if we for a moment completely disre-
gard stability.

With regards to their formal phrasing, we could utilize
inductive predicates, such as a set of common ones for the
sorted property (named empty, one and more respectively):

sorted [ ] sorted [x]
x≤ y sorted (y :: t)

sorted (x :: y :: t)

Where the≤ operator determines decidable linear order,
a requirement on types of elements we can regard as sorted.

It is also common to use non–inductive definitions
should one find them more convenient, such as the follow-
ing one expressing that a sequence is a permutation of an
another one:

permutation l1 l2
def
= ∀x,count x l1 = count x l2

Where count x l represents the number of occurrences of x
in l.

2.2. Usual stability

Stability is preservation of relative order of equivalent
elements by a sorting procedure. In general, the property is
of interest in the context of incremental sorting (sort people
by their last name, then by their first name, preserving the
order of the initial sort). There is however an interesting
computational factor to consider. Regarding stability and
the disadvantages of an algorithm not exhibiting it, Ster-
nagel [6] notes that ”swapping elements may cause mem-
ory updates on physical media”. The statement is however
completely void of meaning with regards to extensional
specification of the algorithm behaviour, which only con-
straints outputs of the pertinent function, not the way it is
produced. As such, it could very easily be the case that
a stable sorting algorithm swaps equivalent elements more
times than an unstable one, and only in the end permutes
them into an order that is identical to the original one.

The point we are trying to make, is that implementa-
tion details, while definitely not negligible (swapping big
records comes to mind naturally, but one can imagine a sce-
nario where different magnetic tapes need to be unwound
for the swap to happen), cannot be described by exten-
sional way of behaviour specification. This observation
leads to interesting discussion. For instance, one could per-
haps consider a stable sorting algorithm idempotent. Cer-
tainly, once something is sorted, re–applying the function
again should have no effect. However, this approach does
not work intentionally. Not only is a stable algorithm al-
lowed to swap equal elements, it can also arbitrarily swap
unequal elements (as long as everything is properly reshuf-
fled at the end). Therefore, the observation about idempo-
tence makes sense from the extensional point of view only
in the case where a distinguishing factor (such as a sort by
selected key) is present, such that when two parts of a whole

compare equal, does not mean that the entire record being
swapped (or moved) is also equal.

Which brings us to a minor wrinkle for a sorting routine
with an expected type signature of sort : list α → list α .
There is no way to even represent the notion of position. In-
deed, consider the list [0,0,0] and its sorted version [0,0,0].
How does one tell whether the sorting algorithm used for
the abovementioned transformation was stable or unstable?

As such, the property of sort stability needs to be con-
sidered with some way of denoting the concept of position.
Gouw, Boer and Rot [8] used an auxiliary indexing variable
while Sternagel [6] utilized a very similar idea of first as-
sociating indices with each sequence to be sorted and then
introduced a key function to separate the indices from el-
ements. Considering we are concerned with a declarative
version of insertion sort, it is more convenient for us to use
associated indices.

The specification is then generally enriched by adding a
third property of interest, which represents stability:

stable sort key def
= ∀x l, f ilter (λy,key x = key y) (sort key l)

= f ilter (λy,key x = key y) l

Here f ilter P l denotes a function that only keeps elements
of l that satisfy the predicate P and key gives us the element
portion of element–index association. The idea behind this
formulation is that we take a look at the sequence contain-
ing a particular element post sorting (the left hand side of
the above equality) and pre sorting (the right hand side).
Then, if the said subsequences are equivalent for each of
the elements, we can conclude that sort is stable with re-
gards to the key function.

3. LEAN DEFINITIONS, BASIC PROPERTIES AND
STABLE INSERTION SORT SPECIFICATION

Lean is a theorem prover based on dependent type the-
ory. Its focus is on integration of interactive and automated
theorem proving in a common framework. Let us exam-
ine a Lean functional implementation of the insertion sort
along with auxiliary definitions we shall be using for the
purposes of subsequent verification. It is worth noting right
away, however, that given our interest in stability of sorting,
we shall be considering indexing right away, in the form
of ordered pairs; as such, we will be using key = f st to
avoid having to generalize the element–index association
and passing a key function around; more on the topic later.

3.1. Basic definitions

Definition 3.1.
A function to insert an element of sequence into its correct
sorted position.

def insert_le_key {α : Type}
[decidable_linear_order α] :
(α×N) → list (α×N) → list (α×N)

| a [] := [a]
| a (h :: t) := if fst a ≤ fst h

then a :: h :: t
else h :: insert_le_key a t
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As an aside, let us use the very first definition to fa-
miliarize a reader with basics of Lean that are perhaps not
as common in other similar tools or differ in one way or
another from common mathematical notation. For a more
thorough explanation of the tool, one may refer to the Intro-
duction to Lean [12]. Curly braces are used to introduce im-
plicit arguments that are to be automatically inferred from
following arguments. For the purposes of the paper, one can
also consider square brackets as delimiters for implicit ar-
guments; those will in general contain restrictions on types,
similar to typeclasses in Haskell. As such, this construct
defines a function called insert le key that operates on any
type α for which there exists decidable linear order. It is
a binary function from an ordered pair (α×N) and a list of
ordered pairs (list (α×N)) to a list of ordered pairs.

Remark 3.1. From now on, all definitions as well as the-
orem statements shall be written in Lean; those are im-
portant to obtain understanding about the topic in ques-
tion. Proofs however, will remain informal and brief, often
simply describing proof structure and pertinent lemmas;
this is because they have been fully mechanized. Omis-
sion of a definition or a theorem statement means that
authors found it either common, trivial, unimportant or
uninteresting. Some formulations may be slightly altered
for aesthetics on paper; this is generally limited to omitting
explicit type annotation. An interested reader is encour-
aged to inspect the entire development containing all of
the definitions, theorems and proofs at the following url:
https://github.com/ClanokAEI/LeanStableInsert/
blob/master/stable sort.lean. We can establish that
all the proofs are correct under the assumption that we
trust the Lean proof–checking core. For the purposes of the
study, Lean 3.2.0 is used; as it is a tool in active develop-
ment, older or newer versions may be incompatible.

Remark 3.2. For brevity, unless α is explicitly introduced,
we will consider all of the upcoming definitions and the-
orems containing α as universally quantified over a type
variable α , along with assumed implicit availability of de-
cidable linear order for it. Referring to 3.1, we shall
therefore be omitting the {α : Type} followed by [decid-
able linear order α] in statement formulations. Also, the
product α×N representing an element to be sorted and an
index respectively shall be abbreviated as γ .

Definition 3.2.
A function that does the sorting.

def insert_sort (l : list α) : list γ :=
foldr insert_le_key [] (add_key l)

We shall be building sorted subsequences from right, as in-
dicated by f oldr(ight), which denotes an operation of re-
duction. The add key function will be defined shortly and is
used to simply attach a set of unique indices to a sequence.
For our intents and purposes, the indexed version of sort
shall be used throughout the study.

Definition 3.3.
A projection to extract elements from their indexed repre-
sentations.

def π1 {α : Type} : list γ → list α := map fst

Where map f l builds a new sequence from l containing
elements transformed by f , also preserving their order.

Definition 3.4.
A projection to extract indices from element–index pairs.

def π2 {α : Type} : list γ → list N := map snd

Definition 3.5.
A sorting function with the expected signature.

def sort : list α → list α := π1 ◦ insert_sort

Now we can relate the insert sort we shall be using
throughout the study with sort. Thereafter, we shall no
longer return to this technicality.

Theorem 3.1.
A standard sorting function sort can be obtained from
insert sort by composing it with π1.

theorem insert_sort_well_behaved : ∀l : list α,
π1 (insert_sort l) = sort l

Proof. Follows from the definition of function composition
and 3.5.

The already mentioned add key function transforms a list
of αs to a list of γs, with the first component being the ele-
ment itself and the second component representing its index
in the sequence.

Definition 3.6.
Assign a sequence of unique strictly increasing indices to a
list of elements.

def add_key {α : Type} (l : list α) : list γ

:= add_key_from l 0

The add key f rom function is defined as follows:

Definition 3.7.
Sequences are assigned as second components of ordered
pairs, while elements themselves are first components.

def add_key_from {α : Type} (l : list α)
: list γ := zip l (iota_asc_from n (length l))

Zip forms a list of ordered pairs from corresponding ele-
ments of its arguments and iota asc f rom is:

Definition 3.8.
Iota asc f rom m n is used to generate n positive integers
starting with m, increasing by one.

def iota_asc_from : N→ N→ list N
| m 0 := []
| m (succ k) := m :: iota_asc_from (succ m) k
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3.2. Specification

As we have already stated, our approach is a little bit
different from what is usually the case. With stability being
an afterthought, it is added as a third property of the specifi-
cation. As such, when trying to prove that any given sorting
algorithm is stable, one needs to consider the way elements
are being shuffled (whether it is directly with comparative
sorts or indirectly with, well, non–comparative sorts), and
possibly show that inversions are being undone in a way
that preserves (or does not preserve) the original relative
order of equivalent elements. This process is completely
disjoint from the notion of being sorted and all the informa-
tion available from this property is thrown away, having to
be recovered in the stability proof separately. We therefore
enhance the notion of what it means to be sorted, express-
ing stability along with the property of being sorted. It can
be viewed as an extension of what Gouw, Boer and Rot [8]
used, utilizing an index once equality is established.

Definition 3.9.
An inductive predicate describing a sequence that is stably
sorted with regards to key.

inductive stable_sorted {α : Type} {β : Type}
[strict_order α] [decidable_linear_order β]
(key : α → β) : list α → Prop
| stable_empty : stable_sorted []
| stable_one : ∀x, stable_sorted [x]
| stable_more_eq : ∀(x y : α) (t : list α),

key x = key y → x < y →
stable_sorted (y :: t) →
stable_sorted (x :: y :: t)

| stable_more_neq : ∀(x y : α) (t : list α),
key x < key y →
stable_sorted (y :: t) →
stable_sorted (x :: y :: t)

Remark 3.3. A very important thing to note here is that
throughout the study, we will be using the definition under
assignment α ← γ , for which the strict comparison opera-
tion with < is defined to compare second components; those
represent indices. As such, x < y for (a, m) < (c, n) is, by
definition, m < n.

Formulating stability along with sortedness reveals a
very interesting idea. What we are technically doing is
converting a set of linearly ordered β s to a set of strictly
ordered αs, which we can then sort as if under the assump-
tion that no elements are equivalent in the first place (con-
sidering elements cannot overlap, they must have unique
indices representing their position). Colloquially speaking,
we can very explicitly make the distinction between strictly
less than and equal in the sense that ≤ is split into < and =.

For completeness sake, we shall reiterate the property
of permutations, this time in Lean. It remains unchanged.

Definition 3.10.
A definition of permutation in terms of equivalent number
of occurrences of each element.
def permutation_dec {α : Type} [decidable_eq α]

(l1 l2 : list α) : Prop :=
∀x, count_dec x l1 = count_dec x l2

Definition 3.11.
A function count dec x l counts occurrences of x in l.

def count_dec {α : Type} [decidable_eq α] :
α → list α → N
| _ [] := 0
| x (h :: t) := if x = h

then succ (count_dec x t)
else count_dec x t

All of the components are in place now to state that
insert sort complies with the specification:

Theorem 3.2.
Insert sort creates a permutation of its input list that is sta-
bly sorted.

theorem sort_correct_and_stable :
∀(l1 : list α) (l2 : list γ),

l2 = insert_sort l1 →
stable_sorted fst l2 ∧
permutation_dec (π1 l2) l1

We are using permutation of projection of elements over
π1 rather than leaving them with their indices. The reason
for this is twofold, but purely practical. First, we avoid hav-
ing to define decidable equality on γ (even though it is in-
duced by decidable equality on its components). Second,
it gives us (admittedly somewhat pointless) freedom with
regards to indices we use when dealing with expressing the
permutation property.

4. PROOF OF PERMUTATION

The entire proof will be split into two parts, correspond-
ing with each of the conjuncts. Let us first prove correctness
with regards to permutation, for which we shall need a few
facts about permutations and the sorting routine.

Lemma 4.1.
Sorting an empty list yields an empty list.

lemma sort_empty : insert_sort [] = []

Proof. Follows from definitions 3.2, 3.6, zip, zip with and
foldr.

Lemma 4.2.
Inserting an element into an empty list results in a list con-
taining only that element.

lemma insert_into_empty :
∀h : γ, insert_le_key h nil = [h]

Proof. Follows directly from 3.1.

Lemma 4.3.
Inserting an element increases its count in a sequence.
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lemma count_over_projection :
∀x xk (l : list γ),
count_dec x (π1 (insert_le_key (x, xk) l)) =
succ (count_dec x (π1 l))

Proof. By induction on structure of l with h :: t. For an
empty list, the property follows from 4.2. Otherwise, as-
sume x ≤ key h, in which case it holds from 3.11. For
¬(x ≤ key h), we also have x 6= key h, then from 3.11 and
from the inductive hypothesis the property holds.

Lemma 4.4.
The number of occurrences of x in a sequence l does not
change if we insert an element y distinct from x into l.

lemma count_over_projection_neq :
∀x y xk (l : list γ), x 6= y →
count_dec x (π1 (insert_le_key (y, xk) l)) =
count_dec x (π1 l)

Proof. Shares structure with the proof of 4.3. In the induc-
tive step, finish by case analysis on x = key h; both parts
then follow from the inductive hypothesis.

Lemma 4.5.
After projection of keys, an index being inserted is irrele-
vant.

lemma insert_second_irrelevant :
∀a b c (l : list γ),

π1 (insert_le_key (a, b) l) =
π1 (insert_le_key (a, c) l)

Proof. By induction on shape of l, then by cases on a ≤
key h in the h :: t case.

Lemma 4.6.
Inserting the same element into two equivalent lists pre-
serves the equality.

lemma insert_le_x_right_neutral :
∀x (l1 l2 : list γ),

π1 l1 = π1 l2 →
π1 (insert_le_key x l1) =
π1 (insert_le_key x l 2)

Proof. By induction on l1, then by cases on l2.

Lemma 4.7.
Insertion ignores indices.

lemma projection_over_foldr :
∀(l : list α) (l1 l2 : list N),
length l1 = length l2 →
π1 (foldr insert_le_key nil (zip l l1)) =
π1 (foldr insert_le_key nil (zip l l2))

Proof. By induction on structure of l with h :: t, followed
by shape analysis of l1 and l2 with h1 :: t1 and h2 :: t2 respec-
tively; when both empty, the property holds trivially. Mis-
matching lengths lead to contradiction. In the last case, in
π1 (insert le key (h, h1) ( f oldr insert le key nil (zip t t1)))
= π1 (insert le key (h,h2) ( f oldr insert... nil (zip t t2)))
we can unify h1 = h2 from 4.5, then we can remove
insert le key because of 4.6. The rest follows from the in-
ductive hypothesis.

Lemma 4.8.
Sequences generated by iota asc f rom m n are of length n.

lemma iota_asc_from_len : ∀ m n,
length (iota_asc_from m n) = n

Proof. By straightforward induction on n.

Theorem 4.1.
The output of sort is a permutation of its input.

theorem sort_permutes :
∀l1 (l2 : list γ), l2 = insert_sort l1 →
permutation_dec (π1 l2) l1

Proof. By induction on structure of l1, there are two
cases to consider. When l1 is empty, l2 is also empty
from 4.1, the rest follows trivially. For h :: t, we as-
sume an arbitrary he from 3.10, then proceed by cases on
h = he. Under assumed equality, first use 4.3 to get to
count dec h (π1 ( f oldr insert... nil (add key f rom t 1)))
= count dec h t, then utilize 4.7 iota asc f rom 0 (length t)
for indices to match the shape of the inductive hypothesis.
Their length is short enough, which can be seen from 4.8.
The h 6= he case is analogical to the previous one, but with
4.4 instead of 4.3, as the element we are trying to count and
the current head mismatch.

5. PROOF OF STABLE SORTEDNESS

Now on to showing conformance with regards to the
notion of being sorted stably, beginning by proving vari-
ous auxiliary facts. Do note that we do not need to deal
with f ilter and how undoing inversions by the sorting pro-
cedure affects permutations being generated with regards to
it. Useful facts first.

Lemma 5.1.
Iota asc f rom m n can be coerced into shape h :: t assum-
ing 1≤ n.

lemma iota_split : ∀h t m n,
1 ≤ n →
h :: t = iota_asc_from m n →
h = m ∧ t = iota_asc_from (succ m) (pred n)

Proof. Both conjuncts hold from 3.8.

Definition 5.1.
For convenience, we define a weaker notion of sorted; one
that does not allow for variation in ordering criteria nor
type of elements to sort and simply represents strictly in-
creasing integer sequences:

inductive strictly_increasing : list N→ Prop
| si_empty : strictly_increasing []
| si_one : ∀x, strictly_increasing [x]
| si_more : ∀h1 h2 (t : list N),

h1 < h2 →
strictly_increasing (h2 :: t) →
strictly_increasing (h1 :: h2 :: t)
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Lemma 5.2.
Iota asc f rom m n generates strictly increasing sequences.

lemma iota_from_strictly : ∀ m n l,
l = iota_asc_from m n → strictly_increasing l

Proof. By straightforward induction on n with k, there
are two cases to consider. For n = 0, the sequence is
empty and therefore strictly increasing. Otherwise we
proceed by cases on shape of derivation of the sequence
iota asc f rom (succ m) k, spawning two additional cases.
When the list is empty, a sequence of length one is strictly
increasing. The final case follows trivially from the induc-
tive hypothesis.

Lemma 5.3.
Tail of a strictly increasing sequence is too strictly increas-
ing.

lemma strictly_increasing_over_head :
∀h t, strictly_increasing (h :: t) →
strictly_increasing t

Proof. On shape of derivation of strictly increasing (h ::
t).

Lemma 5.4.
Head of a strictly increasing sequence is smaller than any
other element in the tail.

lemma strictly_split : ∀h t,
strictly_increasing (h :: t) →
(∀x, x ∈ t → h < x)

Proof. By induction on t. The empty case is contradictory.
When t = h1 :: t1, then either x = h1 or x ∈ t1. The former
is trivial, the latter follows from the inductive hypothesis
and from the fact that strictly increasing (h :: h1 :: t1)→
strictly increasing (h :: t1), which can be shown from 5.3
and 5.1.

Definition 5.2.
A predicate representing presence of an element in a list.

def in_comp {α : Type} : α → list α → Prop
| _ [] := false
| x (h :: t) := x = h ∨ in_comp x t

We shall be using ∈ as notation for in comp henceforth.

Now a lemma that allows us to skip the entirety of sta-
bility proof. Under normal circumstances, one assumes that
inserting into a sorted sequence yields a sorted sequence.
This is however untrue in our setting, as we may be inad-
vertently inserting a duplicate element with a greater index.
Therefore, we formulate the theorem as follows:

Lemma 5.5.
Inserting an element into a sorted sequence yields a sorted
sequence assuming the index of the element being inserted
is strictly smaller than any other index in the sequence.

lemma insert_pres_sorted : ∀l (e : γ) elem key,
e = (elem, key) →
(∀x, x ∈ π2 l → key < x) →
stable_sorted fst l →
stable_sorted fst (insert_le_key e l)

Remark 5.1. The assumption is a bit stronger than it nec-
essarily needs to be, as we only need to assure that the index
being inserted is strictly smaller than indices correspond-
ing with equivalent elements. However, this formulation is
more convenient, given the expansion of indices at reduc-
tion. If we consider insert le key = insert for just a mo-
ment, then from f oldr insert [ ] [( ,0),( ,1),( ,2)], we get
insert ( ,0) (insert ( ,1) (insert ( ,2) [ ])). As an effect of
folding from right, we always have an index that is strictly
less than every other one in the sorted subsequence.

Proof. By induction on l, we have two cases to con-
sider. For an empty sequence, the theorem follows from
4.2. For the list of shape h :: t, cases when elem =
key h or elem < key h hold trivially. For elem > key,
proceed by shape of derivation of stable sorted (h ::
t). The case where the derivation is empty is contra-
dictory. The stable sorted [h] case is trivial. In the
stable sorted [h :: y :: t2] case for equal head elements,
note that elem > key y, as such we eventually need to
show stable sorted f st (y :: insert le key (elem,key) t2),
using stable more eq from 3.9. Since elem > key y, we
get to insert le key (elem, key) (y :: t2), which then fol-
lows from the inductive hypothesis. In the remaining case
where stable sorted [h :: y :: t2] and head elements are
unequal, there are three options. The elem < key y and
elem = key y are similar and follow from stable more eq
and stable more neq of 3.9. The remaining case when
elem > key y is analogical to the corresponding case of the
derivation from stable more eq.

Lemma 5.6.
If an index comes from a list that is created by inserting an
element into its subsequence, then it must have come from
the subsequence or it is the element being inserted.

lemma over_second_split :
∀x elem idx (l : list γ),
x ∈ π2 (insert_le_key (elem, idx) l) →
x = idx ∨ x ∈ π2 l

Proof. By straightforward induction on l. Note that the
case when l is empty is contradictory.

Lemma 5.7.
If an index is somewhere in a sorted list, then it must have
come from the initial list of indices.

lemma over_second_projection :
∀x (l1 : list α) (l2 : list N),
length l1 = length l2 →
x ∈ π2 (foldr insert_le_key nil (zip l1 l2))
→ x ∈ l2

Proof. By induction on l1. The case where the list is empty
is trivial. Now consider h :: t, then by shape of l2 we get
mismatching lengths for empty l2 and as such a contradic-
tion. Otherwise, from 5.6 we can assume x = h2 ∨ x ∈
π2 ( f oldr insert le key nil (zip t t2)). The former case
holds trivially, the latter follows from the inductive hypoth-
esis.
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Now we would like to show the left conjunct of 3.2. How-
ever, the formulation in this form is not very permissive in
terms of indices used, as insert sort uses add key. As such,
let us first show the following:

Theorem 5.1.

theorem sort_sorts_stably_aux :
∀(l : list γ) (l1 : list α) (l2 : list N) m n,
length l1 = length l2
l2 = iota_asc_from m n
l = foldr insert_le_key [] (zip l1 l2)
stable_sorted fst l

Proof. By induction on l1, then by cases on l2. The
case where both lists are empty is trivial. The cases
where lengths mismatch are contradictory. We are left
with l1 = h :: t and l2 = h2 :: t2. Note that from 5.1 we
get h2 = m and t2 = iota asc f rom (succ m) (pred n).
Also note that from 5.2 and 5.3, t2 is strictly
increasing. Therefore, it is sufficient to show
stable sorted f st ( f oldr insert le key nil (zip t t2)) from
5.5. This is valid because we can prove for an arbitrary
x that h2 < x from 5.4 and 5.7, which is the stability pre-
serving condition. The rest follows from the inductive
hypothesis.

Finally we can formulate the desired property as a simple
corollary of 5.1.

Corollary 5.1.
Sort creates stably sorted sequences.

theorem sort_sorts_stably :
∀(l1 : list α) (l2 : list γ),
l2 = insert_sort l1 → stable_sorted fst l2

Proof. As the indexing sequence l2, choose
iota asc f rom 0 (length l1) and use 4.8 to show that lengths
of the lists being zipped coincide. The rest of the proof is
trivial.

From 5.1 and 4.1, we can easily show 3.2, which is what
we had set out to do.

6. PROOF OF IRRELEVANCE OF STABILITY FOR
NON–REPEATING SEQUENCES

Intuitively, stability is a property that does not require
consideration if the sequence to be sorted contains no du-
plicates. Let us formalize this specification in Lean and
prove equivalence of unstable and stable sorting under the
said assumption.

Definition 6.1.
A predicate expressing sequences containing distinct ele-
ments.

inductive no_dup {α : Type} : list α → Prop
| no_dup_empty : no_dup []
| no_dup_one : ∀x, no_dup [x]
| no_dup_more : ∀x (l : list α),

no_dup l →

¬(x ∈ l) →
no_dup (x :: l)

Lemma 6.1.
Tail of a list containing no duplicates has distinct elements
only.

lemma no_dup_tail {α : Type} : ∀h (t : list α),
no_dup (h :: t) → no_dup t

Proof. By cases on no dup (h :: t).

Lemma 6.2.
If an element is not in a list, it must be distinct from its head.

lemma not_in_means_neq {α : Type} :
∀(a b : α) (t : list α),
¬a ∈ b :: t → a 6= b

Proof. Follows definitionally from 5.2.

Lemma 6.3.
Heading elements of sequences with distinct elements only
are unequal.

lemma no_dup_are_unequal {α : Type} :
∀(a b : α) (t : list α),
no_dup (a :: b :: t) → a 6= b

Proof. By cases on no dup (h :: t) we only have one option,
namely no dup more of 6.1, which follows from 6.3.

Theorem 6.1.
A sequence containing distinct elements is sorted if and
only if it is stable sorted.

theorem distinct_always_stable
{α : Type}
[x : decidable_linear_order α]
[y : strict_order γ] :
∀(l : list γ),
no_dup (π1 l) → (

stable_sorted fst l ⇐⇒
sorted (π1 l)

)

Remark 6.1. We assumed strict order on γ for convenience
of formulation. It is worth explicitly noting that with this
particular way of stating the theorem, we can immediately
see that indices become irrelevant (as they are projected
away by π1) even in the direction sorted → stable sorted.
Also, we are using sorted definition from 2.1.

Proof. For the direction stable sorted → sorted, by
straightforward induction on the shape of derivation of
stable sorted l using 6.1. For sorted→ stable sorted, be-
gin by induction on sorted (π1 l). The cases empty and one
are trivial. For more, let the first and the second element be
h1, h2. Note that h1 ≤ h2. In the case where h1 < h2, use
stable more neq of 3.9, the rest follows from the inductive
hypothesis. The case where h1 = h2 is contradictory be-
cause of 6.3.
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We could use this result to optimize a call to a stable sorting
algorithm by using an unstable one (under the assumption
that the latter is faster tan the former), if we could prove
that elements to be sorted are distinct. More importantly, it
demonstrates a scenario where stability is an observable ef-
fect, and as such should be a consideration in specifications
of sorting functions. Algorithms such as radix sort also
show that stability is relevant even in pure environments
with memory being completely transparent; the notion of
relative position simply does not go away, even despite the
fact that we had to explicitly introduce indices to model it.

7. CONCLUSION

The entire theme of the study revolves around using
Lean to fully formalize a declarative version of the inser-
tion sort algorithm and subsequently proving its correct-
ness along with stability, which can be formulated conve-
niently, without much extra effort, directly within the no-
tion of being sorted. While this does slightly complicate
proofs showing that a sequence is sorted (stably), it allows
us to skip f iltering (or processes similar to it) of sequences
entirely. Therefore, with regards to complexity of proofs,
we trade the entire notion of separate stability for arguably
trivial proofs dealing with projections of elements as op-
posed to elements themselves, and for a slightly stronger
relationship between sorted sequences and their properties
when an element is being inserted into a correct position.
It is also worth noting that when we interpret permutations
as multisets containing elements of equal counts, indices
can be completely ignored. This condition is present in the
specification to simply relate input sequences to output se-
quences. Furthermore, we have shown that we can equate
sorting and stable sorting if the sequence in question con-
tains no duplicates – thereby demonstrating that stability
cannot be forgotten about in all cases, as it is necessary for
the proof. While it is true that indices are artificially added
in this scenario, we argue that the notion of relative position
does not disappear simply because in some cases, memory
(and memory locations) are transparent.
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Martin Tomášek received Ph.D. degree in Software and
Information Systems in 2005 and currently works as an
associate professor at Technical University of Košice. His
research interests include concurrency theory, distributed
systems, and cloud computing.

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://coq.inria.fr
http://coq.inria.fr
https://leanprover.github.io/introduction_to_lean/introduction_to_lean.pdf
https://leanprover.github.io/introduction_to_lean/introduction_to_lean.pdf
https://leanprover.github.io/introduction_to_lean/introduction_to_lean.pdf

